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We introduce Frobenius algebra F -valued (n,m)th KdV hierarchy and construct its bi-Hamiltonian structures
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1. Introduction

In recent years algebra-valued generalizations of integrable soliton equations have been much
explored. For them, field variables take their values in a particular algebra, usually an associative
algebra. Some important examples include matrix or operator algebras, Clifford algebras and group
algebras. Svinolupov [1, 2] and Olver & Sokolov [3] have started the systematic classification of
certain algebra-valued systems.

Recently, Zuo & Stranchan [4–6] have considered Frobenius algebra valued integrable systems.
In Ref. [4] Zuo constructed the bi-Hamiltonian structures of Zm-KP hierarchy by introducing a
new trace-type map. In Ref. [5] they derived the Hamiltonian structures and τ function for F -KP
hierarchy. The F -valued counterpart of the so-called nth constrained KP hierarchy has been studied
in Ref. [7].

In the literatures, besides the nth constrained hierarchy, classical KP hierarchy admits another
class of KdV-type hierarchy, which is also studied extensively [8–13]. It is called (n,m)th KdV
hierarchy in Refs. [8, 9]. It is natural to study its Frobenius algebra valued generalization. The
aim of this paper is to introduce F -valued (n,m)th KdV hierarchy, and investigate its Hamiltonian
structures and some related integrability properties.

This paper is organized as follows. In Section 2, we introduce F -valued (n,m)th KdV hierar-
chy and derive its bi-Hamiltonian structures by making use of pseudo-differential operators. As an
illustrative example, in Section 3 we analyze the (1,1)th Z2-KdV hierarchy. The t2-flow equation
and its explicit Hamiltonian structures are calculated. Employing hereditary recursion operator we
derive infinitely many symmetries and conservation laws of the hierarchy, along with the t3-flow
equation.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

315



H. Zhang / Frobenius Algebra-Valued KdV-Type Hierarchy

2. F -valued (n,m)th KdV hierarchy

Recall that [5, 14] a Frobenius algebra {F ,◦,1,ω} is a vector space over R which satisfies the
conditions: (i) (F ,+,◦) is a commutative, associative algebra with multiplicative unit 1; (ii) ω ∈
F ∗ defines a non-degenerate inner product 〈a,b〉 = ω(a ◦ b). The linear form ω is often called a
trace map, denoted as ω = tr.

For example [4, 5], let Z2 be a 2-dimensional commutative and associative algebra with a basis
(e1 = 1,e2) satisfying

e1 ◦ e1 = e1, e1 ◦ e2 = e2, e2 ◦ e2 = 0. (2.1)

The trace map is defined as tr(a) = a2, a = a1e1 + a2e2 ∈ Z2. This is the Frobenius algebra we
mainly use later. It has a matrix representation as follows

e1 7→ I2 =

(
1 0
0 1

)
, e2 7→ Λ =

(
0 0
1 0

)
. (2.2)

For the basic facts about (F -valued) pseudo-differential operator and its application in the the-
ory of integrable systems, the reader is referred to e.g. [5, 7, 12, 15].

2.1. F -valued (n,m)th KdV hierarchy

Suppose A,B are two F -valued differential operators, of order n+m, m, (m≥ 0,n≥ 1) respectively,

A = 1∂
n+m +∑

n+m−1
j=0 A j∂

j, B = 1∂
m +∑

m−1
j=0 B j∂

j, ∂ =
d
dx

with identical second coefficients, An+m−1 =Bm−1. Here A j,B j denote the coefficients of ∂ j in A
and B, which are F -valued smooth functions of variable x.

Let (e1, · · · ,es) be a linear basis of F , the F -valued coefficients decompose in terms of basis
as

A j = ∑
s
k=1 a jkek, B j = ∑

s
k=1 b jkek,

where the components a jk,b jk are scalar-valued (real-valued) smooth functions of x.
The differential algebra under consideration is denoted by A , which consists of polynomials

with real coefficients in {a jk,b jk} and their derivatives of arbitrary orders, i.e. differential polynomi-
als in {a jk,b jk}. The flow equations and Hamiltonian structures of our hierarchy will be established
in terms of these dynamical coordinates, or evolutionary fields a jk,b jk.

