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We present an explicit representation of an N-fold Darboux transformation T̃N for the short pulse equation,

by the determinants of the eigenfunctions of its Lax pair. In the course of the derivation of T̃N , we show that

the quasi-determinant is avoidable, and it is contrast to a recent paper (J. Phys. Soc. Jpn. 81 (2012), 094008)

by using this relatively new tool which was introduced to study noncommutative mathematical objectives. T̃N
produces new solutions u[N] and x[N] which are expressed by ratios of two corresponding determinants. We

also obtain the soliton solutions, which have a variable trajectory, of the short pulse equation from new “seed”

solutions.
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1. introduction

In recent years, propelled by the demand of the high bit-rate data transmission in one channel,

the few-cycle pulses at attosecond scale has been generated successfully in experiments, which

arouses extremely the efforts of the research of this field [1, 2, 17]. However, this leads to a serious

problem in the research of the nonlinear fibre optics, i.e., the breakdown of the slowly varying

envelope approximation (SVEA), which is used to derive the nonlinear Schrödinger (NLS) equation

for picosecond pulse propagation in fiber, for pulses which are shorter than 100 femtosecond or few

cycle pulses [19]. This fact shows the NLS can not be a model equation of the ultra-short pulse.

Thus, it is natural to derive new models for ultra-short pulse by using non-SVEA approach. In this

perspective, a new model of ultra-short pulse, i.e.,

uxt = u+
1

6
(u3)xx, (1.1)

has been established at 2004 [5, 32] without the using of the SVEA approach, and which is now

called SP equation. Here u = u(x, t) represents the magnitude of the electric field and subscripts

x and t denote partial differentiation. As early expectation, Chung and coworkers proved that the

NLS equation approximation becomes less accurate as the pulse length shortens, whereas the SP

equation provides a better approximation to the solution of Maxwell’s equations [5] for this case.

The SP equation is an integrable system because it has a Lax pair which is found to be of the
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Wadati-Konno-Ichikawa (WKI) type [28]. The Hamiltonian structure, the hierarchy of higher-order

flows and a new Lax pair involving pseudo-differential operators of the SP equation are presented

in ref. [4], which further shows its the integrable properties. It is very crucial to find that the SP

equation can be converted to the sine-Gordon (SG) model by an implicit transformation [29], and

thus three kinds of solution, i.e., one-loop, two-loop and breather(pulse) solutions, are constructed

from the corresponding solutions of the SG equation. Later, a suitable hodograph transformation

[22], which is equivalent essentially to the transformation given by eqs.(8) and (9) in ref. [29], is

introduced to establish the connection between the SP and the SG equation. The N-loop and M-

breather solutions of the SP equation are constructed by the hodograph transformation from the

solitons of the SG equation. To this destination, Matsuno has calculated out analytically a tedious

integration of coordinate transformation x(y, t) =
∫ y cosφdy, i.e. eq. (2.18) of ref. [22], in which φ

is a solution of the SG equation, and this idea is used to get periodic solutions of the SP equation

[23] and the multisoliton solutions of the multi-component SP equation [24]. There exist several

extensions of the SP equation including the discrete SP equation [6], the two-component SP [7,34],

multi-component SP [24], stochastic SP [18], (2+1)-dimensional SP [31], complex SP [8, 21], etc.

Very recently, the long-time asymptotical behavior of the solution for the SP equation is given by

the Riemann-Hilbert approach [3, 35].

Although the hodograph transformation introduced by Matsuno has been successfully used to

get several kinds of interesting solutions [22–24] of the SP equation, it is still limited strongly by the

difficulty in the integration of x = x(y, t). In general, this integration is not calculable analytically.

