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We observe that recursion operator of an S-integrable hyperbolic equation that degenerates into a Liouvile-type
equation admits a particular factorisation. This observation simplifies the construction of such operators. We
use it to find a new quasi-local recursion operator for a triplet of scalar fields. The method is also illustrated
with examples of the sinh-Gordon, the Tzitzeica and the Lund-Regge equations.
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1. Introduction

We consider a system that belongs to a family of S-integrable systems with the Lagrangians of the
form

L = gi j(u)ui
xu j

t + f (a,u), (1.1)

where a = const and gi j is the metric tensor of a (pseudo)Riemannian space with local coordinates
u = (u1, . . . ,un). Throughout the article we assume summation over repeated indices. The list of
Lagrangians (1.1) in a three-dimensional reducible space such that the respective field equations are
integrable was presented in [4] (see also [3]).

Probably the most interesting system from the list is obtained from the Lagrangian

L = 1
2 utux +ψ(vxwt +wxvt)+ veu +awe−u, (1.2)

where (u1,u2,u3) = (u,v,w),

ψ = (vw+ c)−1 (1.3)

and c 6= 0 is a constant. Let us indicate some of the known facts about this system. Its integrability
was established in [5] (see also [3]) by constructing a Lax representation in terms of 3×3 matrices.
Remarkably for all other systems in the list, the Lax representations are given in terms of larger
matrices. The system possesses a second order symmetry which is related to the Yajima-Oikawa
system [22] by a Miura-type transformation [2]. Further, it was shown in [2] that on setting a =

0 the system degenerates into a Liouville-type system, in which case the integrals can be easily
derived by using system’s generalised symmetry. One of the missing, yet important, structures is
a recursion operator (see [19] for definition and properties). There are a few approaches towards
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solving this problem. For the system in question, a recursion operator can be constructed from
the recursion operator of the Yajima-Oikawa equation [13]. This, however, would entail a tedious
process of inverting matrix differential operators. On the other hand, the procedure of [10], or other
methods (see e.g. [16], [15], [12]) can be used to derive a recursion operator from the known Lax
representation. This method is best suited for Lax pairs of a particular form, e.g. Gelfand–Dikii
systems. However, in the present case the simplest approach seems neither of the mentioned two,
but the one which exploits the Lagrangian form of the system in question and properties of the
related Liouville-type system [23]. The method presented below is applicable to other systems as
well, so on the one hand it is convenient to keep the presentation general enough and on the other,
for the sake of clarity, we illustrate it with a simpler example of the equation

utx = e−2u +ae2u, (1.4)

which is equivalent to the sinh-Gordon equation. Equation (1.4) degenerates into the Liouville equa-
tion

utx = e−2u (1.5)

on setting a = 0. Obviously equations (1.4) and (1.5) have Lagrangians of the form
L = utux/2+ f (a,u), which is a particular instance of (1.1).

The Liouville equation, known to be C-integrable, has a curious property that its symmetry
algebra contains the symmetry algebras of the sinh-Gordon and the Tzitzeica

utx = e−2u +aeu, (1.6)

equations. This property follows from the fact that generalised symmetries of these equations do not
depend on constant a, and implies that their recursion operators are, at the same time, the recursion
operators of the Liouville equation. Thus our objective is to develop a procedure for constructing
recursion operators of the Liouville-type equations and specifying them for the related S-integrable
equations. In the context of our illustrative example, we would like to construct a general recursion
operator of the Liouville equation and then specify it for the sinh-Gordon and Tzitzeica equations.
This is done in the following section. In the last section we consider our main example – the system
with Lagrangian (1.2).

2. Recursion operators for Liouville-type systems

We start with a derivation of generalised symmetries from the integrals of the Liouville-type equa-
tions (or systems). A general method for this was presented in [6]. In a particular case of Lagrangian
systems, it takes much simpler and more algorithmic form. The simplification is due to the linearised
equation being self-adjoint (see formula (2.9) below).