The operator ∂ = d/dx is a derivation of algebra A , acting on it by the rule

∂ ( f g) = (∂ f )g+ f (∂g).

When a real-valued function f is regarded as a multiplication operator, the composition rule of ∂ j

with f reads [15]

∂
j ◦ f = f ∂

j +

(
j
1

)
f ′ ∂ j−1 + · · · , j ∈ Z, (2.3)

where
( j

k

)
is the standard binomial coefficient. Whilst in the algebra-valued setting, the composi-

tion rule is defined as below. Let A j = ∑
s
k=1 a jkek, F = ∑

s
i=1 fiei be two F -valued functions, the
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composition of F -valued operators A j∂
j and F is given by

A j∂
j ◦F =

s

∑
k=1

a jkek∂
j ◦

s

∑
i=1

fiei =
s

∑
k=1

s

∑
i=1

a jk(ek ◦ ei)∂
j ◦ fi

=
s

∑
k=1

s

∑
i=1

s

∑
`=1

a jkΓ
`
ki(∂

j ◦ fi)e`,

where ∂ j ◦ fi is given in (2.3), Γ`
ki is the structure constant of the algebra F defined by ek ◦ ei =

s

∑
`=1

Γ
`
kie`.

The following notation will be used throughout this paper. Let P = ∑
m
i=−∞ Pi∂

i be an F -valued
pseudo-differential operator (ΨDO briefly), P+ the pure differential part of the operator P and P− =

P−P+, res(P) = P−1, ord(P) = m. For natural number k we define (pseudo)-differential operators

L = AB−1, L = L 1/n, Pk = Lk
+.

The first property about them is

Proposition 2.1. None of the three operators admits the second leading term.

Proof. We rewrite L = AB−1 as L B = A. The left hand side is the composition of operators L
and B. Assume that L = 1∂ n +∑

−∞

j=n−1Vj ∂ j, the second leading term of L B, i.e. the term of order
(n+m−1), is determined by two parts,

1∂
n ◦Bm−1∂

m−1 = Bm−1∂
n+m−1 +nB′m−1∂

n+m−2 + · · ·

and Vn−1 ∂ n−1 ◦1∂ m =Vn−1 ∂ n+m−1 only. It follows that the coefficient of second leading term of A
is

Bm−1 +Vn−1 = An+m−1.

Since Bm−1 = An+m−1, it simply implies the vanishing of Vn−1.
If we assume L = 1∂ +U0 +U−1∂−1 + · · · , similar calculation leads to nU0 = Vn−1 = 0 from

the equality Ln = L . Similarly the second leading terms of Lk and Lk
+ also vanish.

Definition 2.1. The following nonlinear system

∂kA = A
(

A−1[Pk,A]
)
− , (2.4)

∂kB = B
(

B−1[Pk,B]
)
− , (2.5)

is called F -valued (n,m)th KdV hierarchy, where ∂k =
∂

∂ tk
, tk is the evolution time of k-th flow.

When the algebra F coincides with R, the above is just the definition of classical (n,m)th KdV
hierarchy, which was proposed and studied in [8,9,11]. Therefore our defined hierarchy generalizes
the classical systems.

From the definition, one can write the explicit flow equations. Each tk-flow equation is a (1+1)-
dimensional integrable system. It is not hard to show that t1-flow equation is trivial,

Ai,t1 = Ai,x, B j,t1 = B j,x, 0≤ i≤ n+m−1, 0≤ j ≤ m−1.

Similar to [12], in the algebra-valued setting we also have
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Proposition 2.2.

∂k(AB−1) = [Pk,AB−1].

Proof. First the identity BB−1 = 1 gives ∂k(BB−1) = 0, which implies

∂kB−1 =−B−1(∂kB)B−1.

