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The present paper concerns the study of a Riemann problem for the system ut +
( 1

2 u2+φ(v)
)

x = 0,vt +
(
uv
)

x =
0, with a one dimensional space variable. We consider φ an entire function that takes real values on the real axis.
Under certain conditions, this system provides solutions to the pressureless gas dynamics and the isentropic
fluid dynamics systems. We get all solutions of this problem within a convenient space of distributions that
contains discontinuous functions and Dirac measures. For this purpose, we use a solution concept defined in
the setting of a distributional product. This concept consistently extends the classical solution concept and can
also be considered as an extension of the weak solution concept for nonlinear evolution equations. Our product,
not defined by approximation processes, can be applied to several physical models.
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Shock waves; Delta waves; Delta shock waves.
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1. Introduction and contents

Let us consider the system of nonlinear conservation laws

ut +
(1

2 u2 +φ(v)
)

x = 0, (1.1)

vt +
(
uv
)

x = 0, (1.2)

where x ∈R is the space variable, t ∈R is the time variable and u(x, t), v(x, t) are the unknown state
variables. We consider φ an entire function taking real values on the real axis. The goal is to study
the evolution of this system subjecting the variables u, v to the initial conditions

u(x,0) = u1 +(u2−u1)H(x), (1.3)

v(x,0) = v1 +(v2− v1)H(x) (1.4)

(H stands for the Heaviside function, u1,u2,v1,v2 ∈ R, and u2 6= u1) and to seek for solutions in the
space W of pairs of distributions (u,v) defined by

u(x, t) = a(t)+b(t)H
(
x− γ(t)

)
,

v(x, t) = f (t)+g(t)H
(
x− γ(t)

)
+h(t)δ

(
x− γ(t)

)
,
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where a,b, f ,g,h,γ : R→ R are C1-functions and δ stands for the Dirac measure supported at the
origin.

The main result is the explicit solution of the Riemann problem (1.1), (1.2), (1.3), (1.4):

u(x, t) = u1 +(u2−u1)H
(
x− γ(t)

)
, (1.5)

v(x, t) = v1 +(v2− v1)H
(
x− γ(t)

)
+(A−B)tδ

(
x− γ(t)

)
, (1.6)

where

γ(t) =
(u1 +u2

2
+

φ(v2)−φ(v1)

u2−u1

)
t, (1.7)

A = (v2−v1)
(u1+u2

2 + φ(v2)−φ(v1)
u2−u1

)
and B = u2v2−u1v1. These solutions when they exist are unique

in W . Thus, when A = B, it arises a travelling shock wave propagating with constant speed u1+u2
2 +

φ(v2)−φ(v1)
u2−u1

. When A 6= B, the emergence of a delta shock wave becomes possible.
System (1.1), (1.2) provides solutions for the isentropic fluid dynamics system in Eulerian coor-

dinates

(vu)t +
(
vu2 +P(v)

)
x = 0, (1.8)

vt +(vu)x = 0, (1.9)

if P′(v) = vφ ′(v). Here u, v, P stand for the speed, density and pressure, respectively. The pressure
P (a function of the density v) is determined from the constitutive thermodynamic relations of the
fluid under consideration. To get (1.1), (1.2), it is sufficient to develop (1.8) using (1.9) and the
relation P′(v) = vφ ′(v). See [13] p. 100 and [3] p. 175 for details.

As examples, we consider three particular cases of (1.1), (1.2) with physical significance corre-
sponding to

(a) φ = 0, which provides solutions for the well known pressureless gas dynamics system (1.8),
(1.9) with P = 0;

(b) φ(v) = kγ

γ−1 vγ−1 (k 6= 0 is a real number and γ ≥ 2 is an integer), which provides solutions
for the isentropic fluid dynamics system (1.8), (1.9) with the so called polytropic pressure-
density relation P(v) = kvγ ;

(c) φ(v) = 4
3 v3−3v2 +2v, which provides solutions for the isentropic system (1.8), (1.9) with

the pressure-density relation P(v) = v4−2v3 + v2.