Consider a hyperbolic equation (or system) in Lagrangian form

Euk(L) = 0, (2.1)

where

Euk =
∂

∂uk −∂t
∂

∂uk
t
−∂x

∂

∂uk
x
+∂

2
t

∂

∂uk
tt
+∂

2
x

∂

∂uk
xx
− . . .

is Euler’s operator. In order to avoid confusion with using different types of brackets, we adhere to
the convention: an operator followed by a scalar expression in parentheses stands for the result of
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application of the operator to the expression. We will omit the subscript uk when we do not want to
single out a particular equation. Note that (2.1) can be written in terms of the Fréchet derivative

L∗ =
∂L
∂ui +

∂L
∂ui

x
∂x +

∂L
∂ui

t
∂t +

∂L
∂ui

xx
∂

2
x +

∂L
∂ui

tt
∂

2
t + . . .

as

L†
∗(1) = 0,

where symbol † indicates passing to the formal adjoint operator.
Suppose

ω = ω(u,ux,uxx, . . .). (2.2)

is the simplest x-integral of equation (2.1), i.e. the integral of the lowest order that satisfies the
relation

Dt(ω) = 0 (2.3)

on solutions of (2.1). Here Dt is the operator of the total derivative with respect to t calculated
on solutions of (2.1). The latter implies that we must eliminate all mixed derivatives by means of
(2.1). Similarly, the operator of the x-derivative followed by elimination of mixed derivatives will
be denoted as Dx.

Definition. We call system of equations (2.1) a Liouville-type system if it possesses 2n independent
non-trivial integrals (see e.g. [24], [23]).

Without elimination of the mixed derivatives, relation (2.3) can be usually cast into the form

∂t(ω) = A E (L), (2.4)

where A is a linear differential operator which we call an integrating factor corresponding to inte-
gral ω . For example, for the simplest x-integral

ω = uxx +u2
x , (2.5)

of the Liouville equation, relation (2.4) is given by

∂t(uxx +u2
x) = (∂x +2ux)E (−utux/2−1/2e−2u).

If we assume that A has the form

A = ∑
i

ai∂
i
x,

then from the well-know properties of the Fréchet derivative, it follows that

(A (h))∗ = A h∗+A∗[h],
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where

A∗[h] = ∑
i

∂
i
x(h)(ai)∗.

Applying the Fréchet derivative to (2.4), we obtain

∂t ◦ω∗ = A ◦ (E (L))∗+A∗[E (L)].

The latter, being calculated on solutions of (2.1), takes the form

Dt ◦ω∗ = A ◦ (E (L))∗. (2.6)

This relation allows one to calculate the integrals of (2.1) from symmetries of the same equation.
Indeed, (2.6) shows that any operator of the form

L = K ω∗,

where K = K (ω,ωx, . . .) is an operator depending on x-integrals of (2.1), transforms symmetries
of (2.1) to the integrals of the same equation.

For example, for the Liouville equation the operator possessing such a property is given by

L = K (D2
x +2uxDx). (2.7)

Setting

K = D−1
x , (2.8)

we get

L = Dx +2D−1
x uxDx = Dx +2ux−2D−1

x uxx.

It is easy to check that if we apply this operator to the translational symmetry ux, we obtain integral
(2.5).

Further, calculating the formal adjoint of (2.6) and taking into account that

(E (L))†
∗ = (E (L))∗, (2.9)

we obtain

−ω
†
∗ Dt = (E (L))∗A †. (2.10)

The latter shows that operator A † maps x-integrals of (2.1) into its symmetries. Now we can sum-
marise the previous lines of reasoning in the following

Proposition. Given a hyperbolic equation in Lagrangian form (2.1) along with its simplest x-
integral ω such that representation (2.4) holds. Then, this equation possesses a recursion operator
of the form

R = A † K ω∗, (2.11)

where K is a linear operator that depends on integral ω (and possibly its derivatives).
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For the Liouville equation we have

A † = (Dx +2ux)
† = 2ux−Dx

hence the symmetriesa of the Liouville equation equation can be represented as

uτ = (2ux−Dx)( f ),

where f = f (ω,ωx, . . .) is a scalar function, and any operator of the form

R = (Dx−2ux)K (D2
x +2uxDx) (2.12)

is a recursion operator of (1.5).
Since the symmetry algebras of the sinh-Gordon and the Tzitzeica equations are sub-algebras of

the one of the Liouville equation, the recursion operators of (1.4) and (1.6) must have form (2.12)
where K is an operator with coefficients depending on ω and possibly its derivatives.