The right-hand side is

[Pk,AB−1] = PkAB−1−AB−1Pk = ASB−1

where we denote S := A−1PkA−B−1PkB. The left-hand side is

∂k(AB−1) = (∂kA)B−1−AB−1(∂kB)B−1

= A(A−1[Pk,A])−B−1−A(B−1[Pk,B])−B−1 = AS−B−1

It suffices to show that S is an integral operator, which follows from an analysis of the order of
[Pk,AB−1].

By Proposition 2.2 if A,B satisfy (2.4)–(2.5), then L = AB−1 satisfies F -KP equation ∂kL =

[Pk,L ] (see [5]). This implies (n,m)th F -KdV hierarchy is a reduction of F -KP hierarchy.

2.2. Hamiltonian structures

The F -KP hierarchy admits infinitely many bi-Hamiltonian structures [5]. More precisely, if it is
expressed by

L = 1∂
n +∑

n−1
i=−∞

Vi ∂
i,

there exist one pair of bi-Hamiltonian structures, usually called the nth pair [5].
According to [5] we denote the space of functionals by

D =

{
f̃ =

∫
f (v)dx =

∫
trF(V )dx

∣∣∣∣ F(V ) is F -valued smooth function
}

The integral
∫

here is an abstract operation. Note that the integrand is still a real-valued function,
instead of F -valued one. It is the same operation as in Ref. [15]. It has two features, i.e., being lin-
ear, and satisfying

∫
f ′dx = 0. By [5] the F -valued variational derivative δ f/δV for V = ∑

s
i=1 vses

is defined through

f̃ (v+δv)− f̃ (v) =
∫

tr
(

δ f
δV
◦δV +o(δV )

)
dx =

∫ s

∑
i=1

(
δ f
δvi

δvi +o(δv)
)

dx,

where δV = ∑i ei δvi and

δ f
δvi

=
∞

∑
j=0

(−∂ ) j δ f

δv( j)
i

is the ordinary (real-valued) variational derivative [15]. Let us define

δ f
δL

=
n−1

∑
i=−∞

∂
−i−1 ◦ δ f

δVi
,
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then the second Poisson bracket of F -KP hierarchy reads [5]

{
f̃ , g̃
}(2)

L
=
∫

tr res
[(

δ f
δL

L

)
−

δg
δL

L −
(

L
δ f
δL

)
−

L
δg

δL

]
dx. (2.6)

Employing the arguments similar to [12], we prove the following variational derivatives identi-
ties. Later we will see these functionals serve as the desired Hamiltonians.

Lemma 2.1. Define functional

h̃k :=
n
k

∫
tr res L k/n dx =

n
k

∫
tr res Lk dx, (2.7)

then its variational derivatives are

δhk

δA
=
(

B−1Lk−n
)
−
=
(

A−1Lk
)
−
, (2.8)

δhk

δB
=−

(
B−1Lk

)
−
. (2.9)

Proof. The comparison of variations of h̃k,

δ h̃k =
∫

tr res
δhk

δL
δ (AB−1)dx

=
∫

tr res
(

δhk

δL
(δA)B−1− δhk

δL
AB−1(δB)B−1

)
dx

with

δ h̃k =
∫

tr res
(

δhk

δA
δA+

δhk

δB
δB
)

dx

implies

δhk

δA
=

(
B−1 δhk

δL

)
−
=
(

B−1Lk−n
)
−
=
(

A−1Lk
)
−

and similarly for δhk/δB, whereas we have used the variational identity δhk/δL = Lk−n

mod O(∂−n−1), which is proved in [5].

When constrained to (n,m)th F -KdV hierarchy, the second Poisson bracket (2.6) becomes the
counterpart of the (n,m)th hierarchy, which reads { f̃ , g̃}(2) = { f̃ , g̃}(2)A −{ f̃ , g̃}(2)B , here

{
f̃ , g̃
}(2)

A =
∫

tr res
[(

δ f
δA

A
)
−

δg
δA

A −
(

A
δ f
δA

)
−

A
δg
δA

]
dx , (2.10)

and similarly for { f̃ , g̃}(2)B . Moreover, we have

Proposition 2.3 (2nd Hamiltonian structure). (n,m)th F -KdV hierarchy is a Hamiltonian system
with Poisson bracket { f̃ , g̃}(2) = { f̃ , g̃}(2)A −{ f̃ , g̃}(2)B and Hamiltonian h̃k (2.7).
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That is to say, (n,m)th F -KdV hierarchy can be written as

