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A novel, remarkably neat, differential algorithm is introduced, which is suitable to evaluate all the zeros of a
generic polynomial of arbitrary degree N.

1. Introduction

Recently a new differential algorithm to compute all the zeros of a generic polynomial has been
introduced: it involves the solution of an appropriate system of N nonlinearly coupled first-order
Ordinary Differential Equations (ODEs) [1]. The novel technique described below is analogous,
but it instead involves the solution of an appropriate system of N nonlinearly coupled second-order
ODEs. While this fact might be considered a drawback of the novel system when compared to the
previous one [1], the novel technique introduced herein is remarkably neater and therefore worthy
of being widely known at least because of its elegance.

2. The task

Let a generic (monic) polynomial be defined as follows in terms of its N coefficients cm and its N
zeros xn:

pN (z) = zN +
N

∑
m=1

(
cm zN−m)= N

∏
n=1

(z− xn) . (2.1)

Hereafter we assume that N is an arbitrary positive integer N, and that the N coefficients cm are
N, arbitrarily assigned, generally complex, numbers. The task is to compute the N zeros xn (all
different among themselves: ”genericity” of the polynomial (2.1)). As it is well known this task
can be generally performed explicitly only for N = 2, N = 3 respectively N = 4, via equations
involving square, cubic, respectively quartic roots. The N coefficients cm can instead be expressed
in an explicit manner in terms of the N zeros xn: cm = (−1)n

σm (x̃) , where σm (x̃) is the symmetrical
sum of order m of the N zeros xn which are the N elements of the unordered set x̃; but, remarkably,
these formulas play no role in the following.

Hereafter indices such as n, m, ` run over the positive integers from 1 to N, unless otherwise
indicated.
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3. The algorithm

Consider the dynamical system characterized by the following N second-order ODEs (of Newtonian
type: ”accelerations equal forces”)

ξ̈n (t) =
N

∑
`=1; 6̀=n

[
2 ξ̇n (t) ξ̇` (t)
ξn (t)−ξ` (t)

]
, (3.1)

which characterizes the motion in the complex ξ -plane of the N points identified by the N coordi-
nates ξn (t); here and below superimposed dots indicate of course differentiation with respect to the
real parameter t (”dimensionless time”: the independent variable). This system (3.1) is, in fact, an
integrable Hamiltonian system, to which the honorary name ”goldfish” has been attributed because
of the neatness of its equations of motion, which are clearly autonomous and invariant under any
arbitrary common translation or rescaling of the dependent variables ξn (t) [2].

Next, integrate this system (3.1) of N second-order ODEs from t = 0 to t = 1, starting—at the
”initial time” t = 0—from N, arbitrarily assigned, generally complex, N initial values ξn (0) , with
the corresponding initial velocities ξ̇n (0) given by the following explicit formula in terms of these
N initial data ξ` (0) and of the N coefficients cm of the polynomial (2.1):

ξ̇n (0) =−
[ξn (0)]

N +∑
N
m=1

{
cm [ξn (0)]

N−m
}

∏
N
`=1, 6̀=n [ξn (0)−ξ` (0)]

=− pN [ξn (0)]

∏
N
`=1, 6̀=n [ξn (0)−ξ` (0)]

. (3.2)

There thus obtain the N zeros xn of the polynomial (2.1):

ξn (1) = xn , pN (xn) = 0 . (3.3)

4. The proof

Let the time-dependent monic polynomial

PN (z; t) = zN +
N

∑
m=1

[
γm (t) zN−m]= N

∏
n=1

[z−ξn (t)] (4.1)

be characterized by its N time-dependent coefficients γm (t) and by its N zeros ξn (t) . It has been
recently shown [3] that the first and second time-derivatives of these quantities are related by the
following convenient identities (for notational simplicity we omit below to indicate explicitly the
t-dependence of the various quantities, whenever this omission is unlikely to cause any misunder-
standing):

ξ̇n =−
∑

N
m

[
γ̇m (ξn)

N−m
]

∏
N
`=1, 6̀=n (ξn−ξ`)

, (4.2a)

ξ̈n =
N

∑
`=1; 6̀=n

(
2 ξ̇n ξ̇`

ξn−ξ`

)
−

∑
N
m

[
γ̈m (ξn)

N−m
]

∏
N
`=1, 6̀=n (ξn−ξ`)

; (4.2b)

while it is plain, see (4.1), that there hold the N identities

(ξn)
N +

N

∑
m=1

[
γm (ξn)

N−m
]
= 0 . (4.3)
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Now make the assignment

γm (t) = γm (0)+ t [cm− γm (0)] , (4.4a)

which is obviously valid at t = 0 and it clearly implies

γ̈m (t) = 0 , γ̇m (t) = cm− γm (0) , γm (1) = cm . (4.4b)

Clearly the first of these 3 identities (4.4b) implies (3.1) via (4.2b); at t = 0, the second of these
3 identities (4.4b), via (4.2a) together with (4.3), implies (3.2); and the third of these 3 identities
(4.4b)—together with the definitions of the polynomials pN (z) and PN (z; t) in terms of their coeffi-
cients, see (2.1) and (4.1)—implies pN (z) = PN (z;1) hence the validity of (3.3).