Therefore it is an interesting problem to solve simultaneously the unknown electric field u and x(y, t)
without the appearing of the above irritated integration, in order to get other more solutions. Indeed,

this has been done partially by solving an equivalent coupled system of u and x(y, t) (see eqs.(10)

and (11) in ref. [30]) with the help of the Darboux transformation (DT) [30]. Note that authors of

ref. [30] have avoided successfully the use of any integration and the solution of the SG, but there

are several items needed to be improved. In this paper, we shall further study the solution of the SP

equation motivated by the following problems.

• Can the quasi-determinant used in derivation of multi-fold DT [30] be avoided? The quasi-

determinant is a very powerful and relatively new tool to study the noncommutative mathe-

matical objectives [9], so we suspect naturally whether it is necessary to study a commuta-

tive system such as a coupled equations of u and x(y, t) in ref. [30]. Can we derive the N-fold

DT of the SP equation using the conventional determinant instead of the quasi-determinant?

• Can we develop a determinant representation T̃N of the N-fold DT for the SP equation?

Ref. [30] just provides a determinant form of the u(N) and x(N) generated by the arbitrary

N-fold DT. Recently, the determinant representation of the N-fold DT is an effective tool to

construct the rogue waves in many soliton equations [13, 14, 16, 26, 27, 36–38].

• Can we provide an unified determinant expression of the u(N) and x(N) generated by the

N-fold DT? Note that there exists two expressions of u(N) and x(N) for two cases when

N is an odd or even number respectively [30]. To more details, see eqs. (73) and (74) in

ref. [30].

• Construct new solutions of u(N) and x(N) using the DT from different “seed” solutions by

comparing with a special “seed” solution u = 0 and x = X [30].

The aim of this paper is to solve above problems. The paper is structured as follows. In Section 2,

we derive the determinant representation of the N-fold DT without appearing the quasi-determinant,
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and then use it to construct an unified expression of the u(N) and x(N) for arbitrary N. In Section

3, we provide explicit formulae of the new soliton solutions generated by the DT from several new

“seed” solutions. Finally, conclusions and discussions are given in Section 4.

2. n-order Darboux transformation of the short pulse equation

The DT is a powerful tool to solve integrable equations [10, 11, 20, 25]. In this section, we shall

derive a determinant representation T̃N of the N-fold DT for the SP equation, and then use it to

construct solutions. First of all, we would like to recall the equivalent equations [30] of the SP

equation. The SP equation has a conservation law wt = (1
2
u2w)x, here w2 = 1+(ux)

2. Then ref. [22]

introduced the hodograph transform which maps the independent variables (x, t) into new variables

(X ,T ) through the following system of differential one-form

dX = w dx+
1

2
u2w dt, dT = dt. (2.1)

Set 1
w = ∂x(X ,T )

∂X , then the SP equation is transformed into the following equivalent coupled equations

[30] of u and x(X ,T )

∂ 2

∂X∂T
x(X ,T )+

(
∂

∂X
u(X ,T )

)
u(X ,T ) = 0, (2.2)

∂ 2

∂X∂T
u(X ,T )−

(
∂

∂X
x(X ,T )

)
u(X ,T ) = 0, (2.3)

which is the compatibility condition of the following Lax pair

ΦX = PΦ, ΦT = QΦ, (2.4)

P =

(
λ ∂

∂X x(X ,T ) λ ∂
∂X u(X ,T )

λ ∂
∂X u(X ,T ) −λ ∂

∂X x(X ,T )

)
,Q =

(
1
4
λ−1 − 1

2
u(X ,T )

1
2
u(X ,T ) − 1

4
λ−1

)
.

Here Φ(X ,T,λ ) =
(

f1

f2

)
be an eigenfunction of the Lax pair equations in (2.4) corresponding to

eigenvalue λ , and Φk = Φ(X ,T,λk) =

(
fk1

fk2

)
be an eigenfunction associated with eigenvalue λk.

From now on, (2.2) and (2.3) are called the hodograph equivalent short pulse(HESP) equations.

