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A primary branch solution (PBS) is defined as a solution with m independent n− 1 dimensional arbitrary
functions for an m order n dimensional partial differential equation (PDE). PBSs of arbitrary first order scalar
PDEs can be determined by using Lie symmetry group approach companying with the introduction of auxiliary
fields. Because of the intrusion of the arbitrary function, the PBSs have abundant and complicated structure.
Usually, PBSs are implicit solutions. In some special cases, explicit solutions such as the instanton (rogue wave
like) solutions may be obtained by suitably fixing the arbitrary function of the PBS.
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1. Introduction

It is well known that the symmetry group theory is very useful while studying exact solutions of
nonlinear systems. In fact, group theory was first established by Abel and Galois to prove the nonex-
istence of general algebraic solution for a five degree univariate polynomial equation. Sophus Lie
and Felix Klein introduced Lie symmetry algebras to study partial differential equations(PDEs) [8].
In this paper, we try to find primary branch solutions (PBSs) of arbitrary first order autonomous one
component partial differential equations in any dimensions.

Definition 1.1. For an m order n dimensional PDE, a solution is called a PBS if it contains m
independent n− 1 dimensional arbitrary functions. If only m1 < m independent n− 1 dimensional
arbitrary functions are included in a solution, then it is called a secondary branch solution (SBS). If
a solution contains some lower dimensional (n1 < n−1 dimensional) arbitrary functions, then it is
called a degenerate solution.

In fact, PBSs exist for all Painlevé integrable systems. The singularity analysis (Painlevé analy-
sis) shows that if a system of PDEs is Painlevé integrable, then there exists a primary branch such
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that enough arbitrary functions (same as that in the definition of the PBSs) are included in a for-
mal series solution with respect to an arbitrary singularity manifold [1, 5, 10, 13]. Thus, if one tries
to find the PBSs of a PDE system by means of symmetry theory, then enough symmetries with
enough arbitrary functions need to be found. Conversely, if we can find enough symmetries with
enough arbitrary functions, then, we may successfully find the PBSs of the related PDE system.
To make this idea clear, we study the symmetries and exact solutions of the following arbitrary
(n+1)-dimensional first order PDE,

F(u, ut , ux1 , . . . , uxn) = 0, (1.1)

where F is an arbitrary function and n is an arbitrary positive integer.
Obviously, there exists only one n dimensional arbitrary function for the PBSs of the first order

PDE (1.1). Thus, the SBSs of (1.1) are also degenerate solutions. In this paper we do not discuss
degenerate solutions of (1.1). Usually, degenerate solutions of (1.1) can be recasted to PBSs for
some suitable lower dimensional models.

It is worth to emphasize that various special cases of (1.1) can be widely found in many physical
fields. For instance, the Hopf (b = 0) [3] and damped Hopf (b 6= 0) [14] equations (also named
Burgers and damped Burgers equations)

ut = auux +bu, (1.2)

with arbitrary constants a and b is a standard model to describe shock waves [12] with and without
damping.

A general Hopf equation, a model equation of gas dynamics,

ut = f (u)ux, ( f (u) being an arbitrary function of u), (1.3)

is also widely used in hydrodynamics, multiphase flows, wave theory, acoustics, chemical engineer-
ing and other applications [7, 9].

The most general two dimensional form of (1.1) with the form

F(u, ux, uy) = 0 (1.4)

defines cylindrical surfaces whose elements are parallel to the {xy} plane [4].
A simple multiple dimensional significant model,

n

∑
i=0

aiu2
xi
= c, c, ai, (i = 0, 1, . . . ,n), being arbitrary constants, (1.5)

is encountered in differential games [11].
In Section 2, the symmetries and exact solutions of the general 1+1 dimensional first order

autonomous scalar systems are studied by using Lie point symmetry theory. Using the same idea as
in Section 2, the symmetries and exact PBSs of the first order arbitrary autonomous scalar system
in any dimensions are investigated in Section 3. The last section is a short summary and discussion.

2. Symmetries and solutions of (1+1)-dimensional systems

Prior to study the general first order PDE (1.1), we investigate the symmetries and exact solutions
of Eq. (1.1) in (1+1)-dimensional case. Under this case, one of primary non-degenerate branches of
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Eq. (1.1) may have the form

ut = F(u, ux)ux, (2.1)

where the subscripts are partial derivatives and one ux factor is separated from arbitrary function
F(u, ux) for simplicity later.

