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Hybrid Ermakov-Painlevé II-IV systems are introduced here in a unified manner. Their admitted Ermakov
invariants together with associated canonical Painlevé equations are used to establish integrability properties.

1. Introduction

Prototype hybrid Ermakov-Painlevé II systems were recently introduced via symmetry reduction of
an n+1-dimensional Manakov-type system in [36]. Two-point Dirichlet boundary value problems
for a particular Ermakov-Painlevé II reduction arising out of a Nernst-Planck three-ion electrodif-
fusion system have been subsequently treated in [2].

Integrable Ermakov-Painlevé II systems with underlying Hamiltonian structure as recently set
down in [37] adopt the form

ẄI +
[ t

2
+ ε(W 2

I +W 2
II)
]

WI =
1

W 2
I WII

S′(WII/WI) ,

ẄII +
[ t

2
+ ε(W 2

I +W 2
II)
]

WII =
1

WIW 2
II

T (WI/WII)

(1.1)

with

S(WII/WI) = 2
WII

WI
J(WII/WI)+

W 2
II

W 2
I

J′(WII/WI) ,

T (WI/WII) =−
W 2

II

W 2
I

J′(WII/WI) ,

(1.2)

where in the above, a dot denotes a derivative with respect to the independent variable t and the
prime denotes a derivative with respect to the argument WII/WI. The novel Ermakov-NLS systems
introduced in [37] admit symmetry reduction to the hybrid Ermakov-Painlevé II system (1.1) via a
wave packet ansatz with genesis in a nonlinear optics context [23].

The nonlinear coupled systems as introduced by Ray and Reid in [34, 35] have roots in work of
Ermakov [20] and adopt the form

ẄI +ω(t)WI =
1

W 2
I WII

S(WII/WI) ,

ẄII +ω(t)WII =
1

W 2
IIWI

T (WI/WII) .

(1.3)
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They admit a distinctive integral of motion and have diverse physical applications, in such areas
as nonlinear optics [16, 24, 25, 27, 39, 40, 57], hydrodynamics [41], spinning gas cloud theory [42],
magnetogasdynamics [43] and oceanographic warm core eddy theory [44]. Ermakov-Ray-Reid sys-
tems also occur in connection with the contribution of orbital angular momentum to the suppression
of the collapse of spiralling elliptic solutions in nonlinear Kerr media [17] as well as in the analysis
of cloud evolution in a Bose-Einstein condensate [1].

In [45], a 2+1-dimensional version of (1.3) was introduced, while subsequently, multi-
component Ermakov-Ray-Reid systems were derived in a hydrodynamics context via symmetry
reduction of a multi-layer fluid model [46]. Therein it was shown that sequences of Ermakov-Ray-
Reid systems may be linked by Darboux transformations.

The six classical Painlevé equations PI−PVI likewise arise in a wide range of physical applica-
tions and play a fundamental role in modern soliton theory (see e.g. Conte [14] and Clarkson [11]
together with literature cited therein). Painlevé equations may be shown to possess nonlinear super-
position principles associated with the admittance of Bäcklund transformations (see e.g. [26]).
Ermakov-Ray-Reid systems likewise admit nonlinear superposition principles albeit of another
kind [34, 35]. Painlevé equations characteristically admit Lax representations while Ermakov-Ray-
Reid systems also have been shown to admit underlying linear structure [4].

In general, the studies of Painlevé equations and Ermakov-type systems have proceeded inde-
pendently. Thus, the only known hybrid solitonic-Ermakov system seems to be that obtained in
[54,55] where a 2+1-dimensional Ernst-type system of general relativity as derived in [56], suitably
constrained, leads to a novel composition of the integrable 2+1-dimensional sinh-Gordon equation
of [30, 31] and of a generalised Ermakov-Ray-Reid system. The work of [2, 36–38] on Ermakov-
Painlevé II systems has recently been augmented by the introduction in [47] of prototype Ermakov-
Painlevé IV systems via a symmetry reduction of a coupled derivative resonant NLS triad. Dirichlet
type two-point boundary value problems for a single hybrid Ermakov-Painlevé IV equation have
been investigated with regard to existence and uniqueness properties in [3].

The preceding motivates the present work wherein hybrid Ermakov-Painlevé II, Ermakov-
Painlevé III and Ermakov-Painlevé IV systems are derived in a unified manner. In this context,
whereas the classical Ermakov-equation is seen to underlie the standard Ermakov-Ray-Reid system
(1.3), the classical Painlevé II − Painlevé IV equations underlie their hybrid Ermakov counterparts.
The algorithmic solution of the latter is demonstrated in the case of underlying Hamiltonian-type
structure by a combined use of the classical Painlevé II − IV components for the amplitudes of the
systems and of admitted Ermakov invariants for the phases.