We are now in a position to derive the DT of the HESP equations, i.e. (2.2) and (2.3), instead

of the solving directly it. We first construct the one-fold and two-fold with details, then the N-

fold DT by iteration and matrix multiplication. Suppose there exists a transformation T̃ acting on

eigenfunction of the SP equation, that is

Φ[1] = T̃ Φ, (2.5)

and preserving the Lax pair

Φ[1]
X = P[1]Φ[1], Φ[1]

T = Q[1]Φ[1], (2.6)
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where P[1] and Q[1] have the same form as P and Q except that u(X ,T ) and x(X ,T ) are replaced by

u[1](X ,T ) and x[1](X ,T ). As given in [10, 11, 20, 25], Φ[1]
XT = Φ[1]

T X implies

T̃X + T̃ P−P[1]T̃ = 0, T̃T + T̃ Q−Q[1]T̃ = 0, (2.7)

which are governing equations to determine the relations between new solutions (u[1],x[1]) and the

“seed” solutions (u,x), and also the relations between the elements of matrix T̃ . For example, see

T̃1 next subsection.

2.1. One-fold Darboux transformation

Similar to the widely used form of the DT [10, 11, 20, 25], set the one-fold DT T̃1 as

T̃1 =

(
a[1]1 b[1]1

c[1]1 d[1]
1

)
λ +

(
a b
c d

)
. (2.8)

Here a[1]1 ,b[1]1 ,c[1]1 ,d[1]
1 ,a,b,c,d are the unknown functions of X and T , which will be given according

to the eq.(2.7) and the kernel of T̃1. Substituting the matrix of T̃1 into eq.(2.7), then comparing the

coefficients of λ j, j = 2,1,0,−1, then it infers that T̃ is in the form of

T̃1(λ ) =

(
a[1]1 b[1]1

b[1]1 −a[1]1

)
λ +

(
1 0

0 1

)
, (2.9)

and new solutions are

u[1] = u+b[1]1 , x[1] = x+a[1]1 . (2.10)

Next, it is a crucial step to express a[1]1 and b[1]1 by the eigenfunctions Φk associated with seed solu-

tions u and x. Like other well-known integrable systems [10,11,20,25], this can be implemented by

using the kernel of T̃1. Specifically, solving algebraic equations T̃1 (λ ;λ1)Φ1|λ=λ1
= 0 by Cramer’s

rule, implies

a[1]1 =

∣∣∣∣λ1 f12 f11

λ1 f11 f12

∣∣∣∣
|W2| , b[1]1 =−

∣∣∣∣ λ1 f11 f11

−λ1 f12 f12

∣∣∣∣
|W2| , (2.11)

in which

W2 =

(
λ1 f11 λ1 f12

−λ1 f12 λ1 f11

)
.

Substituting a[1]1 and b[1]1 into eq.(2.9), we get a simple determinant representation of the one-fold

DT as

T̃1 = T̃1 (λ ;λ1) =
1

|W2|
(
(T̃1)11 (T̃1)12

(T̃1)21 (T̃1)22

)
, (2.12)

with (T̃1)11 =

∣∣∣∣ξ11 1

W2 η1

∣∣∣∣ ,(T̃1)12 =

∣∣∣∣ξ12 0

W2 η1

∣∣∣∣ ,(T̃1)21 = (T̃1)12,(T̃1)22 = (T̃1)11|λ→−λ ,ξ11 =

(λ ,0),ξ12 = (0,λ ),η1 = ( f11, f12)
T . Furthermore, the determinant representation of new solutions
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of the SP equation are

u[1](X ,T ) = u(X ,T )−

∣∣∣∣ λ1 f11 f11

−λ1 f12 f12

∣∣∣∣
|W2| , x[1](X ,T ) = x(X ,T )+

∣∣∣∣λ1 f12 f11

λ1 f11 f12

∣∣∣∣
|W2| , (2.13)

obtained from eq.(2.10) and eq.(2.11). So we have derived the one-fold DT without the using of

the quasi-determinant, and this shows it is indeed avoidable in the construction of the DT of the SP

equation.