∂kA =

(
A

δhk

δA

)
+

A−A
(

δhk

δA
A
)

+

(2.11)

∂kB = B
(

δhk

δB
B
)

+

−
(

B
δhk

δB

)
+

B. (2.12)

Proof. By (2.8), we have(
A

δhk

δA

)
+

A−A
(

δhk

δA
A
)

+

=
(

A(B−1Lk−n)−

)
+

A−A
(
(B−1Lk−n)−A

)
+

= (AB−1Lk−n)+A−A(B−1Lk−nA)+

= PkA−A(A−1LkA)+ = ∂kA,

Similarly from (2.9) one obtains (2.12).

To derive the first Poisson bracket, we can replace L with L̂ = (L +λ 1) in calculating (2.6).
Thus we obtain the second Poisson bracket { f̃ , g̃}(2)

L̂
corresponding to L̂ . This bracket can be

expanded in λ as {
f̃ , g̃
}(2)

L̂
=
{

f̃ , g̃
}(2)

+λ ·
{

f̃ , g̃
}(1)

+λ
2 ·0.

The coefficient of λ 2 vanishes, and that of λ 0 is { f̃ , g̃}(2). That of λ reads

{
f̃ , g̃
}(1)

=
∫

tr res
[(

A
δ f
δA

)
+

B
δg
δA

+

(
B

δ f
δA

)
+

A
δg
δA
− (2.13)

−
(

δ f
δA

A
)

+

δg
δA

B−
(

δ f
δA

B
)

+

δg
δA

A+

+

(
B

δ f
δB

)
+

B
δg
δA

+

(
B

δ f
δA

)
+

B
δg
δB
−

−
(

δ f
δB

B
)

+

δg
δA

B−
(

δ f
δA

B
)

+

δg
δB

B
]

dx ,

which is exactly the desired first Poisson bracket. Moreover, we have

Proposition 2.4 (1st Hamiltonian structure). (n,m)th F -KdV hierarchy has another Hamiltonian
structure, where Poisson bracket is given by (2.13), the Hamiltonian is h̃ = h̃k+n defined in (2.7).

That is to say, (n,m)th KdV hierarchy (2.4)–(2.5) can be written as

∂kA =

(
A

δh
δA

)
+

B+

(
B

δh
δA

)
+

A−B
(

δh
δA

A
)

+

− (2.14)

−A
(

δh
δA

B
)

+

+

(
B

δh
δB

)
+

B−B
(

δh
δB

B
)

+

,

∂kB =

(
B

δh
δA

)
+

B−B
(

δh
δA

B
)

+

. (2.15)
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Proof. Let h̃ = h̃k+n , by (2.8), (2.9) we have

δh
δA

= (B−1Lk)− = (A−1Lk+n)−,
δh
δB

=−(B−1Lk+n)−. (2.16)

Eq. (2.15) follows from(
B

δh
δA

)
+

B−B
(

δh
δA

B
)

+

=
(

B(B−1Lk)	

)
+

B−B
(
(B−1Lk)	 B

)
+

= (BB−1Lk)+B−B(B−1LkB)+

= PkB−B(B−1LkB)+ = ∂kB,

where 	 denote the − can be removed, since

(B(B−1Lk)+)+B−B((B−1Lk)+B)+ = (B(B−1Lk)+)B−B((B−1Lk)+B) = 0.

As for Eq. (2.14), we decompose its right side to three groups(
A

δh
δA

)
+

B−A
(

δh
δA

B
)

+

= (A(B−1Lk))+B−A((B−1Lk)B)+

= Pn+kB−A(B−1LkB)+,(
B

δh
δA

)
+

A−B
(

δh
δA

A
)

+

= (B(B−1Lk))+A−B((B−1Lk)A)+

= PkA−B(B−1LkA)+,(
B

δh
δB

)
+

B−B
(

δh
δB

B
)

+

=−(B(B−1Lk+n))+B+B((B−1Lk+n)B)+

=−Pk+nB+B(B−1LkA)+.