2. Extended Ermakov-Ray-Reid Systems

Here, extended Ermakov-Ray-Reid systems are introduced of the type

ẄI−
1
Φ

[
Φ̈− ζ

Φ3

]
WI =

1
W 2

I WII
S(WII/WI) ,

ẄII−
1
Φ

[
Φ̈− ζ

Φ3

]
WII =

1
WIW 2

II
T (WI/WII) ,

ζ εR .

(2.1)
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The standard Ermakov-Ray-Reid system (1.3) is retrieved in the specialisation when Φ is deter-
mined by the classical Ermakov equation

Φ̈+ω(t)Φ =
ζ

Φ3 . (2.2)

It is recalled that the latter admits general solution via a well-known nonlinear superposition prin-
ciple as readily established by Lie group methods (see e.g. [49, 50]). Thus,

Φ =
√

ax2
1 +2cx1x2 +bx2

2 (2.3)

where x1,x2 are linearly independent solutions of the canonical linear equation

Ẅ +ω(t)W = 0 (2.4)

and the constants a,b and c are related by

ab− c2 =
ζ

W (x1;x2)
(2.5)

where W (x1;x2) = x1ẋ2−x2ẋ1 is the Wronskian of x1 and x2. It is noted that the Ermakov-Ray-Reid
system (1.3) may be rendered autonomous by the introduction of new dependent and independent
variables α,β and z according to [4, 46]

WI = α(z)U , WII = β (z)U ,

z =V/U
(2.6)

where U,V are linearly independent solutions of (2.4) with unit Wronskian. Thus, under (2.6),
reduction of (1.3) is obtained to the autonomous system

αzz =
1

α2β
S(β/α) , βzz =

1
αβ 2 T (α/β ) . (2.7)

In general, the system (2.1) yields

ẄIΦ−WIΦ̈+
ζWI

Φ3 =
Φ

W 2
I WII

S(WII/WI) ,

ẄIIΦ−WIIΦ̈+
ζWII

Φ3 =
Φ

WIW 2
II

T (WI/WII)

(2.8)

whence, on setting

ΦI =WI/Φ , ΦII =WII/Φ ,

dt∗ = Φ−2dt
(2.9)

the system (2.1) is reduced to

ΦI,t∗t∗+ζ ΦI =
1

Φ2
I ΦII

S(ΦII/ΦI) ,

ΦII,t∗t∗+ζ ΦII =
1

ΦIΦ
2
II

T (ΦI/ΦII) .

(2.10)

with independent variable t∗.
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Here, the integrability of the extended Ermakov-Ray-Reid system (2.1) is addressed with
S(WII/WI) and T (WI/WII) parametrised in terms of J(WII/WI) as given by relations (1.2) origi-
nally derived in [41] to characterise standard systems (1.3) with underlying Hamiltonian structure.
Hence, the extended system (2.1) becomes

ẄI−
1
Φ

[
Φ̈− ζ

Φ3

]
WI =

2
W 3

I
J(WII/WI)+

WII

W 4
I

J′(WII/WI) ,

ẄII−
1
Φ

[
Φ̈− ζ

Φ3

]
WII =−

1
W 3

I
J′(WII/WI)

(2.11)

and admits the Ermakov invariant

E =
1
2
(WIẆII−WIIẆI)

2 +

(
W 2

I +W 2
II

W 2
I

)
J(WII/WI) . (2.12)

Accordingly, the identity

(W 2
I +W 2

II)(Ẇ
2
I +Ẇ 2

II)− (WIẆII−WIIẆI)
2 ≡ (WIẆI +WIIẆII)

2 (2.13)

on use of (2.12) yields

(W 2
I +W 2

II)(Ẇ
2
I +Ẇ 2

II)−2
[
E −

(
W 2

I +W 2
II

W 2
I

)
J(WII/WI)

]
=

1
4

Σ̇
2 (2.14)

where Σ =W 2
I +W 2

II . Thus,

Ẇ 2
I +Ẇ 2

II −
2E

Σ
+

2J(WII/WI)

W 2
I

=
1
4

Σ̇
2/Σ (2.15)

whence

ẆIẄI +ẆIIẄII +E

(
Σ̇

Σ2

)
+d
[

J(WII/WI)

W 2
I

]
/dt =

1
8

[
2

Σ̇Σ̈

Σ
− Σ̇3

Σ2

]
. (2.16)

