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A technique to identify new C-integrable and S-integrable systems of nonlinear partial differential equations is
reported, with two representative examples displayed and tersely discussed.
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1. Introduction

The main tool used in this paper are the nonlinear reversible relations—by definition, algebraic—
among the N coefficients of a monic polynomial of degree N in the (complex) variable z and its N
zeros. The approach based on these relations allowed over time to identify many dynamical systems
solvable by algebraic operations, including many-body problems characterized by Newtonian equa-
tions of motion (“accelerations equal forces”) [1], and also several solvable/integrable systems of
nonlinear Partial Differential Equations (PDEs) [2]. These developments were until recently mainly
restricted to the consideration of nonlinear evolutions satisfied by the zeros of a time-dependent
polynomial the coefficients of which evolve according to linear systems of Ordinary Differential
Equations (ODEs) [1] or of PDEs [2]. Recently a convenient way to relate the time-evolution of the
zeros of a time-dependent polynomial to the time-evolution of its coefficients has been noted [3], and
this development has allowed the identification and investigation of several new solvable dynamical
systems and many-body problems characterized by the time-evolution of the zeros of polynomials
the coefficients of which evolve in a nonlinear but solvable/integrable manner [3,4]. In the present
paper we show how this development can be as well employed to identify new systems of solv-
able/integrable nonlinear PDEs. Since our main goal in this paper is to introduce this approach
we limit its application herein to the exhibition of just two new systems of integrable PDEs in 1+1
dimensions, the first of which is associated to the evolution of the N zeros of a polynomial the coef-
ficients of which evolve according to the Burgers PDE—perhaps the most elementary C-integrable
nonlinear PDE in 1+1 dimensions, being solvable by a Change of dependent variables—and the
second of which is associated with the KdV PDE—perhaps the most famous of the nonlinear S-
integrable PDEs in 1+1 dimensions, since the discovery half a century ago of its integrability via
the Spectral (or Scattering) Transform opened the way to a major development in pure and applied
mathematics. [5]

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
142



F. Calogero / New C-integrable and S-integrable systems of nonlinear PDEs

Notation 1.1. Hereafter we always refer to monic polynomials of arbitrary order N (N > 2),

N N
Po(26@n,wwn) =2+ Y [onlxn) 2= v (x,1)] (1.1)
=1

m=1 n

the complex variable z is the argument of the polynomial, indices such as n, m run throughout
from 1 to N, the N-vector @ (x,t) has the N coefficients @,, of the polynomial (1.1) as its N com-
ponents, V¥ (x,¢) denotes the unordered set of the N zeros Wy, (x,t) of the polynomial (1.1), and
we generlely assume all these dependent variables to be complex (this of course does not exclude
that they might be real, see indeed the examples below). We instead assume the independent vari-
ables x ("space”) and ¢ ("time ) to be real numbers; and we indicate partial differentiations with
respects to these variables by appending them as subscripts preceded by commas, so for instance
Ot (X,1) = 0@y (x,1) /01, Yyax (x,1) = 9%, (x,1) /x>, We generally focus on generic polynomi-
als the coefficients and zeros of which are generic complex numbers, and which in particular feature
zeros all different among themselves, W, (x,t) # W, (x,t) if n # m. Hereafter we often omit the
explicit indication of the dependent variables x and ¢t when this can be done without causing con-
fusion. Note that the notation Py (z; P, l[/) is somewhat redundant, since this monic polynomial of

degree N in z can be identified by assigning either its N coefficients @, or its N zeros ,,; indeed
the N coefficients @,, can be expressed in terms of the N zeros y, via the standard formula

On=(—1)" ) (Wy Wy W) (1.22)

1<ni<m<...<ny <N

so that

or=—Wi+wy+..+yy), (1.2b)

= (Vi va+vi W34+ wy)
+(V2 v Wty yy) +
+(Wnv—2 Yn—1+WUn—2 WN)+ WUn—1 Wy, (1.2¢)

and so on. On the other hand, while the assignment of the N coefficients ¢,, determines uniquely,
up to permutations, the N zeros y,, of course explicit formulas in terms of elementary functions
(including radicals) expressing the zeros of a polynomial of degree N in terms of its coefficients are
generally only available for N < 4. Finally let us note that hereafter we adopt the standard conven-
tion according to which a void sum vanishes, and a void product equals unity.