2.2. Two-fold Darboux transformation

Through the iteration of T̃1, or equivalently matrix multiplication of T̃1 given by eq.(2.9), the two-

fold DT for the SP equation should be of the following form

T̃2(λ ) =

(
a[2]2 b[2]2

−b[2]2 a[2]2

)
λ 2 +

(
a[1]2 b[1]2

b[1]2 −a[1]2

)
λ +

(
1 0

0 1

)
, (2.14)

and its kernel is two dimensional. As we have done for one-fold DT, solving T̃2 (λ )Φi|λ=λi = 0, i =
1,2 by the Cramer’s rule, yields

a[2]2 =

∣∣∣∣∣∣∣∣
λ 2

1 f12 λ1 f11 λ1 f12 f11

−λ 2
1 f11 −λ1 f12 λ1 f11 f12

λ 2
2 f22 λ2 f21 λ2 f22 f21

−λ 2
2 f21 −λ2 f22 λ2 f21 f22

∣∣∣∣∣∣∣∣
|W4| , a[1]2 =

∣∣∣∣∣∣∣∣
λ 2

1 f11 λ 2
1 f12 λ1 f12 f11

λ 2
1 f12 −λ 2

1 f11 λ1 f11 f12

λ 2
2 f21 λ 2

2 f22 λ2 f22 f21

λ 2
2 f22 −λ 2

2 f21 λ2 f21 f22

∣∣∣∣∣∣∣∣
|W4| , (2.15)

b[2]2 =−

∣∣∣∣∣∣∣∣
λ 2

1 f11 λ1 f11 λ1 f12 f11

λ 2
1 f12 −λ1 f12 λ1 f11 f12

λ 2
2 f21 λ2 f21 λ2 f22 f21

λ 2
2 f22 −λ2 f22 λ2 f21 f22

∣∣∣∣∣∣∣∣
|W4| , b[1]2 =−

∣∣∣∣∣∣∣∣
λ 2

1 f11 λ 2
1 f12 λ1 f11 f11

λ 2
1 f12 −λ 2

1 f11 −λ1 f12 f12

λ 2
2 f21 λ 2

2 f22 λ2 f21 f21

λ 2
2 f22 −λ 2

2 f21 −λ2 f22 f22

∣∣∣∣∣∣∣∣
|W4| , (2.16)

where W4 =

⎛⎜⎜⎝
λ 2

1 f11 λ 2
1 f12 λ1 f11 λ1 f12

λ 2
1 f12 −λ 2

1 f11 −λ1 f12 λ1 f11

λ 2
2 f21 λ 2

2 f22 λ2 f21 λ2 f22

λ 2
2 f22 −λ 2

2 f21 −λ2 f22 λ2 f21

⎞⎟⎟⎠. Taking these elements back into eq. (2.14), it pro-

vides the determinant representation of the two-fold DT

T̃2(λ ;λ1,λ2) =
1

|W4|
(
(T̃2)11 (T̃2)12

(T̃2)21 (T̃2)22

)
, (2.17)

with (T̃2)11 =

∣∣∣∣ξ21 1

W4 η2

∣∣∣∣ ,(T̃2)12 =

∣∣∣∣ξ22 0

W4 η2

∣∣∣∣ ,(T̃2)21 = (T̃2)12|λ 2→−λ 2 ,(T̃2)22 = (T̃2)11|λ→−λ ,ξ21 =

(λ 2,0,λ ,0),ξ22 = (0,λ 2,0,λ ),η2 = ( f11, f12, f21, f22)
T . At the same time, new solutions of the

SP equation generated by the two-fold DT are

u[2](X ,T ) = u(X ,T )+b[1]2 , x[2](X ,T ) = x(X ,T )+a[1]2 . (2.18)
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2.3. N-fold DT of the short pulse equation