To ensure that (2.12) is the recursion operator of the sinh-Gordon we need to specify K such
that (2.12) also satisfies the commutator equation

[Dt +2D−1
x ◦ (e−2u−ae2u),R] = 0 (2.13)

on solutions of the sinh-Gordon equation. For the sinh-Gordon equation, operator K can be easily
found: one can verify that it is given by formula (2.8).

To obtain the recursion operator of the Tzitzeica equation we must find K such that

[Dt +D−1
x ◦ (2e−2u−aeu),R] = 0.

A straightforward search for operator K in this case is more difficult since the answer is a third
order nonlocal operator:

K = D−1
x (D2

x−ω)Dx(D2
x−ω)D−1

x . (2.14)

The relation of operators (2.8) and (2.14) to Hamiltonian formalism is explained in the remaining
part of this section.

Hamiltonian interpretation

The missing ingredient in formula (2.11) is operator K which only depends on the integrals. The
integrals, in turn, are known [21, 24] to generate Miura-type transformations for the symmetries
of Liouville-type equations. Thus it is natural to investigate whether there is a connection between
operator K and one of the structures related to the modified hierarchies. This turns out to be the
case, namely operator K is a symplectic operator of the modified hierarchy.

aFor simplicity we only consider translation-invariant symmetries.
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Suppose equation (2.1) admits a hierarchy of generalised symmetries

uτi = Fi(u,ux, . . .), (2.15)

where τ−1 = t, generated by a recursion operator R: Fi+1 = R(Fi). We assume that Fi for i > −1
do not depend on constant a. The hierarchy of modified equations

ωτi = Gi(ω,ωx, . . .) (2.16)

is related to (2.15) by means of integral (2.2), interpreted as a differential substitution. Note that
G−1 is a non-local expression. We denote as R the recursion operator of hierarchy (2.16). It is well
known [7] that R and R are related by the formula ω∗R = Rω∗. Further, we assume that (2.15)
has a Hamiltonian form with

Fi = J Eu(Hi), H−1 = f , (2.17)

where J is an implectic (Hamiltonian) operator and Hi are the respective Hamiltonian densities. It
was indicated in [18] that the operator with components

Mi j = gi j∂x +gilΓ
l
jkuk

x,

where Γl
jk are the coefficients of the Levi-Civita connection for the metric gi j, is symplectic. Hence

in order to find operator J explicitly, one has to invert operator M . Clearly operator J is non-
local and can be quite tedious to calculate. However, as it is shown in the following calculations we
do not need to know the explicit form of J if we are interested in calculating the recursion operator
of (2.1) or (2.15).

The fact that hierarchy (2.15) is obtained by making a differential substitution implies that it can
be re-written in the form

uτi = J ω
†
∗Eω(Hi)

∣∣
ω=ω(u,ux,...)

(2.18)

while (2.16) can be written as

ωτi = ω∗J ω
†
∗Eω(Hi). (2.19)

The operator ω∗J ω†
∗ is usually referred to as the second Hamiltonian operator of hierarchy (2.16).

Comparing (2.4) and (2.19) for i =−1 we find that A = ω∗J . Operator A is always local hence
much easier to handle in calculations compared to operator J .

Now suppose we also know a symplectic operator S for hierarchy (2.16) such that its recursion
operator is factorisable as

R= ω∗J ω
†
∗S . (2.20)

It is well known (see e.g. [8, 19]) that the formal adjoint of R relates the members of the hierarchy
of conserved covariants (cosymmetries):

Eω(Hi+1) =R†Eω(Hi).