In the following Section 2 we report and discuss our main findings, which are then proven in
the following Section 3. A terse Section 4 outlines possible future developments.
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2. Results

Proposition 2.1. The following system of N coupled nonlinear PDEs in 1+1 variables is C-
integrable:

N 2 nx X
Var Vo= Y (v&wz)

=1 t£n \ Y= Y
N Y .
- H (V’n_ IVE)] Z [am (Pm,x (pm (Wn) - } (21)
(=1, l#n m=1

where the parameters a,, are N arbitrary (complex) numbers, the N (complex) functions Y, =
Y, (x,t) are the dependent variables, and the N (complex) functions @, = @y, (x,t) are expressed in
terms of the dependent variables W, = W, (x,t) by the formulas (1.2), implying of course

N
Q==Y (Vux) (2.2a)

n=1

m

Onx = (_l)m Z Wngx Z (Wm Yoy = Wng i Yngyy - an) )

s=1 1<n<ny<--ng_1<ngy1 <ny <N

m=2,...N. (2.2b)

This means that the initial-value problem—to compute the N functions v, (x,7) for all time t > 0
from given initial data v, (x,0)—can be solved by algebraic operations (including changes of vari-
ables from the coefficients to the zeros of a polynomial of degree N such as (1.1)) and quadratures.
The procedure to do so is detailed in the following Section 3, and this implies the validity of the
solutions reported below.

For N = 2 this system, (2.1), of 2 coupled nonlinear PDEs reads as follows:

Vit + Wonxx = (V’n - Vf'1+1)_1 {2 Ynx Yn+lx+ [al (Wn,x+ V’n-&-l,X) (V’n + ll’n-&-l) V’n]
—a (ll/n,x Y+l + Wy Wn+1,x) Y llfn+1} , n=1,2 mod (2) . 2.3)

An example of specific solution of this system of 2 coupled nonlinear PDEs, (2.3), reads as follows:

(- {14 [ P/ pen)
2f1 (x,t) ’

Yy (x,1) = — n=12, (2.4a)

an

fn(x’t) = _2 %

+ B exp[—1 x—wm1t)], n=1,2, (2.4b)

where the 2 parameters a, are those appearing in the PDEs (2.3) and the 4 (nonvanishing) parameters
B, and ¥, can be arbitrarily assigned. Note that if the 6 parameters ay,, f3,, ¥, are all real numbers,
then the 3 inequalities ay B1 Y1 <0, a, » >0, B, < 0 are sufficient to guarantee that for all real
values of the independent variables x, ¢ these solutions (2.4) are real and nonsingular. Also note
that if 73 = 7» = ¥ this solution has the ’single soliton” feature to depend on the space and time
coordinates only via their combination x — yr.
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Proposition 2.2. The following system of N coupled nonlinear PDEs in 1+1 variables is S-
integrable:

N N
Vit + Vo = 3 Z (Wn,xx Vo x+ Wnx ‘lfﬁ,xx) _3 Ynx Vo, x Vo, x
t=1,t#n Vo= Wi =t 012y 3 tn (W = W) (W — W1y)
N -1 N N
+ H (Wi’l - WZ) Z |:am Omx OPm (Wn) _m:| N (25)
(=1, (+n o

where the parameters a,, are N arbitrary (complex) numbers, the N (complex) functions Yy, =
W, (x,1) are the dependent variables, and the N (complex) functions @, = @, (x,t) respectively
Omx = Qmyx (x,1) are expressed in terms of the dependent variables W, = Y, (x,t) and their x-
derivatives Wy, x = Wy (x,t) by the formulas (1.2) respectively (2.2).

This means that the initial-value problem—to compute the N functions y, (x,7) for all time
t > 0 from given initial data y, (x,0)—can be solved by algebraic operations (including changes of
variables from the coefficients to the zeros of a polynomial of degree N such as (1.1)) and via the
standard Spectral Transform technique. The procedure to do so is detailed in the following Section
3, and this implies the validity of the solutions reported below.

For N = 2 this system of 2 coupled nonlinear PDEs reads as follows:

l//n,t + Wn,xxx - (Wn — Yn+1 )_1 {3 (Wn,xx l//n-‘,-lgc + me Wn-‘r],xx)
- [al (Wn,x+ Wn+1,x) (Wn + Wn+1) Wn]
+ a2 (Wnx Ynr1 +Wu Ynrix) W Yot} , n=1,2 mod(2) . (2.6)

An example of specific solution of this system of 2 coupled nonlinear PDE:s, (2.6), reads as follows:

B —6 B (n)’ :
Y (x,1) = {al cosh? [y, (x—4 7 t)]}

(a1) B ()% cosh* [y (x4 0) |

L+(=1) [1_ 3ax (B)* ()" cosh® [ (x—4 1o 1)
n=12, (2.7)

where the 2 parameters a, are those appearing in the system (2.6) and the 4 (nonvanishing) param-
eters f3, and ¥, can be arbitrarily assigned. Note that if these 4 parameters are all real it is then
sufficient that the parameter ratio f3,/a, be negative, B,/a, < 0, for this solution to be real and
nonsingular for all real values of the dependent variables x and 7. Also note that if y; = 7» = v this
solution has the “’single soliton” feature to depend on the space and time coordinates only via their
combination x — 47t.