Notice that φ can be replaced by φ + constant without any change in the Riemann problem
(1.1), (1.2), (1.3), (1.4) (the same happens with the function P in (1.8)).

Often, in this kind of problems, the distributional solutions obtained by approximation processes
depend on the chosen processes (in general asymptotic algorithms) and appear as weak limits. It
may even happen that these weak limits cannot be substituted into equations or systems owing to
the well known difficulties of multiplying distributions. Our α-products overcome those difficulties,
as we will explain.

For the system (1.1), (1.2), we will adopt a solution concept defined within the framework of
a product of distributions. This concept is a consistent extension of the classical solution concept
and, in a sense explained at the end of Section 5, can also be seen as a new type of weak solution.

In our framework, the product of two distributions is a distribution that depends on the choice
of a certain function α encoding the indeterminacy inherent to such products. This indeterminacy
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generally is not avoidable and in many cases it also has a physical meaning; concerning this point
let us mention [1, 2, 4, 19]. Thus, the solutions of differential equations or systems containing such
products may depend (or not) of α . We call such solutions α-solutions. The possibility of their
occurrence depends on the physical system: in certain cases we cannot previously know the behav-
ior of the system, possibly due to physical features omitted in the formulation of the model with the
goal of simplifying it. Thus, the mathematical indetermination sometimes observed may have this
origin. It is an interesting fact that, for the present problem (1.1), (1.2), (1.3), (1.4), the solutions,
when they exist, are independent of α .

To show the scope of these methods, let us recall some results we have obtained.
For the conservation law

ut +[φ(u)]x = ψ(u),

where φ ,ψ are entire functions taking real values on the real axis, we have established [22] nec-
essary and sufficient conditions for the propagation of a travelling wave with a given distributional
profile and we also have computed its speed. For C1-wave profiles with one jump discontinuity, our
methods easily lead to the well known Rankine – Hugoniot conditions.

Conditions for the propagation of travelling waves with profiles β +mδ and β +mδ ′ (where β

is a continuous function, m ∈ R and m 6= 0) were also obtained, as well as their speeds [23].
Gas dynamics phenomena, known as “infinitely narrow soliton solutions”, discovered by

Maslov and collaborators [5, 9, 14, 15], can be obtained directly in distributional form [20].
For a Riemann problem concerning the generalized pressureless gas dynamics system,

ut +[φ(u)]x = 0,

vt +[ψ(u)v]x = 0,

only assuming φ ,ψ : R→R continuous, we were able to show the formation of a delta shock wave
solution [25]. In this case we arrived, more easily and in a much more general setting, to the same
result of Danilov and Mitrovic [6], which have employed the weak asymptotic method, and also to
the same result of Mitrovic et al. [16], which have used a different approach, based on a linearization
process.

In the Brio system

ut +
1
2

(
u2 + v2

)
x = 0,

vt +
(
uv− v

)
x = 0,

a simplified model for the study of plasmas, we got a delta shock wave as explicit solution for a
Riemann problem [27]. This problem (suggested by Hayes and LeFloch in [10], p. 1558), was first
studied by Kalisch and Mitrovic [12] who also constructed a delta shock wave using an extension
of the weak asymptotic method. Their solution coincides with our solution (in [12], p. 718 there is
a misprint in formula (3.8); the correct α(t) has the opposite sign and in [27] p. 522, formula (17),
− k0

c0
must replace − k0

b0
).

Also for the Brio system we have subjected u(x, t) and v(x, t) to the initial conditions

u(x,0) = c0δ (x),

v(x,0) = h0δ (x),
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with c0,h0 ∈ R\{0}. Under certain assumptions, we got, as solutions, travelling delta waves with

speed c2
0+h2

0
c2

0−h2
0

and certain singular perturbations (which are not measures) propagating with speed
1 [26].