A symmetry, denoted by σ , of Eq. (2.1) is defined as a solution of its linearized equation,

dσ

dt
−Fuuxσ − (uxF)ux

dσ

dx
= 0, (2.2)

which means that Eq. (2.1) is invariant under the transformation

u→ u+ εσ (2.3)

with infinitesimal parameter ε , where

σ = σ(x, t, u, uxi , i = 1, ...,N) (2.4)

for general local symmetries (N being an arbitrary integer), and d
dt and d

dx are total derivatives with
respect to t and x, respectively.

However, for Lie point symmetries, (2.4) has the special form

σ =U(x, t,u)−X(x, t,u)ux−T (x, t,y)ut . (2.5)

For any fixed F in (2.1), one may find the concrete forms of (2.5) by using standard Lie symmetry
group approach.

However, for arbitrary F , it is not difficult to find that the only Lie point symmetries are those of
related to space and time translations, ux and ut , in other words, for arbitrary F , the general solution
of (2.2) with (2.5) possesses the form

σ = x0ux + t0ut (2.6)

where x0 and t0 are arbitrary constants.
To look for more symmetries via Lie symmetry approach we can introduce two auxiliary equa-

tions

ux = u1,

ut = u0. (2.7)

With the help of the auxiliary system (2.7), we can look for the Lie point symmetries in the form

σ = U(x, t, u, u0, u1)−X(x, t, u, u0, u1)ux−T (x, t, u, u0, u1)ut , (2.8)

σ0 = U0(x, t, u, u0, u1)−X(x, t, u, u0, u1)u0x−T (x, t, u, u0, u1)u0t , (2.9)

σ1 = U1(x, t, u, u0, u1)−X(x, t, u, u0, u1)u1x−T (x, t, u, u0, u1)u1t , (2.10)

for the equation system (2.1) and (2.7), where σ0 and σ1 should be solutions of

σx = σ1,

σt = σ0. (2.11)
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Because of the auxiliary system (2.7), the model equation (2.1) can be rewritten as

u0 = F(u, u1), or u = F ′(u0, u1), or u1 = F ′′(u, u0), (2.12)

and the Lie point symmetry (2.8) can be rewritten in three different but equivalent forms by elimi-
nating one of u, u0 and u1, respectively,

σ = [U(x, t, u, u0, u1)−X(x, t, u, u0, u1)u1−T (x, t, u, u0, u1)u0]|u=F ′(u0, u1)

≡ G(x, t, u0, u1) (2.13)

= G(x, t, F(u, u1)u1, u1)≡ H(x, t, u, u1)u1 (2.14)

= G(x, t, u0, F ′′(u, u0))≡ J(x, t, u, u0)u0. (2.15)

Correspondingly, σ0 and σ1 possess also three equivalent forms. For instance, using the formula
(2.11), the corresponding forms related to (2.13) read

σ1 = Gx +Gu0u1t +Gu1u1x, (2.16)

σ0 = Gt +Gu0u0t +Gu1u0x, (2.17)

Comparing {(2.17), (2.16)} with {(2.9), (2.10)}, one can find that

X = −Gu1 , (2.18)

T = −Gu0 , (2.19)

U1 = Gx, (2.20)

U0 = Gt . (2.21)

Thus,

U = G+Xu1 +Tu0 = G−u1Gu1−u0Gu0 . (2.22)

Now, the only thing left to do is to determine one of the functions G = G(x, t, u0, u1), H =

H(x, t, u, u1) and J = J(x, t, u, u0) by substituting (2.13) or (2.14) or (2.15) into (2.2). The final
determining equation of H = H(x, t, u, u1) reads,

Ht − (u1F)u1Hx +u2
1(FuHu1−Fu1Hu) = 0. (2.23)

The first order linear H-equation (2.23) can be readily solved by means of the characteristic line
method. Its general solution has the form

H = h(F, x+Ft +A, t +B) (2.24)

where h = h(τ1, τ2, τ3) is an arbitrary three dimensional function of τ1 = F = F(u, u1) = u0u−1
1 ,