Now we present the N-fold DT for the SP equation by the similar method as above. By N-times

iteration of T̃1, or N-times multiplication of T̃1 given by eq.(2.9), the N-fold DT should be the

following form

T̃N(λ ) =

(
a[N]

N b[N]
N

−b[N]
N a[N]

N

)
λ N +

(
a[N−1]

N b[N−1]
N

b[N−1]
N −a[N−1]

N

)
λ N−1 + · · ·+

(
a[1]N b[1]N

b[1]N −a[1]N

)
λ +

(
1 0

0 1

)
, N is even,

(2.19)

T̃N(λ ) =

(
a[N]

N b[N]
N

b[N]
N −a[N]

N

)
λ N +

(
a[N−1]

N b[N−1]
N

−b[N−1]
N a[N−1]

N

)
λ N−1 + · · ·+

(
a[1]N b[1]N

b[1]N −a[1]N

)
λ +

(
1 0

0 1

)
, N is odd.

(2.20)

Solving algebraic equations T̃N(λ )Φ j|λ=λ j = 0, j = 1,2, · · · ,N, it yields an unified determinant rep-

resentation of the N-fold DT for above two cases, i.e.,

T̃N(λ ) =
1

|W2N |
(
(T̃N)11 (T̃N)12

(T̃N)21 (T̃N)22

)
, (2.21)

with(T̃N)11 =

∣∣∣∣ ξN1 1

W2N ηN

∣∣∣∣ ,(T̃N)12 =

∣∣∣∣ ξN2 0

W2N ηN

∣∣∣∣ ,
(T̃N)21 = (T̃N)12|λ 2 j→−λ 2 j, j∈Z+

,(T̃N)22 = (T̃N)11|λ 2 j+1→−λ 2 j+1, j∈Z+
, ξN1 = (λ N ,0,λ N−1,0, · · · ,λ ,0),

ξN2 = (0,λ N ,0,λ N−1, · · · ,0,λ ), ηN = ( f11, f12, f21, f22, · · · , fN1, fN2)
T ,

W2N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ N
1 f11 λ N

1 f12 λ N−1
1 f11 λ N−1

1 f12 · · · λ 2
1 f11 λ 2

1 f12 λ1 f11 λ1 f12

(−1)N λ N
1 f12 (−1)N−1λ N

1 f11 (−1)N−1λ N−1
1 f12 (−1)N−2λ N−1

1 f11 · · · λ 2
1 f12 −λ 2

1 f11 −λ1 f12 λ1 f11

λ N
2 f21 λ N

2 f22 λ N−1
2 f21 λ N−1

2 f22 · · · λ 2
2 f21 λ 2

2 f22 λ2 f21 λ2 f22

(−1)N λ N
2 f22 (−1)N−1λ N

2 f21 (−1)N−1λ N−1
2 f22 (−1)N−2λ N−1

2 f21 · · · λ 2
2 f22 −λ 2

2 f21 −λ2 f22 λ2 f21

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

λ N
N fN1 λ N

N fN2 λ N−1
N fN1 λ N−1

N fN2 · · · λ 2
N fN1 λ 2

N fN2 λN fN1 λN fN2

(−1)N λ N
N fN2 (−1)N−1λ N

N fN1 (−1)N−1λ N−1
N fN2 (−1)N−2λ N−1

N fN1 · · · λ 2
N fN2 −λ 2

N fN1 −λN fN2 λN fN1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The determinant representations of new solutions generated by the N-fold DT T̃N are

u[N](X ,T ) = u(X ,T )+b[1]N , x[N](X ,T ) = x(X ,T )+a[1]N , (2.22)