Regarding the interaction of singular waves, we have shown that delta waves under collision
behave just as classical soliton collisions (as in the Korteweg – de Vries equation) in models ruled
by a singular perturbation of Burgers conservative equation [21]. Also in a conservation law with
singular flux, the interaction of a δ wave with a δ ′ wave was studied. Here, we were able to distin-
guish three distinct dynamics for that collision to which correspond phenomena of solitonic behav-
ior, scattering, and merging [28].

Let us now summarize the present paper’s contents. In Section 2, we present the main ideas of
our method for multiplying distributions. In Section 3, we define powers of certain distributions.
In Section 4, we define the composition of an entire function with a distribution. In Section 5, we
define the concept of α-solution for the system (1.1), (1.2). In Section 6, we present the main result,
that is, all the possible solutions of the Riemann problem (1.1), (1.2), (1.3), (1.4) that belong to W .
In Section 7, we apply these results to the study of the examples (a), (b), (c) already referred.

2. The multiplication of distributions

Let C ∞ be the space of indefinitely differentiable real or complex-valued functions defined on RN ,
N ∈ {1,2,3, ...}, and D the subspace of C∞ consisting of those functions with compact support. Let
D ′ be the space of Schwartz distributions and L(D) the space of continuous linear maps φ : D →
D , where we suppose D endowed with the usual topology. We will sketch the main ideas of our
distributional product (the reader can look at (2.4), (2.7), and (2.9) as definitions, if he prefers to
skip this presentation). For proofs and other details concerning this product see [18].

First, we define a product T φ ∈D ′ for T ∈D ′ and φ ∈ L(D) by

〈T φ ,ξ 〉= 〈T,φ(ξ )〉,

for all ξ ∈D ; this makes D ′ a right L(D)-module. Next, we define an epimorphism ζ̃ : L(D)→D ′,
where the image of φ is the distribution ζ̃ (φ) given by

〈ζ̃ (φ),ξ 〉=
∫

φ(ξ ),

for all ξ ∈ D (when the domain of the integral is not specified, we consider that it is extended all
over RN); given S ∈D ′, we say that φ is a representative operator of S if ζ̃ (φ) = S. For instance, if
β ∈C∞ is seen as a distribution, the operator φβ ∈ L(D) defined by φβ (ξ ) = βξ , for all ξ ∈ D , is
a representative operator of β because, for all ξ ∈D , we have

〈ζ̃ (φβ ),ξ 〉=
∫

φβ (ξ ) =
∫

βξ = 〈β ,ξ 〉.

For this reason ζ̃ (φβ ) = β . If T ∈D ′, we also have

〈T φβ ,ξ 〉= 〈T,φβ (ξ )〉= 〈T,βξ 〉= 〈T β ,ξ 〉,

for all ξ ∈D . Hence,

T β = T φβ .
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Thus, given T,S ∈ D ′, we are tempted to define a natural product by setting T S := T φ , where
φ ∈ L(D) is a representative operator of S, i.e., φ is such that ζ̃ (φ) = S. Unfortunately, this product
is not well defined, because T S depends on the representative φ ∈ L(D) of S ∈D ′.

This difficulty can be overcome, if we fix α ∈D with
∫

α = 1 and define sα : L(D)→L(D) by

[(sαφ)(ξ )](y) =
∫

φ [(τyα̌)ξ ], (2.1)

for all ξ ∈D and all y ∈RN , where τyα̌ is given by (τyα̌)(x) = α̌(x−y) = α(y−x) for all x ∈RN .
It can be proved that for each α ∈D with

∫
α = 1, sα(φ) ∈ L(D), sα is linear, sα ◦ sα = sα (sα is a

projector of L(D)), kersα = ker ζ̃ , and ζ̃ ◦ sα = ζ̃ .
Now, for each α ∈D , we can define a general α-product �

α

of T ∈D ′ with S ∈D ′ by setting

T �
α

S := T (sαφ), (2.2)

where φ ∈ L(D) is a representative operator of S ∈ D ′. This α-product is independent of the rep-
resentative φ of S because if φ ,ψ are such that ζ̃ (φ) = ζ̃ (ψ) = S, then φ −ψ ∈ ker ζ̃ = kersα .
Hence,

T (sαφ)−T (sαψ) = T [sα(φ −ψ)] = 0.