In the above subscripts in δh/δA,δh/δB have been removed. The summation of them gives exactly
Eq. (2.14).

3. Example

In order to illustrate the general results of the previous section, in this section we consider the case
of n = m = 1 and F = (Z2, tr) for the sake of simplicity. This corresponds to (1,1)th F -KdV
hierarchy. Other cases of larger n,m can be manipulated in the same way, although the calculations
are much more involved.

3.1. t1, t2-flow equations

For the (1,1)th Z2-KdV hierarchy, the differential operators are

A = 1∂
2 +A1∂ +A0, B = 1∂ +B0, A1 = B0. (3.1)

First coefficients of Lax operators L = 1∂ +∑i≤−1Ui ∂ i, are given by

U−1 = A0−B′0, U−2 =−B0U−1, U−3 = (B2
0 +B′0) U−1.

Moreover, differential operators P1 = 1∂ , P2 = 1∂ 2 +2U−1.
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Below we compute in detail some flows equations of lower orders. Throughout this paper, we
denote by Xk the vector field corresponding to tk flow.

t1-flow equation. This is the trivial equation A0,t1 = A′0, B0,t1 = B′0. When we choose F =Z2, and
assume

A0 =

(
φ0 0
φ1 φ0

)
, B0 =

(
ψ0 0
ψ1 ψ0

)
,

the algebra-valued equations become the following trivial system

(
φ0,φ1,ψ0,ψ1

)T
t1
=
(
φ ′0,φ

′
1,ψ

′
0,ψ

′
1

)T
= X1. (3.2)

t2-flow equation. One can derive that

[P2,B] = 2B′0 ∂ +3B′′0−2A′0,

and

[P2,A] = 2B′0∂
2 +(5B′′0−2A′0)∂ +2B′′′0 +2B0B′′0−A′′0−2B0A′0.

Let us denote that

M = B−1[P2,B] = ∑i≤0 Mi∂
i, N = A−1[P2,A] = ∑i≤0 Ni∂

i,

it follows M+ = M0 = 2B′0, N+ = N0 = 2B′0. Finally t2-flow equation reads

{
A0,t2 =−A′′0−2(A0B0)

′,

B0,t2 = B′′0−2A′0− (B2
0)
′.

(3.3)

Again we choose F = Z2, then algebra-valued Eqs. (3.3) becomes the following system X2 with
four components 

φ0,t2 =−φ
′′
0 −2(φ0ψ0)

′,

φ1,t2 =−φ
′′
1 −2(φ0ψ1 +φ1ψ0)

′,

ψ0,t2 = ψ
′′
0 −2φ

′
0− (ψ2

0 )
′,

ψ1,t2 = ψ
′′
1 −2φ

′
1−2(ψ0ψ1)

′.

(3.4)

3.2. Bi-Hamiltonian structures of t2-flow

The (1,1)th Z2-KdV hierarchy has four independent evolutional fields: (φ0,φ1,ψ0,ψ1). Using
propositions of Section 2, we now derive bi-Hamiltonian structures of its second flow equation
(3.4). Unlike the conclusions of Section 2, these structures will be explicitly dependent upon the
evolution fields, instead of the abstract F -valued pseudo-differential operators.
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First Hamiltonian Structure. By the definition (2.7), we calculate first

res L3 =W ′−1 +W−2 +U−1W0 +U−3

= Z′+3(U−3 +U2
−1) = Z′+3(A0 +B2

0)U−1

= Z′+3(A2
0 +A0B2

0 +A0B′0),

Z′ denotes an exact derivative w.r.t. x, hence its corresponding functional vanishes; these Z’s may
be distinct. The Hamiltonian of first Hamiltonian structure is

h̃3 =
∫

tr(A2
0 +A0B2

0 +A′0B0)dx

=
∫
(2φ0φ1 +2φ0ψ0ψ1 +φ1ψ

2
0 +φ

′
0ψ1 +φ

′
1ψ0)dx.