in which

a[1]N =
1

|W2N |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ N
1 f11 λ N

1 f12 λ N−1
1 f11 λ N−1

1 f12 · · · λ 2
1 f11 λ 2

1 f12 λ1 f12 f11

(−1)N λ N
1 f12 (−1)N−1λ N

1 f11 (−1)N−1λ N−1
1 f12 (−1)N−2λ N−1

1 f11 · · · λ 2
1 f12 −λ 2

1 f11 λ1 f11 f12

λ N
2 f21 λ N

2 f22 λ N−1
2 f21 λ N−1

2 f22 · · · λ 2
2 f21 λ 2

2 f22 λ2 f22 f21

(−1)N λ N
2 f22 (−1)N−1λ N

2 f21 (−1)n−1λ N−1
2 f22 (−1)N−2λ N−1

2 f21 · · · λ 2
2 f22 −λ 2

2 f21 λ2 f21 f22

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

λ N
N fN1 λ N

N fn2 λ N−1
N fN1 λ N−1

N fN2 · · · λ 2
N fN1 λ 2

N fN2 λN fN2 fN1

(−1)N λ N
N fN2 (−1)N−1λ N

N fN1 (−1)N−1λ N−1
N fN2 (−1)N−2λ N−1

N fN1 · · · λ 2
N fN2 −λ 2

N fN1 λN fN1 fN2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

b[1]N =
−1

|W2N |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ N
1 f11 λ N

1 f12 λ N−1
1 f11 λ N−1

1 f12 · · · λ 2
1 f11 λ 2

1 f12 λ1 f11 f11

(−1)N λ N
1 f12 (−1)N−1λ N

1 f11 (−1)N−1λ N−1
1 f12 (−1)N−2λ N−1

1 f11 · · · λ 2
1 f12 −λ 2

1 f11 −λ1 f12 f12

λ N
2 f21 λ N

2 f22 λ N−1
2 f21 λ N−1

2 f22 · · · λ 2
2 f21 λ 2

2 f22 λ2 f21 f21

(−1)N λ N
2 f22 (−1)N−1λ N

2 f21 (−1)N−1λ N−1
2 f22 (−1)N−2λ N−1

2 f21 · · · λ 2
2 f22 −λ 2

2 f21 −λ2 f22 f22

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

λ N
N fN1 λ N

N fN2 λ N−1
N fN1 λ N−1

N fN2 · · · λ 2
N fN1 λ 2

N fN2 λN fN1 fN1

(−1)N λ N
N fN2 (−1)N−1λ N

N fN1 (−1)N−1λ N−1
N fN2 (−1)N−2λ N−1

N fN1 · · · λ 2
N fN2 −λ 2

N fN1 −λN fN2 fN2
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Note that a[1]N and b[1]N are determined from algebraic equations T̃N(λ )Φ j|λ=λ j = 0, j = 1,2, · · · ,N.

Above two formulas will be used to construct the N-soliton solution of the SP equation from a

suitable “seed” solution in next section.

3. solutions of short pulse equation

We shall present soliton solutions u[N](X ,T ) of the HESP equations in (X ,T )-plane, and then convert

it to the corresponding solutions u[N](x, t) of the SP equation in the (x, t)-plane by the hodograph

transformation. In other words, u[N](x, t) is an equivalent solution of u[N](X ,T ) according to the

hodograph transformation, although it can not be written out explicitly because x = x(X ,T ) in the

hodograph transformation is implicit. However it can be plotted in (x, t)-plane through a parametric

form using a symbolic computation program. It is trivial to point out that solutions u[N](X ,T ) can

not produce the solutions of the SP equation if the conditions of the hodograph transformation are

unsatisfied.

• Case a: The “seed” solution u = 0 and ∂x
∂X = 1 of the HESP equations.