τ2 = x+Ft +A and τ3 = t +B. A and B in (2.24) are determined by

u1(AuFu1−FuAu1)+Fu1 = 0, (2.25)

u2
1(BuFu1−FuBu1)−1 = 0. (2.26)

Introducing b = b(a, u, u1) by

F(a, b) = F(u, u1), (2.27)
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A and B in (2.24) can be written as

A =

{
−
∫ u b−1da, Fu1 6= 0,

0, Fu1 = 0,
(2.28)

and

B =

{ ∫ u b−2F−1
b (a, b)da, Fu1 6= 0,

u−1
1 F−1

u , Fu1 = 0.
(2.29)

According to the definition of the PBS, it is enough to find one arbitrary one dimensional func-
tion for a 1+1 dimensional first order scalar equation (2.1). Thus, the existence of a three dimen-
sional arbitrary function (2.23) with (2.24) means that the model is a hyper-integrable model.

It is known that whence a symmetry is obtained, one can use the symmetry to find exact solutions
of the model via some different ways. The first one is the so-called symmetry reduction method to
find group invariant solutions. The second one is the finite group method to find new solutions from
known ones.

Starting from the symmetry (2.14) with (2.24), the related group invariant solutions can be
obtained by solving equation system

ut = F(u, ux)ux,

h(τ1, τ2, τ3) = 0. (2.30)

In principle, for any fixed F = F(u, ux), the equation system (2.30) can be readily solved.
To obtain PBSs, it is enough to use a symmetry with one dimensional arbitrary function instead

of three dimensional one. For simplicity, we take the function h in (2.24) only being a function of
η ≡ τ

−1
1 = F−1 = u1u−1

0 . In this special case, we have

G = g(u1u−1
0 )u1 ≡ g(η)u1. (2.31)

Substituting (2.31) into (2.18)–(2.22), we have

X = −g−ηgη ,

T = η
2gη ,

U1 = 0,

U0 = 0,

U = 0. (2.32)

In other words, the vector form of the point Lie symmetry (2.31) has the form

V = X∂x +T ∂t +U∂u +U0∂u0 +U1∂u1

= −(ηg)η∂x +η
2gη∂t +0∂u +0∂u0 +0∂u1 (2.33)

Now, it is ready to obtain a PBS for the 1+1 system (2.1) via the following theorem.
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Theorem 2.1. If u =U(x, t) is a seed solution of (2.1) with the conditions UxUt 6= 0 and Ux/Ut 6=
constant, then a PBS of (2.1) has the form

u′(x, t) =U(x′(x, t), t ′(x, t)) (2.34)

with t ′ ≡ t ′(x, t), x′ ≡ x′(x, t) being determined by

t ′ = t−η
2gη , (2.35a)

x′ = x+(ηg)η , (2.35b)

η ≡ Ux

Ut

∣∣∣∣
t→t ′, x→x′

. (2.35c)

Proof. Theorem 2.1 can be proved directly by solving the initial value problem related to the sym-
metry vector (2.33). Based on the Lie’s first principle, the finite transformation of the symmetry is
determined by the following initial value problem,

dt(ε)
dε

=
(
α

2gα

)
(ε), t(0) = t, α(ε) =

u1(ε)

u0(ε)
, g(ε) = g(α(ε)), (2.36a)

dx(ε)
dε

=−(αg)α(ε), x(0) = x, (2.36b)

du(ε)
dε

= 0, u(0) =U, (2.36c)

du1(ε)

dε
= 0, u1(0) =Ux, (2.36d)

du0(ε)

dε
= 0, u0(0) =Ut . (2.36e)

It is trivial that the solution of (2.36c), (2.36d) and (2.36e) possesses the form

u(ε) =U, (2.37a)

u1(ε) =Ux, (2.37b)

u0(ε) =Ut . (2.37c)

The result (2.37) means that the fields u, u1 and u0 are V -group invariants and ε independent. Thus
α(ε) and g(ε) are also ε independent. According to this fact, the solution of (2.36a) and (2.36b)
possesses the form

t(ε) = t + ε
(
η

2gη

)
, (2.38a)

x(ε) = x− ε(ηg)η . (2.38b)

Finally, for the notation simplicity, we make the following transformations

u(ε)→ u′, (2.39a)

{x, t}→ {x′, t ′}, (2.39b)