By Proposition 2.4, the algebra-valued system (3.3) can be represented as(
A0

B0

)
t2

=

(
0 −1∂

−1∂ 0

)(
δ h̃3/δA0

δ h̃3/δB0

)
, (3.5)

According to [5], the algebra-valued variational derivatives are related with real-valued variational
derivatives by

δ h̃3

δA0
=

δ h̃3

δφ1
I2 +

δ h̃3

δφ0
Λ,

δ h̃3

δB0
=

δ h̃3

δψ1
I2 +

δ h̃3

δψ0
Λ, (3.6)

Combing the above together, one has the first Hamiltonian structure of four-component system (3.4)

θt2 = X2 = J
δ h̃3

δθ
(3.7)

where we denote the potentials θ = (φ0,φ1,ψ0,ψ1)
T, variational derivatives

δ h̃3

δθ
=

(
δ h̃3

δφ0
,

δ h̃3

δφ1
,

δ h̃3

δψ0
,

δ h̃3

δψ1

)T

,

the Hamiltonian operator is

J =


0 0 0 −∂

0 0 −∂ 0
0 −∂ 0 0
−∂ 0 0 0

 . (3.8)

Second Hamiltonian Structure. The Hamiltonian is

h̃2 =
1
2

∫
tr(U−1,x +2U−2)dx =

∫
trU−2 dx

=
∫
[ψ0(ψ

′
1−φ1)+ψ1ψ

′
0−φ0]dx

=−
∫
(ψ0φ1 +ψ1φ0)dx.
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By Proposition 2.3 algebra-valued system (3.3) can also be represented as(
A0

B0

)
t2

=

(
∂A0 +A0∂ 1∂ 2 +B0∂

−1∂ 2 +∂B0 2∂

)(
δ h̃2/δA0

δ h̃2/δB0

)
, (3.9)

the above algebra-valued variation derivatives are given similarly as in (3.6).
After expanding (3.9) one eventually obtains the second Hamiltonian structure of system (3.4)

θt2 = X2 = M
δ h̃2

δθ
(3.10)

with Hamiltonian operator

M =


0 ∂φ0 +φ0∂ 0 ∂ 2 +ψ0∂

∂φ0 +φ0∂ ∂φ1 +φ1∂ ∂ 2 +ψ0∂ ψ1∂

0 −∂ 2 +∂ψ0 0 2∂

−∂ 2 +∂ψ0 ∂ψ1 2∂ 0

 . (3.11)

3.3. Hereditary recursion operator

According to Propositions 2.3 and 2.4 of Section 2, it follows that operators J and M constitute a
Hamiltonian pair, i.e., any linear combination N of J and M satisfies∫

α
TN′(u)[Nβ ]γ dx+ cycle(α,β ,γ) = 0 (3.12)

for all one-forms α,β , and γ (see e.g. [16, 17]).
It is obvious that J is invertible and we have the recursive operator

R = MJ−1 =−


∂ +ψ0 0 ∂φ0∂−1 +φ0 0

ψ1 ∂ +ψ0 ∂φ1∂−1 +φ1 ∂φ0∂−1 +φ0

2 0 −∂ +∂ψ0∂−1 0
0 2 ∂ψ1∂−1 −∂ +∂ψ0∂−1

 (3.13)

It follows that the operator R is hereditary (see Ref. [18]), i.e., it satisfies for all vector fields K and
S,

R ′(u)[RK]S−RR ′(u)[K]S = R ′(u)[RS]K−RR ′(u)[S]K. (3.14)

The condition (3.14) for the hereditary operators is equivalent to

LRKR = R LKR, (3.15)

where K is an arbitrary vector field, LK is the Lie derivative along K. Note that an autonomous
operator R = R(u,ux, · · ·) is a recursion operator of a given evolution equation ut = K = K(u) if
and only if R satisfies LKR = 0.
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One can verify directly the operator R defined by (3.13) satisfies

LX1R = 0, X1 = (φ ′0,φ
′
1,ψ

′
0,ψ

′
1)

T,

and thus for each k ≥ 1,

LXk+1R = LRXkR = RLXkR = 0,

where Xk is the vector field of tk flow. This shows that the operator R is a common hereditary
recursion operator for each member of the (1,1)th Z2-KdV hierarchy.