Since φ in (2.2) satisfies ζ̃ (φ) = S, we have
∫

φ(ξ ) = 〈S,ξ 〉 for all ξ ∈D , and by (2.1)

[(sαφ)(ξ )](y) = 〈S,(τyα̌)ξ 〉= 〈Sξ ,τyα̌〉= (Sξ ∗α)(y),

for all y ∈ RN , which means that (sαφ)(ξ ) = Sξ ∗α . Therefore, for all ξ ∈D ,

〈T �
α

S,ξ 〉= 〈T (sαφ),ξ 〉= 〈T,(sαφ)(ξ )〉= 〈T,Sξ ∗α〉

= [T ∗ (Sξ ∗α )̌ ](0) = [(Sξ )̌∗ (T ∗ α̌)](0) = 〈(T ∗ α̌)S,ξ 〉,

and we obtain an easier formula for the general product (2.2),

T �
α

S = (T ∗ α̌)S. (2.3)

In general, this α-product is neither commutative nor associative but it is bilinear and satisfies
the Leibniz rule written in the form

Dk(T �
α

S) = (DkT )�
α

S+T �
α

(DkS),

where Dk is the usual k-partial derivative operator in distributional sense (k = 1,2, ...,N).
Recall that the usual Schwartz products of distributions are not associative and the commutative

property is a convention inherent to the definition of such products (see the classical monograph
of Schwartz [29] pp. 117, 118, and 121, where these products are defined). Unfortunately, the α-
product (2.3), in general, is not consistent with the classical Schwartz products of distributions with
functions.

In order to obtain consistency with the usual product of a distribution with a C∞-function, we
are going to introduce some definitions and single out a certain subspace Hα of L(D).

An operator φ ∈ L(D) is said to vanish on an open set Ω ⊂ RN , if and only if φ(ξ ) = 0 for all
ξ ∈ D with support contained in Ω. The support of an operator φ ∈ L(D) will be defined as the
complement of the largest open set in which φ vanishes.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

332



C.O.R. Sarrico and A. Paiva / Multiplication of distributions and fluid dynamics

Let N be the set of operators φ ∈ L(D) whose support has Lebesgue measure zero, and ρ(C∞)

the set of operators φ ∈ L(D) defined by φ(ξ ) = βξ for all ξ ∈D , with β ∈C∞. For each α ∈D ,
with

∫
α = 1, let us consider the space Hα = ρ(C∞)⊕ sα(N )⊂ L(D). It can be proved that ζα :=

ζ̃ |Hα
: Hα →C∞⊕D ′µ is an isomorphism (D ′µ stands for the space of distributions whose support

has Lebesgue measure zero). Therefore, if T ∈ D ′ and S = β + f ∈C∞⊕D ′µ , a new α-product, α̇ ,
can be defined by Tα̇S := T φα , where for each α , φα = ζ−1

α (S) ∈ Hα . Hence,

Tα̇S = T ζ
−1
α (S) = T [ζ−1

α (β + f )]

= T [ζ−1
α (β )+ζ

−1
α ( f )] = T β +T �

α

f = T β +(T ∗ α̌) f ,

and putting α instead of α̌ (to simplify), we get

Tα̇S = T β +(T ∗α) f . (2.4)

Thus, the referred consistency is obtained when the C∞-function is placed at the right-hand side: if
S ∈C∞, then f = 0, S = β , and Tα̇S = T β .