{x(ε), t(ε)}→ {x, t}, (2.39c)

εg→ g. (2.39d)

Substituting the transformation (2.39) into (2.37a) and (2.38) leads to the proof of the theorem
2.1.
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Remark 2.1. (i) For a given PDE (given F in this paper), there may have several primary branches
and secondary branches. For every given branch, one may use the symmetry theory (or other
approaches) to find its PBS. (ii) For every given branch, using different seed solutions and different
symmetries one may find PBSs in quite different forms. These formally different PBSs should be
equivalent, however, it will be very difficult to prove the equivalence. (iii) The symmetry (2.24) can
also be used to find the PBS in a different form but we do not discuss it further instead of giving a
special example for fixed F .

Example. To end up this section, we offer a special example

u2
t −u2

x−1+ cos(u) = 2ρL, ρL = 0. (2.40)

The physical meaning of the model equation (2.40) is a special constant Lagrangian density (with
the density ρL) evolution for the well-known sine-Gordon system. For the special model (2.40) with
the zero density, it is clear that there are two primary branches with the form (2.1), i.e.,

ut = δ

√
u2

x +1− cos(u), (2.41)

where δ = 1 and δ =−1 are related to two different PBSs.
According to the general result of (2.24) for (2.1), the general Lie point symmetry reads,

σ = g(τ1, τ2, τ3)u1

= g
(

u1

u0
, x−

u1arctanh(cos(u
2))

sin(u
2)

, t−
u0arctanh(cos(u

2))

sin(u
2)

)
u1, (2.42)

for the special example (2.40) with the auxiliary equations (2.7). The group invariant solutions
related to (2.42) can be found by solving

u2
t −u2

x + cos(u)−1 = 0,

g
(

ux

ut
, x−

uxarctanh(cos(u
2))

sin(u
2)

, t−
utarctanh(cos(u

2))

sin(u
2)

)
= 0, (2.43)

for arbitrary function g. To find the explicit solutions from (2.43) is still difficult for arbitrary g.
Here, we only list a very special situation of (2.43),

u2
t −u2

x + cos(u)−1 = 0,

x−
uxarctanh(cos(u

2))

sin(u
2)

= 0, (2.44)

to offer a special seed solution

u = 2arccos
(

tanh
(

1√
2

√
t2− x2

))
. (2.45)

Now, by using the theorem 2.1, one can readily find a PBS of (2.40),

u = 2arccos
(

tanh
(

1√
2

√
t ′2− x′2

))
, (2.46)
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where t ′ and x′ are determined by

x′ = x+g(η)+ηgη(η), η =−x′

t ′
,

t ′ = t−η
2gη(η) (2.47)

with an arbitrary function g = g(η). Because of the arbitrariness of g the solution u with (2.47) is
an implicit solution. To find some explicit ones, one has to suitably fix the arbitrary function g. For
instance, if we simply fix g = g(η) as

g =−ε

2
η , (2.48)

the solution of (2.47) becomes an explicit one,

x′ = x
τ2 +2τ(t +2ε)+4(t− ε)2

τ2 +2τ(t− ε)+4(t− ε)2 ,

t ′ =
1
6

τ +
1
3
(t +2ε)+

2
3
(t− ε)2

τ
(2.49)

with

τ ≡
(

54x2
ε +8(t− ε)3 +6

√
3εx
√

27x2ε +8(t− ε)3

)1/3

.

In addition to the Lie point symmetries (2.24), the general 1+1 dimensional model (2.1) pos-
sesses much more general symmetries because of the existence of recursion operators [6]. However,
here, we will not discuss the general higher order symmetries of (2.1).