Summarizing above we have the following

Proposition 3.1. The (1,1)th Z2-KdV hierarchy admits a bi-Hamiltonian representation in explicit
form,

θtk = Xk = J
δ h̃k+1

δθ
= M

δ h̃k

δθ
, k ≥ 1, (3.16)

where the compatible Hamiltonian operators J,M are given by (3.8), (3.11) respectively, the Hamil-
tonian h̃k is given by (2.7).

There exists a natural recursion relation between nearby functional gradients Gk := δ h̃k/δθ ,

Gk+1 = R∗Gk, k ≥ 1, (3.17)

here R∗ is the operator conjugate to R.
It follows that the hierarchy is Liouville integrable, i.e., it possesses infinitely many commut-

ing symmetries and conservation laws. More precisely, we have the following Abelian symmetry
algebra,

[Xk,Xl] = X ′k(u)[Xl]−X ′l (u)[Xk] = 0, k, l ≥ 1, (3.18)

and the two Abelian algebras of conserved functionals,

{h̃k, h̃l}J = {h̃k, h̃l}M = 0, k, l ≥ 1, (3.19)

To conclude this paper, we employ the recursion relation (3.16) and derive the next nonlinear
integrable system in the hierarchy,

θt3 = X3 = M
δ h̃3

δθ
.

Its explicit form is given as follows

φ0,t3 = 6φ0φ
′
0 +3φ

′
0ψ
′
0 +3φ

′
0ψ

2
0 +3φ

′′
0 ψ0 +6φ0ψ0ψ

′
0 +φ

′′′
0 ,

φ1,t3 = 6φ
′
0φ1 +6φ0φ

′
1 +3φ

′
1ψ

2
0 +φ

′′′
1 +6φ

′
0ψ0ψ1 +6φ0ψ

′
0ψ1

+6φ0ψ0ψ
′
1 +6φ1ψ0ψ

′
0 +3φ

′′
0 ψ1 +3φ

′
0ψ
′
1 +3φ

′′
1 ψ0 +3φ

′
1ψ
′
0,

ψ0,t3 =−2φ
′′
1 −2ψ

′′
0 ψ1−5ψ

′
0ψ
′
1−3ψ0ψ

′′
1 +ψ

′′′
1 +2φ1ψ

′
0

+4ψ
′
0ψ0ψ1 +2φ

′
1ψ0 +2ψ

2
0 ψ
′
1 +4φ

′
0ψ0 +4φ0ψ

′
0 +2φ

′′
0 ,

ψ1,t3 =−3ψ
′′
0 ψ1−6ψ

′
0ψ
′
1−3ψ0ψ

′′
1 +ψ

′′′
1 +6φ1ψ

′
0

+6ψ
′
0ψ0ψ1 +6φ

′
1ψ0 +3ψ

2
0 ψ
′
1 +6φ0ψ

′
1 +6φ

′
0ψ1.
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4. Conclusion

In this paper, we have introduced F -valued (n,m)th KdV hierarchy and derived its bi-Hamiltonian
structures. In particular we analyzed (1,1)th Z2-KdV hierarchy in detail. We have constructed its
recursion operator, Hamiltonian structures, infinitely many symmetries and conservation laws and
some explicit flow equations. Other objects of it may also be explored, such as Darboux transfor-
mation, soliton solutions [19], additional symmetries [20] etc.

As we remarked earlier, when F coincides with R, the hierarchy reduces to the well-known
classical (n,m)th KdV hierarchy. When other algebra F is chosen, we can obtain some novel real-
valued integrable systems by using a basis of F . The example given in Section 3 summaries the
major features. For an arbitrary algebra F , the corresponding results hold similarly, although the
complete expressions are much more complicated than those appeared in Section 3. It is an inter-
esting question to investigate the systematic relations between these new systems and those in the
literature.
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