The α-product (2.4) can be easily extended for T ∈ D ′p and S = β + f ∈ Cp ⊕D ′µ , where
p ∈ {0,1,2, ...,∞}, D ′p is the space of distributions of order ≤ p in the sense of Schwartz (D ′∞

means D ′), T β is the Schwartz product of a D ′p-distribution with a Cp-function, and (T ∗α) f is
the usual product of a C∞-function with a distribution. This extension is clearly consistent with
all Schwartz products of D ′p-distributions with Cp-functions, if the Cp-functions are placed at the
right-hand side. It also keeps the bilinearity and satisfies the Leibniz rule written in the form

Dk(Tα̇S) = (DkT )α̇S+Tα̇(DkS),

clearly under certain natural conditions; for T ∈ D ′p, we must suppose S ∈Cp+1⊕D ′µ . Moreover,
these products are invariant by translations, that is,

τa(Tα̇S) = (τaT )α̇(τaS),

where τa stands for the usual translation operator in distributional sense. These products are also
invariant for the action of any group of linear transformations h : RN → RN with |deth| = 1, that
leave α invariant .

Thus, for each α ∈D with
∫

α = 1, formula (2.4) allows us to evaluate the product of T ∈D ′p

with S ∈Cp⊕D ′µ ; therefore, we have obtained a family of products, one for each α .
From now on, we always consider the dimension N = 1. For instance, if β is a continuous

function we have for each α by applying (2.4),

δα̇β = δα̇(β +0) = δβ +(δ ∗α)0 = β (0)δ ,

βα̇δ = βα̇(0+δ ) = β0+(β ∗α)δ = [(β ∗α)(0)]δ ,

δα̇δ = δα̇(0+δ ) = δ0+(δ ∗α)δ = αδ = α(0)δ , (2.5)

δα̇(Dδ ) = (δ ∗α)Dδ = αDδ = α(0)Dδ −α
′(0)δ ,

(Dδ )α̇δ = (Dδ ∗α)δ = α
′
δ = α

′(0)δ ,

Hα̇δ = (H ∗α)δ =

[∫ +∞

−∞

α(−τ)H(τ)dτ

]
δ =

(∫ 0

−∞

α

)
δ . (2.6)
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For each α , the support of the α-product (2.4) satisfies supp(Tα̇S)⊂ suppS, as for usual functions,
but it may happen that supp(Tα̇S) 6⊂ suppT . For instance, if a,b ∈ R, from (2.4) we have,

(τaδ )α̇(τbδ ) = [(τaδ )∗α](τbδ ) = (τaα)(τbδ ) = α(b−a)(τbδ ).

It is also possible to multiply many other distributions preserving the consistency with all Schwartz
products of distributions with functions. For instance, using the Leibniz formula to extend the α-
products, it is possible to write

Tα̇S = Tw+(T ∗α) f , (2.7)

with T ∈D ′−1 and S = w+ f ∈ L1
loc⊕D ′µ , where D ′−1 stands for the space of distributions T ∈D ′

such that DT ∈ D ′0 and Tw is the usual pointwise product of T ∈ D ′−1 with w ∈ L1
loc. Recall that,

locally, T can be read as a function of bounded variation (see [24], Sec. 2 for details). For instance,
since H ∈D ′−1 and H = H +0 ∈ L1

loc⊕D ′µ , we have

Hα̇H = HH +(H ∗α)0 = H. (2.8)

More generally, if T ∈D ′−1 and S ∈ L1
loc, then Tα̇S = T S because by (2.7) we can write

Tα̇S = Tα̇(S+0) = T S+(T ∗α)0 = T S.

Thus, in distributional sense, the α-products corresponding to functions that, locally, are of
bounded variation coincide with the usual pointwise product of these functions seen as a distribu-
tion. We stress that in (2.4) or (2.7) the convolution T ∗α is not to be understood as an approximation
of T . Those formulas are exact.