3. PBSs of arbitrary (n+1)-dimensional first order autonomous scalar fields

Based on the idea mentioned in Section 1, finding a PBS of (1.1) is equivalent to finding a symmetry
including one (one is enough for a first order PDE) n-dimensional arbitrary function, say,

σ = σ(x0 = t, x1, . . . , xn, u, G(τ1, . . . , τn)), (3.1)

where G should be an arbitrary function of n independent variables τi = τi(t, x1, . . . , xn).
A symmetry of Eq. (1.1), σ , is defined as a solution of its linearized equation

F ′σ ≡

(
Fu +

n

∑
i=0

Fuxi
∂xi

)
σ ≡ Fuσ +

n

∑
i=0

Fuxi
σxi = 0. (3.2)

As in the (1+1)-dimensional case, uxi i = 0, 1, . . . , n are the only Lie point symmetries related to
the space-time translations for the arbitrary F of (1.1). In order to obtain more symmetries via Lie
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point symmetry approach, we can introduce auxiliary equation systems

uxi = ui, i = 0, 1, 2, . . . , n. (3.3)

Now, the general Lie point symmetries of the equation system (1.1) and (3.3) possess the forms

σ = U−
n

∑
j=0

X jux j (3.4)

σi = Ui−
n

∑
j=0

X jui,x j , i = 0, 1, . . . , n, (3.5)

where U, Ui, Xi, i = 0, 1, 2, . . . , n are functions of {u, xi, ui, i = 0, 1, 2, . . . , n}.
As in the 1+1-dimensional case, because of the auxiliary equations (3.3), the Lie point symmetry

(3.4) can be rewritten as

σ = G(u, xi, ui, i = 0, 1, . . . , n)≡ g(u, xi, ui)u0. (3.6)

Before doing the detailed calculations on (3.6), we would like to point out that the arbitrary function
G ≡ G(u, xi, ui, i = 0, 1, . . . , n) constitutes a closed infinite dimensional Lie algebra with the
commutation relation,

[G1, G2]≡ G′1G2−G′2G1 ≡
d

dε
[G1(u+ εG2)−G2(u+ εG1)]

∣∣∣∣
ε=0

= G3, (3.7)

with

G3 = G1uG2−G2uG1 +
n

∑
j=0

(
G1u j G2x j −G2u j G1x j +G1u j G2uu j−G2u j G1uu j

)
. (3.8)

From the auxiliary system (3.3), we also know that (i = 0, 1, 2, . . . , n)

σi = σxi

= gxiu0 +guuiu0 +
n

∑
j=0

gu j u j,xiu0 +gu0,xi

=
(
gxi +uigu

)
u0 +

(
u0g
)

u0
ui,x0 +

n

∑
j=1

(
u0gu j

)
ui,x j . (3.9)

Comparing (3.9) with (3.5), we know that

Ui =
(
gxi +uigu

)
u0 (3.10)

X0 = −
(
u0g
)

u0
(3.11)

Xi = −u0gui . (3.12)

Substituting the general Lie point symmetry expression (3.6) into the symmetry definition equation
(3.2), we have

u0gu +
n

∑
i=0

Fui

[(
gxi +uigu

)
u0 +

(
u0g
)

u0
ui,x0 +

n

∑
j=1

(
u0gu j

)
ui,x j

]
= 0. (3.13)
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Differentiating the model equation (1.1) with respect to xi, we have

Fuuxi +
n

∑
j=0

Fu j u j,xi = 0,

i.e.,
n

∑
j=0

Fu j u j,xi =−Fuui. (3.14)

Because of (3.14), (3.13) becomes

gu−gFu +
n

∑
i=0

[
Fui

(
gxi +uigu

)
−Fuuigui

]
= 0. (3.15)

It is clear that the g equation (3.15) is only a first order 2n+2 dimensional linear PDE with respect
to the variables {u, xi, ui, i = 0, 1, . . . , n} where one of them, say, u, can be replaced by others
because of the model equation (1.1). Thus, after solving the linear g-equation (3.15), we get the
following theorem.

Theorem 3.1. Arbitrary autonomous first order scalar PDE (1.1) possesses the following symmetry

σ = g(τ1, τ2, . . . , τn, ϕ0, ϕ1, ϕ2, . . . , ϕn)u0 (3.16)

with G ≡ G(τ1, τ2, . . . , τn, ϕ0, ϕ1, ϕ2, . . . , ϕn) being an arbitrary function of the indicated
variables,

τα ≡
uα

u0
, α = 1, 2, . . . , n,

ϕi ≡ xi +Ai(u, u0, u1, . . . , un), (3.17)

where g is an arbitrary function of the indicated 2n+ 1 variables and Ai = Ai(u, u0, u1, . . . , un)

are solutions of

Fui +
n

∑
j=0

u j
(
Fu j Aiu−Aiu j Fu

)
= 0. (3.18)