Remark 4.1. It is plain that the solutions ξn (t) of the system (3.1) with arbitrary initial data ξn (0)
and with the initial velocities (3.2) are finite for all (finite) time—hence in particular for 0≤ t ≤ 1—
since they are the zeros of the polynomial PN (z; t), see (4.1), with the coefficients γm (t) given
by the simple prescription (4.4a). The system of nonlinear ODEs (3.1) might however feature a
singularity—due to vanishing of the denominator in the right-hand side of (3.1)—for 0 ≤ t ≤ 1 if
in that time interval two (or more) of the points ξn (t) moving in the complex ξ -plane collide. But
clearly the set of N initial data ξn (0) causing such collisions has a vanishing measure in the space
of all sets of initial data as long as one is working with complex numbers (as above recommended);
so any eventual collision can be avoided by a slight change of the—a priori arbitrary—assignment
of the initial data ξn (0). Moreover any eventual collision does not entail a blow-up of the solutions
of (3.1)—see above—but merely, after the collision, a ”loss of identity” of the colliding points; not
very relevant for the evaluation of the zeros xn of the polynomial (2.1), which have themselves no
specific identity being the N elements of the unordered set x̃, see above. On the other hand a col-
lision of two or more of the moving points ξn (t) at t = 1 would be unavoidable if the polynomial
pN (z), see (2.1), features one or more multiple zeros. For this reason the treatment in this paper is
restricted to generic polynomials which by definition do not feature multiple zeros. A modification
of the algorithm introduced in this paper—and of the previous analogous algorithm (see [1])—to
make them suitable to deal with polynomials featuring multiple zeros is possible but it requires a
separate treatment (for appropriate hints see [4]).

Remark 4.2. Let us re-emphasize the flexibility of the algorithm described above entailed by the
arbitrariness in the assignment of the N initial data ξn (0). It is moreover plain that if any one of
these N a priori arbitrary initial data ξn (0) were to coincide with one of the zeros xn of the poly-
nomial pN (z) , see (2.1)—say, ξ1 (0) = x1—then ξ̇1 (0) = 0 would follow (see (3.2)), hence as well
ξ̇1 (t) = 0 (see (3.1)), implying that the coordinate ξ1 (t) would remain fixed throughout its time
evolution from t = 0 to t = 1; and moreover its presence would have no effect at all on the move-
ment of the other points ξn (t) with n 6= 1 (as clearly implied by (3.1)).

Remark 4.3. The preceding Remark 4.2 and the general character of the algorithm described above
suggest that thenumericalefficiencyof thatalgorithmis likely tobe improved thecloser theassignment
of the initial data ξn (0) are to the (a priori unknown) zeros xn. This suggest the possible advantage of
an iterated application of the algorithm, with the outcome of a computational cycle used as input data
for the next computational cycle—possibly with an appropriate sequential increase of the precision of
the numerical routine employed to integrate from t = 0 to t = 1 the system of N ODEs (3.1).
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Remark 4.4. While the preceding Remark 4.3 provides some potentially useful hints relevant
to the applicability of the algorithm described above to actually compute the N zeros of a
given polynomial, clearly a detailed comparison in the context of numerical analysis of the
merits/demerits of this technique—when compared to other standard numerical techniques to
compute all the zeros of a given polynomial—is a nontrivial endeavour which exceeds the
scope of this Letter and indeed the competence of its author.

Remark 4.5. Any new method to evaluate the zeros of a given polynomial is likely to be
fruitful independently from its numerical proficiency, as a tool to obtain interesting informa-
tion over other properties of the zeros of a polynomial than their numerical values. But is
the method provided above indeed new?

A cogent answer to this question is hardly possible, since it would require a detailed
scrutiny of the world mathematical literature spanning at least 4 centuries. It seems however
reasonable to conjecture that the method presented above is indeed new, for the following 3
reasons. (i) A search via the web and by word of mouth had yielded no contrary indication
when a somewhat analogous technique was recently introduced [1]. (ii) This state of affairs
has persisted after the publication of that technique, which was also advertised to be new [1].
(iii) The neatness and elegance of the algorithm presented above suggests that, had it been
previously discovered, it is extremely unlikely that it might have been subsequently forgotten.

5. Envoy
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ence held in Gallipoli, Italy, 17-24 June, 2017. It is a pleasure to thank the organizers—
B. Konopelchenko, G. Landolfi, L. Martina, R. Vitolo—and all the participants for the very
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