For N = 3 this system of 3 coupled nonlinear PDE:s, (2.5), reads as follows:

< l//n,)oc l//nJrs,x + II/n,)c Wn+s,xx>

Y.t + Y xxx = 3 Z

s=1,2 Yn = Ynts
+ [(V’n - lI/nJrl) (ll/n - ‘I/n+2)]_1 {_6 [mex Wnt1,x ‘/fn+2,X]
3
+ X [m oneom ()]} n=1,23 mod(3), 28)
m=1
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where of course @, respectively @,, , are given by (1.2) respectively (2.2) (with N = 3).

3. Proofs

The proofs of the above two Propositions are actually quite easy. The starting point are the 3
identities [3]

i[w, v (3.12)

m=1

N
Vit = — [ I (vi—w)

(=1, {#n

-1
N 2 W Vi N N .
Yyxx = Z (M) - [ H (Wn_‘llf) Z [(Pm,xx (Wn)N } ’ (3-1b)
=1, t4n \ Yn— W2 (=1, 0#n m=1

v, —3 i <1Vn,xx Vo x + Ynx WE,M)
’ 01=140+#n Vn— W

-3 i |: Ynx Vo, x Vi x :|
(W —we,) (W — 1)

Ly, la=1, b1F#Ly, L1 LrFn

N N
—[H gwmx% }, 3.1c)

(=1, (#n

that relate the N zeros W, and the N coefficient @,, of a polynomial such as (1.1).
We now note that the sum of the first two of these identities imply the identity

N 2 Ynx Vox
Yn t + Yy xx = <7>
g:é;,sn Yn— Wi

N
- L H (Wn_‘l/Z)

=1, {#n

i { Pt + P o] (%)N”"} ; (3.2)

and likewise the sum of the first and third of the identities (3.1) implies the identity

N
n x T+ Yn XX
Yot + Wnoox = 3 Z (‘I/ x Y, Ynx Y, )

0=1,0#n YVn— Wi
_3 i |: ll/”l,x ll’[],x II/ZQ,)C :|
0, 0=1, (12£0s, 01 ba%n (W —v1,) (W — )
N N
—[ [T w-w'l Y {[cpm,t+<pm,m] (wn)N*’"} . (32b)
(=1, l#n m=1

Now assume that the N functions @, = @y, (x,t) satisfy the Burgers equations

Ot + Pmxx = m Pmx Pm s 3.3)

it is plain, see (3.2a), that this implies that the N functions y, = y, (x,) satisfy the system of
PDEs (2.1). Proposition 2.1 is thereby proven. Indeed this implies that the solution of the initial-
value problem for this system of PDEs, (2.1), is yielded by the following procedure. Step (i): from
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the initial data y, (x,0) compute the corresponding functions ¢y, (x,0) (via the formulas (1.2)).
Step (ii): solve the C-integrable PDEs (3.3) with these initial data ¢, (x,0), obtaining thereby the
functions @, (x,¢) for all time 7 > 0. Step (iii): the solutions y, (x,) of the system of PDEs (2.1) are
then provided by the N zeros of the polynomial (1.1) with coefficients @y, (x,t). And of course the
explicit solution (2.4) is manufactured using the single-soliton solutions of the Burgers equations
(3.3).

The proof of Proposition 2.2, and the procedure to solve the system of PDEs (2.5), are quite
analogous, except that the role of the identity (3.2a) is now played by the identity (3.2b), and the
role played by the C-integrable Burgers PDEs (3.3) is now played by the S-integrable KAV PDEs

Ot + Omxxx +Am Oy P = 0. (3.4)

4. Outlook

It is plain that the approach employed in this paper provides the possibility to identify a large
universe of new integrable/solvable systems of nonlinear PDEs; the two PDEs specifically dis-
cussed above are merely examples of the vistas opened by this methodology to identify new
integrable/solvable systems of nonlinear PDEs. Note for instance that the assumptions made
above—that all the coefficients @y, (x,t) satisfy the same integrable PDE—are not quite neces-
sary; for instance in the case of Proposition 2.1 some of the coefficients ¢, (x,7) might satisfy
the C-integrable Kundu-Eckhaus PDE [6] and in the case of Proposition 2.2 some of the coeffi-
cients @, (x,7) might satisfy the S-integrable Modified KdV PDE... Moreover, all the novel inte-
grable/solvable PDEs identified via this approach can themselves be subsequently interpreted as
characterizing the evolution of the coefficients of a polynomial, hence as inputs for the generation
of new systems of integrable/solvable PDEs via this approach [4]; and it is also possible to extend
this approach to a multidimensional context (beyond the 1+1 context of the present paper) [2] and
to more general auxiliary functions than polynomials [7].

This approach might moreover open the way to the identification and investigation of new inte-
grable/solvable systems of nonlinear PDEs which are of interest because of their universality hence
possible wide applicability (for these notions see for instance [8] and references therein).
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