On the other hand, relation (2.18) implies

RJ ω
†
∗Eω(Hi) = Fi+1 = J ω

†
∗Eω(Hi+1) = J ω

†
∗R

†Eω(Hi)
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hence

RJ ω
†
∗ = J ω

†
∗R

†. (2.21)

Substituting (2.20) in (2.21), we obtain

R = J ω
†
∗S ω∗ = A †S ω∗. (2.22)

Comparing formulae (2.11) and (2.22) we find that operators S and K coincide thus we conclude
that a symplectic operator for hierarchy (2.16) plays a role of operator K in formula (2.11). We
summarise the last part of this section in the following

Proposition. Given a hyperbolic equation in Lagrangian form (2.1). If this equation

a) has an infinite hierarchy of symmetries (2.15);
b) degenerates (e.g. by assigning a particular value to a parameter) into a Liouville-type equation

such that the degenerate equation possesses the same hierarchy of symmetries (2.15);
c) gives rise (through an integral of the degenerate equation) to the modified hierarchy that has a

symplectic operator S ;

then, (2.1) has a recursion operator of the form (2.22).

Remarks. The main obstacle to applicability of this proposition is condition b). Namely, there are
numerous examples of hyperbolic equations and systems whose symmetries depend on a parameter
that is used to obtain the degenerate equation. On the other hand, condition b) can be weakened,
i.e. rather than requiring the equation to be of the Liouville type, we may demand existence of less
than n integrals. However, this sort of examples usually lead to triangular systems (e.g. system (6)
in [5]).

One can recognise that the operator given by formula (2.14) is a symplectic operator for the
Sawada-Kotera hierarchy which is related to the Tzitzeica hierarchy through substitution (2.5).

3. Complex sine-Gordon system

Before we proceed with our main example, we consider another system with a Lagrangian of the
form (1.1), namely the complex sine-Gordon also known as the Lund-Regge system [14]:

vtx = ψwvtvx +avψ
−1, wtx = ψvwtwx +awψ

−1, (3.1)

where ψ is given by (1.3) and a,c= const. This system gives yet another example where the method
presented here can be used. The calculation is slightly more involved, compared to the sinh-Gordon
equation. In the formulae below it suffices to list only the key ingredients, e.g. Lagrangian densities,
integrals, etc, while the recursion operator is readily calculated by substituting the ingredients in
formula (2.11).

System (3.1) is derived from the Lagrangian

L = ψvtwx +avw

The simplest generalised symmetry of (3.1) belongs to the list of non-linear Shrödinger type systems
[17] and is given by

vτ = vxx−2vψvxwx, wτ =−wxx +2wψwxvx. (3.2)
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On setting a = 0 system (3.1) degenerates into the system

vtx = ψwvtvx, wtx = ψvwtwx, (3.3)

which was identified as a Liouville-type system in [6]. Importantly, system (3.2) does not depend
on constant a, hence formula (2.11) can be used to construct the recursion operator of (3.1).

The simplest integral ω = (ρ,θ)T of (3.3) is given by

ρ = vxwxψ, θ =
wxx

wx
−wvxψ. (3.4)

This integral gives rise to a differential substitution relating (3.2) with the well-known Kaup-Broer
system [1, 11]

ρτ = ρxx−2(ρθ)x, θτ =−θxx− (θ 2−2ρ)x (3.5)

which is known to have the symplectic operator

K =

(
0 D−1

x
D−1

x 0

)
. (3.6)

Operator ω∗ reads

(
ρ

θ

)
∗
=

(
0 0
0 w−1

x

)
D2

x +

(
wxψ vxψ

−wψ −wxxw−2
x

)
Dx−ψ2vx

(
wwx vwx

−w2 c

)
. (3.7)

Further, the t-derivative of the integral can be written in form (2.4) with the operator

A =

(
−vx −wx

−Dx ◦ (wxψ)−1− v w

)

hence

A † =

(
−vx (wxψ)−1Dx− v
−wx w

)
. (3.8)

Substituting (3.8), (3.6) and (3.7) into (2.11) we obtain the recursion operator of (3.1) in the form

R =

(
1 0
0 −1

)
Dx +ψ

(
−vwx −2vvx

2wwx wvx

)
−
(

v
−w

)
D−1

x ◦E (ρ)−
(

vx

wx

)
D−1

x ◦E (θ). (3.9)

Operator (3.9) was originally found by A.G. Meshkov who calculated it directly and also verified
its hereditariness [16].
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4. Triplet of scalar fields