After introducing f ≡ f (u, u0, u1, . . . , un, b) being a solution of

F( f , b, bτ1, . . . , bτn) = F(u, u0, u1, . . . , un), (3.19)

the solution of (3.18) can be written as (τ0 ≡ 1)

Ai =


∫ u0 Fui

bFu

∣∣∣
u= f , u j=bτ j, j=0, 1, ..., n

db, Fu 6= 0
uFui

∑
n
j=0 u jFu j

, Fu = 0,
(3.20)

To find group invariant solutions of (1.1), one may solve the original model and several consis-
tent symmetry constraints,

F = 0,

gk(τ1, . . . , τn, ϕ0, . . . , ϕn) = 0, k = 1, . . . , m, (3.21)
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where gk are functions of the indicated variables and should be consistent such that the solution set
of (3.21) is not empty. However, even for consistent system (3.21), it is still difficult to solve (3.21).
We will offer a special example later for fixed F and gk.

To look for a PBS of the model (1.1), it is enough to use an n-dimensional arbitrary function,
say, g is only a function of τi,

σ = g(τ1, τ2, . . . , τn)u0. (3.22)

Substituting the special symmetry (3.22) into (3.4) and (3.12), we have

U = 0, (3.23)

Ui = 0, (3.24)

X0 = −g+
n

∑
i=1

τigτi , (3.25)

Xi = −gτi . (3.26)

In other words, the equivalent symmetry vector form for the equation system (1.1) and (3.3) pos-
sesses the form

V =

(
g−

n

∑
i=1

τigτi

)
∂t +

n

∑
i=1

gτi∂xi +0∂u +
n

∑
i=0

0∂ui . (3.27)

Similar to the theorem 2.1, corresponding to the symmetry vector (3.27), we can obtain its finite
transformation theorem.

Theorem 3.2. If u =W (xi, i = 0, 1, . . . , n) is a solution of (1.1), so is

u′(xi, i = 0, 1, . . . , n) =W (x′i(x j, j = 0, 1, . . . , n), i = 0, 1, . . . , n) (3.28)

with x′i ≡ x′i(x j, j = 0, 1, . . . , n) being determined by

x′0 = x0−g+
n

∑
β=1

ηβ gηβ
, g≡ g(η1, η2, . . . , ηn), (3.29a)

x′α = xα −gηα
, α = 1, 2, . . . , n, (3.29b)

ηα ≡
Wxα

Wx0

∣∣∣∣
xi→x′i, i=0, 1, ..., n

. (3.29c)

Because the simplicity to prove the theorem 3.2 and the similarity as the proof of the theorem
2.1, we just omit the proof procedure for the theorem 3.2.

To understand the theorem 3.2, we study a special example,

n

∑
i=0

u2
xi
−F(u) = 2ρH , (3.30)

which expresses the iso-Hamiltonian density evolution for n+ 1 dimensional scalar fields with an
arbitrary potential −1

2 F(u) and the constant density ρH . Mathematically, ρH may be absorbed in
the potential function F without loss of generality. Various well known scalar fields such as the
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sine-Gordon model, Higgs (φ 4) model, T. D. Lee quark bag (φ 4 + φ 3) model, φ 6 model , double
sine-Gordon model etc. are all special case of (3.30) related to suitable selections of F(u).

In order to use the theorem 3.2, we have to find a nontrivial seed solution W such that Wxi/Wx0 are
all functionally independent. To find such a nontrivial seed solution we may use a special symmetry
reduction solution of (3.21) by fixing the consistent symmetries gk. For the scalar field system (3.30)
and (3.3), its general Lie point symmetry (3.16) becomes

σ = g(τ1, . . . , τn, φ0, φ1, . . . , φn)u0,

τi =
ui

u0
,

φi = xi−uiGGu, G = G(u)≡
∫ 1√

F(u)
du. (3.31)

For the symmetry (3.31), one can prove that it constitutes a closed algebra,

[g1u0, g2u0] = g3u0, (3.32)

where g1, g2 are arbitrary functions of τi and φi while g3 is related to g1 and g2 by

g3 = g1g2,φ0−g2g1,φ0 +
n

∑
i=1

{
(g1,φ0g2,τi−g2,φ0g1,τi)τi +g1,τig2,φi−g2,τig1,φi

}
. (3.33)