For this case, the hodograph transformation is true, and then the solutions u[N](X ,T ) of the

HESP equations can produce the solutions u[N](x, t) of the SP equation in (x, t)-plane through this

transformation. A simple “seed” to satisfy above condition is x = X , then the eigenfunction of the

Lax pair (2.4) is

Φ(X ,T,λ ) =

(
eλX+ T

4λ

e−λX− T
4λ

)
. (3.1)

Therefore Φk = Φ(X ,T,λk) =

(
fk1

fk2

)
infers fk1 = eλkX+ T

4λk , fk2 = e−λkX− T
4λk , for k = 1,2, · · · ,N.

Setting N = 1, substituting f11 and f12 into eq.(2.22), two single-soliton solutions generated by

the one-fold DT of the SP equation are

u[1](X ,T ) =− 1

λ1 cosh(2λ1X + T
2λ1

)
, (3.2)

x[1](X ,T ) = X − tanh(2λ1X + T
2λ1

)

λ1
, (3.3)

which are the same as expressions in (99) of reference [30]. The u[1](X ,T ) in (X ,T )-plane is a dark

soliton which is shown in Fig.1(a). The corresponding u[1](x, t) is a loop solion of the SP equation

in (x, t)-plane as Fig.2(a).

Setting N = 2, substituting fk1 and fk2(k = 1,2) into eq.(2.22), two double-soliton solutions

generated by the two-fold DT of the SP equation are

u[2](X ,T ) =− 2(λ 2
1 −λ 2

2 )(−λ3e3 +λ2e4)

λ1λ2((λ1 −λ2)2e1 +(λ1 +λ2)2e2 −4λ1λ2)
, (3.4)

x[2](X ,T ) = X − (λ 2
1 −λ 2

2 )((λ1 −λ2)e5 +(λ1 +λ2)e6)

λ1λ2((λ1 −λ2)2e1 +(λ1 +λ2)2e2 −4λ1λ2)
, (3.5)

with e1 = cosh( (λ1+λ2)(4λ1λ2X+T )
2λ1λ2

),e2 = cosh( (λ1−λ2)(−4λ1λ2X+T )
2λ1λ2

),e3 = cosh(2λ1X + T
2λ1

),e4 =

cosh(2λ2X + T
2λ2

),e5 = sinh( (λ1+λ2)(4λ1λ2X+T )
2λ1λ2

),e6 = sinh( (λ1−λ2)(−4λ1λ2X+T )
2λ1λ2

). The u[2](X ,T ) is
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plotted in Fig.1(b), and the corresponding u[2](x, t) provides a two-loop solution in (x, t)-plane of

the SP equation, see figure 2 of ref. [29].

Similarly, setting N = 3 in eq.(2.22), it generates a three-soliton solution u[3](X ,T ), which is

plotted in Fig.1(c). Furthermore, for arbitrary N, eq.(2.22) generates an N-soliton solution of the SP

equation taking advantage of the N eigenfunctions defined by eq.(3.1).

(a) (b) (c)

Fig. 1. (Color online)Three soliton-solutions of the SP equation in (X ,T )-plane from Case a. Panel (a) is a single-soliton

u[1](X ,T ) with λ1 = 1. Panel (b) is a double-soliton u[2](X ,T ) with λ1 = 1 and λ2 =
1
2 . Panel (c) a three-soliton solution

u[3](X ,T ) with λ1 = 1, λ2 =
1
2 and λ3 = 2.

Next, we would like to consider more general “seed” of x to satisfy ∂x
∂X = 1, i.e. x = X + f (T ).

Here f (T ) is an arbitrary smooth function of T . It is trivial to find that f (T ) does not affect the solu-

tion u[N](X ,T ). However f (T ) imposes a remarkable constraint on u[N](x, t) through the hodograph

transformation of the SP equation in the (x, t)-plane. Specifically, f (T ) changes the trajectory of

u[N](x, t) in (x, t)-plane, but does not destroy its loop at arbitrarily given moment t. This observation

is verified by Figs.2 plotted for u[1](x, t) with f (T ) = T 2,sin(T ),eT ,T 3. The property, i.e. variable

trajectory, is a common character of the soliton equations with variable coefficients [12,15,33], but

is an unusual character for soliton equation with constant coefficients like the SP equation.