But, the system (2.11) shows that

ẆIẄI +ẆIIẄII−∆(WIẆI +WIIẆII) =

(
2

W 3
I

J+
WII

W 4
I

J′
)

ẆI−
1

W 3
I

J′ẆII

=−d
[

J(WII/WI)

W 2
I

]
/dt

(2.17)

where

∆ =
1
Φ

[
Φ̈− ζ

Φ3

]
. (2.18)

Subtraction of (2.16) and (2.17) now yields

E

Σ2 +
∆

2
=

1
4

Σ̈

Σ
− 1

8
Σ̇2

Σ2 =
1
2
( ¨
Σ1/2)

Σ1/2 (2.19)

so that, on use of (2.18), a basic Ermakov equation in the ratio Σ1/2/Φ results, namely

d2(Σ1/2/Φ)/dt∗2 +ζ (Σ1/2/Φ) = 2E (Σ1/2/Φ)−3 (2.20)
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where the independent variable t∗ is given by integration of (2.9)3. Thus, Σ1/2/Φ may be readily
obtained by the nonlinear superposition principle admitted by (2.20).

3. Hybrid Ermakov-Painlevé Systems

3.1. The Ermakov-Painlevé II System

Here, it is required that Φ be governed by the prototype integrable Ermakov-Painlevé II equation
[36]

Φ̈+
t
2

Φ+ εΦ
3 +

(α− ε/2)2

4Φ3 = 0 , ε
2 = 1 , (3.1)

whence, on setting ζ =−(α− ε/2)2/4 in (2.1), the system becomes

ẄI +
[ t

2
+ εΦ2

]
WI =

1
W 2

I WII
S(WII/WI) ,

ẄII +
[ t

2
+ εΦ2

]
WII =

1
WIW 2

II
T (WI/WII) .

(3.2)

Importantly, as observed in the three-ion electrodiffusion context of [2], in terms of w = Φ2,
the Ermakov-Painlevé II equation (3.1) in Φ delivers the integrable Painlevé XXXIV equation in w,
namely

ẅ+
ẇ2

2w
+ tw+2εw2 +

(α− ε/2)2

2w
= 0 , ε

2 = 1 (3.3)

while (2.9)3 shows that

t∗ =
∫

w−1dt (3.4)

in (2.20).
Here, the system (2.11) becomes

ẄI +
[ t

2
+ εΦ2

]
WI =

2
W 3

I
J(WII/WI)+

WII

W 4
I

J′(WII/WI) ,

ẄII +
[ t

2
+ εΦ2

]
WII =−

1
W 3

I
J′(WII/WI) ,

(3.5)

so that the Ermakov-Painlevé II system (1.1)−(1.2) is retrieved corresponding to the particular
solution Φ = Σ1/2 of the Ermakov equation (2.20) with the relation

ζ = 2E =−(α− ε/2)2/4 , (3.6)

linking the Painlevé parameter α and Ermakov invariant E < 0. It is seen that (2.12) implies that
J(WII/WI) < 0. In this specialisation with Φ = Σ1/2, (3.1) shows that the amplitude Σ1/2 = (W 2

I +

W 2
II)

1/2 is governed by an Ermakov-Painlevé II equation directly related with w = Σ to the canonical
integrable Painlevé XXXIV equation.
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To determine the phase Λ = WII/WI, return is made to the Ermakov invariant relation (2.12)
which shows that

1
2

(
Σ

d
dt

tan−1
(

WII

WI

))2

+

(
1+
(

WII

WI

)2
)

J
(

WII

WI

)
= E (3.7)

whence, on introduction of the new independent variable t∗ according to

dt∗ = Σ
−1dt , (3.8)

(3.8) shows that

∫ d(tan−1 Λ)√
2(E − (1+Λ2)J(Λ))

=±t∗ . (3.9)

Once the amplitude Σ1/2 has been determined corresponding to a positive solutions w = Σ of
Painlevé XXXIV, and the phase Λ obtained via (3.9), the original variables WI and WII in the
Ermakov-Painlevé II system (1.1)−(1.2) are given by the relations

WI =±
√

Σ

1+Λ2 , WII =±Λ

√
Σ

1+Λ2 . (3.10)

Thus, in summary, the algorithm for generation of solutions of the Ermakov-Painlevé II system
(1.1)−(1.2) decomposes into the isolation of solutions Σ > 0 of the integrable Painlevé XXXIV
equation (3.3) together with evaluation of the quadrature in (3.9) to determine the phase Λ.