For simplicity, we just look for a special symmetry reduction solution by taking (3.21) in the
form

n

∑
i=0

u2
xi
−F(u) = 0,

φi = xi−uiGGu = 0, i = 0, 1, . . . , n. (3.34)

It is straightforward to integrate (3.34) one by one, and the final result reads

u =W =±G−1

(√
m

∑
i=0

x2
i

)
, (3.35)

where G−1 is the inverse function of G. For instance, for the well-known scalar Higgs (φ 4) model

F(u) =
b

4a
u4 +au2 + c, c = 0, (3.36)

(3.35) becomes an instanton (Rogue wave) solution

u =±
4asech2

(√
a

2

√
∑

n
i=0 x2

i

)
(b−1) tanh2

(√
a

2

√
∑

n
i=0 x2

i

)
−2(b+1) tanh

(√
a

2

√
∑

n
i=0 x2

i

)
+b−1

. (3.37)

Now, it is ready to find a PBS for the scalar field model (3.30) by means of the seed solution
(3.35) and the theorem 3.2. For the seed solution (3.35), we have

ηα =
Wxα

Wx0

∣∣∣∣
xi→x′i

=
x′α
x′0

. (3.38)
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The related PBS of (3.30) possesses the form

u =±G−1

(√
m

∑
i=0

(x′i)2

)
, (3.39)

where x′i = x′i(x0, . . . , xn) are solutions of

x′0 = x0−g+
n

∑
β=1

ηβ gηβ
, g≡ g(η1, η2, . . . , ηn), (3.40a)

x′i = xi−gηi , i = 1, 2, . . . , n, (3.40b)

ηi =
x′i
x′0
. (3.40c)

with g being an arbitrary function of ηi, i = 1, . . . , n. To give a further concrete example, we select
the arbitrary function g as

g = aαη
2
α + ∑

β 6=α

aβ ηβ , (3.41)

where ai, i = 1, . . . , n are arbitrary constants.
In this special case the solution of (3.40) reads

x′0 = −2aα +
1

6p
[4(t−2aα)

2 +2p(t−2aα)+ p2],

x′α =

(
1− 12aα p

4(t−2aα)2 +2p(t−2aα)+ p2

)
xα ,

x′
β
= xβ −αβ , β 6= α, (3.42)

where

p≡
[

8(t−2aα)
3 +108aαx2

α +12xα

√
3aα(27aαx2

α +4(t−2aα)3)

]1/3

.

The PBS structure of (3.39) with (3.40) is quite complicated because of the existence of n
dimensional arbitrary function g. If the function G−1(r) possesses the “boundary” condition,

G−1(∞) = constant, (3.43)

the solution (3.39) with (3.40) (like the solution (3.37) with (3.42) for the φ 4 field) possesses instan-
ton (rogue wave like) structure.

4. Summary and discussions

In summary, Lie symmetry algebra (group) method is very useful to find solutions of scientific prob-
lems. In this paper, the PBSs of arbitrary first order autonomous scalar PDEs have been obtained
by means of the Lie point symmetry approach. A special form of PBSs of arbitrary first order
autonomous scalar PDEs, which include various important physically important special cases, is
given in Theorem 3.2. The only model dependent information is included in their seed solutions. In
fact, the symmetry of (1.1) obtained here includes a 2n+ 1 dimensional arbitrary function instead
of an n+1 dimensional one. Thus we call the model (1.1) is hyper-integrable system.
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The general iso-Hamiltonian density systems for the scalar field models are explicitly stud-
ied. One special PBS is uniformly expressed by (3.39) with (3.40). For suitable selections of the
boundary conditions of the Hamiltonian density, there must be one or more instanton (rogue wave
like) solution(s) if the potential related inverse G function possesses constant boundary (3.43) at

r =
√

∑i x2
i = ∞.

It is expected that the symmetry group method proposed here can also be extended to find PBSs
of most general first order nonautonomous PDEs which could be solved by means of other methods
such as the so-called complete solution and parameterization method [9] and the invariant function
method [6]. It is also interesting that the symmetry method can be used to find PBSs and/or complete
solutions for higher order nonlinear PDEs. We will report more results of applying the symmetry
group method to find PBSs of PDEs in our future researches.
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