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Recently a classification of contactly-nonequivalent three-dimensional linearly degenerate equations of the
second order was presented by E.V. Ferapontov and J. Moss. The equations are Lax-integrable. In our paper we
prove that all these equations are connected with each other by appropriate Bäcklund transformations.
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The aim of this note is to construct Bäcklund transformations, [4, 8], between the following four
equations

uyy = utx +uy uxx −ux uxy, (1)

uty = ux uxy −uy uxx, (2)

uyy = uy utx −ux uty, (3)

uty = ut uxy −uy utx, (4)

In different contexts, these equations have appeared before in [1–3, 5, 10–18]. These quasilin-
ear equations have plenty interesting and important properties. For instance, all of them pos-
sess infinitely many global solutions (see [6]), because these equations have infinitely many two-
dimensional dispersive reductions, which are known as integrable two-dimensional systems (see
[19]), whose multi-phase solutions illustrate impossibility of breakdown of smooth initial data.
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Recently in [7] a classification of three-dimensional linearly degeneratea integrable equations
of the second order (non-equivalent up to contact transformations) was presented. Then this list
of equations was recognised as a set of equations which belong to the same linearly-degenerate
integrable hierarchy (see equations (56), (57) in [19]). In this paper we prove that all these three-
dimensional linearly degenerate integrable equations of second order are connected with each other
via appropriate Bäcklund transformations. Thus, any known particular solution of one of these
equations can be mapped into corresponding solutions of other equations. At this moment this
phenomenon (existence of several three-dimensional equations connected by Bäcklund transforma-
tions and belonging to the same integrable hierarchy) is observed just for above linearly degenerate
equations (1), (2), (3), (4).

The equations are Lax-integrable, that is, each equation has a differential covering linear in the
covering variable (or a Lax pair) with a non-removable spectral parameter. The coverings for (1),
(2), (3), (4), are defined, [1,5,11,12,17,18], by the following over-determined systems, respectively:{

vt = (λ 2 −λ ux −uy)vx,

vy = (λ −ux)vx,
(5)

{
vt = (ux −λ )vx,

vy = λ−1 uy vx,
(6)

{
vt = λ−1 u−1

y vy,

vx = (λ +uy u−1
x )vy,

(7)

{
vt = λ (λ +1)−1 ut vx,

vy = λ uy vx.
(8)

The compatibility conditions for (5), (6), (7), and (8) coincide with equations (1), (2), (3), and (4),
respectively. Eliminating u from (5), (6), (7), (8) and rescaling the coordinates yields equations

vyy = vtx +
vy − vt

vx
vxx +

vy − vx

vx
vxy, (9)

vty =
vt + vx

vx
vxy −

vy

vx
vxx, (10)

vyy =
vy

vt
vtx +

vy − vx

vt
vty, (11)

vty =
λ +1

λ
vt

vx
vxy −

1
λ

vy

vx
vtx. (12)

In other words, systems (5), (6), (7), (8) define Bäcklund transformations between pairs of equations
(1) and (9), (2) and (10), (3) and (11), (4) and (12), respectively. Equation (12) was considered
in [20].

aThe concept of linearly degenerate three-dimensional equation is based on an existence of global solutions. See, for
instance, [6] and [7].
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Theorem. The following pairs of equations are equivalent via point transformations:

(i) (9) and (2),
(ii) (10) and (11),

(iii) (11) and (4).

Proof. (i) Write equation (9) as

ṽỹỹ = ṽt̃ x̃ +
ṽỹ − ṽt̃

ṽx̃
ṽx̃x̃ +

ṽỹ − ṽx̃

ṽx̃
ṽx̃ỹ. (13)

Then the change of variables

t̃ = t, x̃ =−u+ x, ỹ = x, ṽ = y (14)

maps equation (13) to equation (2).

(ii) Write equation (11) as

ṽỹỹ =
ṽỹ

ṽt̃
ṽt̃ x̃ +

ṽỹ − ṽx̃

ṽt̃
ṽt̃ ỹ. (15)

Then the change of variables

t̃ = y, x̃ = t, ỹ =−x, ṽ = v (16)

maps equation (15) to equation (10).

(iii) The change of variables

t̃ = t, x̃ = x, ỹ = u, ṽ = y (17)

maps equation (15) to equation (4).

Remark. The observation of the theorem can be hinted by the symmetry algebras of the Bäcklund
related equations. For instance, two equations (2) and (9) as well as three equations (10), (4), and
(11) have the same contact symmetry algebras. Although the coincidence of the symmetry algebras
is only a necessary condition for the equivalence of two equations, in the above cases, we have the
equivalences defined by transformations (14), (16), and (17). This observation was already exploited
in the paper [9] to find a Bäcklund transformation between the four-dimensional Martı́nez Alonso–
Shabat and Ferapontov–Khusnutdinova equations.

Corollary. Each pair of equations (1), (2), (3), (4), (9), (10), (11), (12) is related via an appropriate
combination of transformations (5), (6), (7), (8), (14), (16), (17).
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