The importance of positive solutions of Painlevé XXXIV arises, interestingly, elsewhere in the
context of boundary value problems for a Painlevé II reduction of the classical two-ion Nernst-
Planck system [6, 10, 15, 48]. Therein, the scaled electric field E is governed by the canonical inte-
grable Painlevé II equation

Ezz = 2E3 + zE +α , (3.11)

while the associated ion concentrations are given by

c± =±Ez +E2 =
z
2
. (3.12)

Thus, on elimination of E in (3.12), the concentrations c±, which by physical considerations are
required to be positive, are seen to be governed by the Painlevé XXXIV equation (3.3) with ε =−1.
In [6], sequences of exact solutions of this nonlinear equation in terms of Yablonski-Vorob’ev poly-
nomials or classical Airy functions as generated by the iterated action of a Bäcklund transformation
were investigated in detail with regard to this positivity constraint. Moreover, in [37], the cele-
brated Bäcklund transformation for Painlevé II has been recently interpreted at the level of Painlevé
XXXIV and used to demonstrate that the problem of integration of the reciprocal of a solution Σ

of Painlevé XXXIV as required in (3.8) is equivalent to the problem of integration of an associ-
ated solution of Painlevé II. The latter problem was then shown to be amenable to solution via the
iterated action of the Bäcklund transformation for Painlevé II on a seed solution.
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3.2. The Ermakov-Painlevé III System

Painlevé III, namely

wzz =
w2

z

w
− wz

z
+

1
z
(αw2 +β )+ γw3 +

δ

w
(3.13)

where α,β ,γ and δ are arbitrary parameters has been derived in a wide range of physical contexts,
notably in general relativity, electromagnetic radiation and statistical mechanics (see e.g. the litera-
ture cited in [33]). It has been derived via symmetry reduction of nonlinear equations in soliton the-
ory, such as the Ernst equations of general relativity [58], the Pohlmeyer-Regge-Lund system [28],
the stimulated Raman scattering system [21], as well as Yang-Mills and Bianchi-IX systems in [53]
and [18] respectively.

On setting

w = eW , z = et (3.14)

in (3.13), it adopts the novel symmetric form

Ẅ = αet+W +βet−W + γe2(t+W )+δe2(t−W ) (3.15)

which encapsulates positive solutions of Painlevé III on regions z > 0. In this connection, it is noted
that (3.15) is derived under the similarity transformation

w = eW , z = et = XT (3.16)

of the modulated nonlinear hyperbolic equation

WXT = αeW +βe−W +XT (γe2W +δe−2W ) (3.17)

symmetric in X and T . In the case β = γ = 0, (3.17) constitutes a modulated Tzitzeica equation and
has been derived in the context of affine geometry in [19]. It is remarked that modulated systems
arise naturally in continuum mechanics in such areas as the visco-elastodynamics, elastostatics, and
elastodynamics of inhomogeneous media (see e.g. [5,12,29] and literature cited therein). Nonlinear
Schrödinger (NLS) equations with modulation also are important, notably in soliton management
(Malomed [32]). The structure and application of NLS models with inhomogeneities determined by
associated Ermakov-type systems is a subject of current interest and has been recently investigated
in [8, 9, 36, 51, 52, 59].

The above motivates introduction here of hybrid Ermakov-Painlevé III systems with Φ governed
by (3.15), so that,

Φ̈ = αet+Φ +βet−Φ + γe2(t+Φ)+δe2(t−Φ) (3.18)

whence, the system (2.1) becomes

WI−
1
Φ

[
αet+Φ +βet−Φ + γe2(t+Φ)+δe2(t−Φ)− ζ

Φ3

]
WI =

1
W 2

I WII
S(WII/WI) ,

WII−
1
Φ

[
αet+Φ +βet−Φ + γe2(t+Φ)+δe2(t−Φ)− ζ

Φ3

]
WII =

1
WIW 2

II
T (WI/WII)

(3.19)

If we proceed with the particular solution of the Ermakov equation (2.20) with Φ = Σ1/2 and
ζ = 2E where E is the Ermakov invariant of the system (3.19) then the amplitude Σ1/2 is governed
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by the variant

d2
Σ

1/2/dt2 = αet+Σ +βet−Σ + γe2(t+Σ)+δe2(t−Σ) (3.20)

of the canonical integrable Painlevé III equation (3.13). In the case of underlying Hamiltonian-type
structure, so that S(WII/WI) and T (WI/WII) given by (1.2), the Ermakov-Painlevé III system (3.19)
with Φ = Σ1/2 becomes

ẄI−
1

Σ1/2

[
αet+Σ1/2

+βet−Σ1/2
+ γe2(t+Σ1/2)+δe2(t−Σ1/2)− 2E

Σ3/2

]
WI

=
2

W 3
I

J(WII/WI)+
WII

W 4
I

J′(WII/WI) ,

ẄII−
1

Σ1/2

[
αet+Σ1/2

+βet−Σ1/2
+ γe2(t+Σ1/2)+δe2(t−Σ1/2)− 2E

Σ3/2

]
WII

=− 1
W 3

I
J′(WII/WI) .