• Case b: The “seed” solution u = 0 and ∂x
∂X �= 1 of the HESP equations.

For this case, the hodograph transformation does not hold, and then there does not exist u[N](x, t)
of the SP equation in (x, t)-plane associated with u[N](X ,T ) of the HESP equations. To satisfy this

condition, set x = g(X) and ∂g
∂X �= 1, g(X) is an arbitrary smooth function.

Set u = 0,x = sinX in Lax pair (2.4), the two components of eigenfunction associated with

λk are expressed by fk1 = eλk sinX+ T
4λk , fk2 = e−λk sinX− T

4λk , for k = 1,2, · · · ,N. Setting N = 1 in eq.

(2.22) and using these eigenfunctions, it infers a single-soliton solution

u[1](X ,T ) =− 2(e1 + e2)

λ1(e3 + e4 +1)
, (3.6)

x[1](X ,T ) =
λ1 sinXe4 +λ1 sinXe3 +λ1 sinX − e4 − e3 +1

λ1(e3 + e4 +1)
, (3.7)

of the HESP. Here e1 = cosh(
4λ 2

1 sinX+T
2λ1

),e2 = sinh(
4λ 2

1 sinX+T
2λ1

),e3 = cosh(
4λ 2

1 sinX+T
λ1

),e4 =

sinh(
4λ 2

1 sinX+T
λ1

). The figure of u[1](X ,T ) is shown in Fig.3(a). For other choices of x = eX and
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (Color online) Five one-loop solutions u[1](x, t) of the SP equation in (x, t)-plane with same λ1 = 1 but different

“seed” solutions associated with f (T ) from Case a. From (a) to (e), f (T ) = 0,T 2,sin(T ),eT ,T 3 in order. (f) is a local

zoom of (e) around t = 0 in order to show clearly its loop.

x = X3, u[1](X ,T ) are plotted in Figs.3(b) and 3(c). Once again, we find variable trajectories in

Fig.3 of a soliton equation with constant coefficients.

(a) (b) (c)

Fig. 3. (Color online) Three single-soliton solutions u[1](X ,T ) of the HESP equations in (X ,T )-plane with same λ1 = 1

but different “seed” solutions associated with g(X) from Case b. From (a) to (c), g(X) = sin(X),eX ,X3 in order.
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4. Conclusions

In this paper, we presented a determinant representation T̃N of the N-fold DT in eq.(2.21) and the

new solutions in eq.(2.22) of the SP equation by conventional determinants. If we compare our

results with the work in [30] on the DT of the same equation, our results have following advantages

and developments.

• We derived a determinant representation of the N-fold DT for the SP equation. In particular,

we did not use unconventional tool–quasi-determinant, and obtained different form of new

solutions generated by the N-fold DT, which is easy to confirm from eq.(2.22) in this paper

and eq.(75) in ref. [30].

• We provided an unified expression of the u[N](X ,T ) generated by the N-fold DT no matter

N is even or odd, unlike the appearing of two determinants in eq.(75) of ref. [30].

• We generated new solutions in (x, t)-plane of the SP equation with a variable trajectory from

new “seed” solution.

• We constructed new solutions in (X ,T )-plane of the HESP equations possessing a variable

trajectory, which can not produce corresponding solutions in (x, t)-plane of the SP equation.

With respect to the future research related to the SP equation, the HESP equations is a new

and useful integrable system, and also has a correspondence of the well-known SG equation, which

deserves further study from the point of view of mathematics. We are also interested in new solutions

of the sine-Gorden equation from the HESP equations in the near future. In addition, the loop

solutions are multi-valued which are not satisfactory from physical point of view, so it is a necessary

and interesting problem to find single-valued solution of the SP equation and then use it to model

the few-cycle waves [22, 29].
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