Now consider our main example which is the system

uxt = veu−awe−u, vxt =
a
2 ψ
−1e−u +ψwvtvx, wxt =

1
2 ψ
−1eu +ψvwtwx. (4.1)

If we set a = 0 the system becomes of the Liouville-type: the simplest integral ω = (ρ,θ ,ϕ)T is
given by [2]

ρ = uxx− 1
2 u2

x−2vxwxψ, θ = vwxψ− vxx

vx
− 1

2 ux, ϕ = ψvx (wxx−wψvxwx−uxwx) . (4.2)

Further, the t-derivative of this integral can be written in the form (2.4) with the operator

A =−1
2

2 0 0
0 0 −(vxψ)−1

0 vx 0

Dx

+

 ux vx wx
1
2 −1

2 v w+ 1
2 vwxv−1

x − 1
2 ψ−1v−2

x vxx

vxwxψ
1
2 vxux− vψvxwx

1
2 ψwwxvx− 1

2 ψ−1v−1
x ϕ

 .

Operator ω∗ reads

ω∗ =

ρ

θ

ϕ


∗

=

1 0 0
0 −v−1

x 0
0 0 ψvx

D2
x

+

 −ux −2wxψ −2ψvx

−1
2 v−2

x vxx vψ

−vxwxψ ψ(wxx−2wψvxwx−uxwx) −ψ2wv2
x−ψvxux

Dx

+ψ2

0 2wwxvx 2vvxwx

0 cwx −v2wx

0 ψw2v2
xwx−wψ−1ϕ v2

xwx(vwψ−1)− vψ−1ϕ

 .

The simplest generalised symmetry of (4.1) is

uτ = 2vxwxψ, vτ = vxx−2vψvxwx +uxvx, wτ =−wxx +2wψvxwx +uxwx (4.3)

and does not depend on constant a. Hence formula (2.11) can be used to construct the recursion
operator for the hierarchy of (4.1). In order to find operator K we note that the integral ω satisfies
the system

ρτ = 4ϕx, θτ = θxx− (θ 2)x− 1
2 ρx, ϕτ =−ϕxx−2(θϕ)x. (4.4)

The fact that the right hand side of (4.4) is a total derivative alludes to existence of a Hamiltonian
operator of the form ADx, where A is a constant matrix. This turns out to be true and a symplectic
operator required for formula (2.11) is given by

K =

1 0 0
0 0 −8
0 −8 0

D−1
x .

The recursion operator obtained from formula (2.11) can be written in a quasi-local form as
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R = R2D2
x +R1Dx +R0 +

 ux

vx

wx

D−1
x ◦E (ρ)

−4

 1
−v
w

D−1
x ◦E (ϕ)−4

 s1

s2

s3

D−1
x ◦E (θ),

(4.5)

where the matrix coefficients of (4.5) are given by

R2 =

1 0 0
0 4 0
0 0 4

 , R1 =

 0 6ψwx −6ψvx

3vx −8wxvψ +4ux 0
−3wx 0 −8vxwψ−4ux


R0 = ux

−ux 2ψwx 2ψvx

vx −4wxvψ −8ψvvx

wx 8ψwwx 4vxwψ

+2ψvxwx

 4 5ψw −5ψv
−4v −2ψvw−3 8ψv2

4w 8ψw2 −2ψvw−3


+2

 0 −2ψwxx 2ψvxx

vxx 2ψvwxx −ψ
(
v2

x +4vvxx
)

−wxx −ψ
(
4wwxx +w2

x
)

2ψwvxx

 ,

where vector (s1,s2,s3)
T is the right-hand side of (4.3).

Remarks. It is known [2] that the hierarchy of higher symmetries of (4.1) is connected with the
Yajima-Oikawa hierarchy via a Miura-type transformation. Since the latter is also known to possess
a hereditary recursion operator [13], the recursion operator (4.5) is also hereditary [7]. One may
wonder if the operators yielded by formulae (2.11) and (2.22) are necessarily hereditary. In general
one cannot expect this because the former formula includes an arbitrary linear operator. So, this
question reduces to verification of compatibility of Hamiltonian operators of the modified hierarchy.
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