(3.21)

The Ermakov integral of motion (2.12) generic to the general hybrid system (2.1) again determines
the ratio Λ = WII/WI via (3.9) but now in the integration of the relation (3.8) to determine t∗, the
squared amplitude Σ is determined via (3.20).

It is evident that (3.20) admits the reciprocal invariance

R : ΦR =−Φ , αR =−β , βR =−α , γR =−δ , δR =−γ (3.22)

with induced invariance with wR = eΦR = w−1 in Painlevé III. This invariance, augmented by a triad
of Bäcklund transformations admitted by Painlevé III allows the iterative generation of sequences
of its exact solutions and hence of (3.20) via action on appropriate seed solutions. Bäcklund trans-
formations for Painlevé III have been set down in [33] where rational and classical Bessel function
solutions are recorded. In the present context, in view of the relations (3.16) interest is restricted
to regions z > 0 on which such solutions are positive. Once solutions Σ1/2 and Λ have been deter-
mined, in turn, via the integrable Painlevé III variant (3.20) and the integral relation (3.9) derived by
means of the Ermakov integral of motion (2.12), the associated solutions WI and WII in the hybrid
Ermakov-Painlevé III system (3.21) are again given by the relations of the type (3.10).

3.3. The Ermakov-Painlevé IV System

In this case, it is required that Φ be governed by the prototype Ermakov-Painlevé IV equation

Φ̈−
[

3
4

Φ
4 +2tΦ2 + t2−α

]
Φ =

ζ

Φ3 (3.23)

as originally derived in [36] via a symmetry reduction of a coupled derivative NLS system. It is seen
that with w = Φ2, the canonical Painlevé IV equation in w is obtained, namely

wẅ =
1
2

ẇ2 +
3
2

w4 +4tw3 +2(t2−α)w2 +β . (3.24)

The latter has applications ‘inter alia’, in nonlinear lattice theory and the propagation of ion sound
waves in plasma physics. It was shown in [13] to arise as a similarity reduction of the classical
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Boussinesq equation, and also occurs, notably, in connection with a symmetry reduction of the
discrete Kac-Moerbeke equation [22].

Use of (3.23) in (2.1) produces the hybrid Ermakov-Painlevé IV system

ẄI−
[

3
4

Φ4 +2tΦ2 + t2−α

]
WI =

1
W 2

I WII
S(WII/WI) ,

ẄII−
[

3
4

Φ4 +2tΦ2 + t2−α

]
WII =

1
WIW 2

II
T (WI/WII) .

(3.25)

In the case when S, T are given by the expressions (1.2) and with the particular solution Φ =

Σ1/2, ζ = 2E of the Ermakov equation (2.20), the solutions WI, WII are given by the expressions
(3.10) where now Σ therein is determined by the Ermakov-Painlevé IV equation

d2
Σ

1/2/dt2−
[

3
4

Σ
2 +2tΣ+ t2−α

]
Σ

1/2 =
2E

Σ3/2 . (3.26)

In the latter connection, it is remarked that a privileged sequence of bound state solutions which are
non-negative may be generated by the iterated action of a Bäcklund transformation and corresponds
to parameters α an odd integer and β = 0 (see [7]). The ratio Λ = WI/WII is again determined via
the relations (3.10) but where now Σ is a positive solution of Painlevé IV.
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equation, in Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, Ed.
P.A. Clarkson, Nato ASI Series, Mathematical and Physical Sciences, Kluwer, Vol. 413 (1993) 341–
352.

[34] J.R. Ray, Nonlinear superposition law for generalised Ermakov systems, Phys. Lett. A 78 (1980) 4–6.
[35] J.L. Reid and J.R. Ray, Ermakov systems, nonlinear superposition and solution of nonlinear equations

of motion, J. Math. Phys. 21 (1980) 1583–1587.
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[58] P. Wils, A new Painlevé solution of the Ernst equations, Phys. Lett. A 135 (1989) 425–427.
[59] J.F. Zhang, Yi S. Li, J. Meng, L. Wo and B.A. Malomed, Matter-wave solitons and finite-amplitude

Bloch waves in optical lattices with a spatially modulated nonlinearity, Phys. Rev. A 82 (2010) 033614.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

249