Another useful extension is given by the formula

Tα̇S = D(Yα̇S)−Yα̇(DS), (2.9)

for T ∈D ′0∩D ′µ and S,DS ∈ L1
loc⊕D ′c, where D ′c ⊂D ′µ is the space of distributions whose support

is at most countable, and Y ∈D ′−1 is such that DY = T (the products Yα̇S and Yα̇(DS) are supposed
to be computed by (2.4) or (2.7)). The value of Tα̇S given by (2.9) is independent of the choice of
Y ∈ D ′−1 such that DY = T (see [24] p. 1004 for the proof). For instance, by (2.6) and (2.9), we
have for any α ,

δα̇H = D(Hα̇H)−Hα̇(DH) = DH−Hα̇δ = δ −
(∫ 0

−∞

α

)
δ =

(∫ +∞

0
α

)
δ . (2.10)

so that Hα̇δ +δα̇H = δ for any α . The products (2.4), (2.7), and (2.9) are compatible, that is, if an
α-product can be computed by two of them, the result is the same.

3. Powers of distributions

Let M ⊂D ′ be a set of distributions such that, if T1,T2 ∈M, then T1 α̇T2 is well defined and T1 α̇T2 ∈
M. For each T ∈M we define the α-power T n

α by the recurrence relation

T n
α = (T n−1

α )α̇T for n≥ 1, with T 0
α = 1 for T 6= 0; (3.1)

naturally, if 0 ∈ M, 0n
α = 0 for all n ≥ 1. Since our distributional products are consistent with all

Schwartz products of distributions with functions, when the functions are placed at the right-hand
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side, we have β n
α = β n for all β ∈C0∩M. Thus, this definition is consistent with the usual definition

of powers of C0-functions. Moreover, if M is such that τaT ∈M for all T ∈M and all a ∈ R, then
we also have (τaT )n

α = τa(T n
α ).

Taking, for instance, M = Cp⊕ (D ′p ∩D ′µ) and supposing T1,T2 ∈ M, we have T1 = β1 + f1,
T2 = β2 + f2 and by (2.4), we can write

T1 α̇T2 = T1β2 +(T1 ∗α) f2 = (β1 + f1)β2 +[(β1 + f1)∗α] f2

= β1β2 + f1β2 +[(β1 + f1)∗α] f2 ∈M.

Therefore, we can define α-powers T n
α of distributions T ∈Cp⊕ (D ′p ∩D ′µ). For instance, if m ∈

C\{0}, we have (mδ )0
α = 1, (mδ )1

α = mδ , and for n≥ 2, (mδ )n
α = mn[α(0)]n−1δ , as can be easily

seen by induction applying (2.5).
Setting M =D ′−1 and supposing T1,T2 ∈D ′−1, we have T1 α̇T2 ∈D ′−1. Thus, we also can define

α-powers T n
α of distributions T ∈D ′−1 by the recurrence relation (3.1) and clearly we get,

T n
α = T n,

that is, in distributional sense the α-powers corresponding to functions that, locally, are of bounded
variation, coincide with the usual powers of these functions seen as distributions. In the sequel we
will write, in all cases, T n instead of T n

α , supposing α fixed. For instance, if m ∈ C we will write
(mδ )1 = mδ , and for n≥ 2, (mδ )n = mn[α(0)]n−1δ . More generally, taking M = {a+(b−a)H +

mδ : a,b,m ∈ C} we have:

Theorem 3.1. Given α , let us suppose a,b,m ∈ C, p =
∫ 0
−∞

α , q =
∫ +∞

0 α and λ = α(0)m+(b−
a)q. Then we have [

a+(b−a)H +mδ
]n

= an +(bn−an)H +m[Pn−1(a+λ )]δ , (3.2)

where Pn−1 is the polynomial defined by the recurrence relation P0(s) = 1 and for n ≥ 1, Pn(s) =
sPn−1(s)+ pbn +qan.

Proof. We will prove (3.2) by induction. For n = 1 the statement is clearly true. Let us now suppose
that (3.2) is true for n. Then, taking into account the bilinearity of the α-products, formulas (2.5),
(2.6), (2.8), (2.10), and also that p+q = 1, we have[

a+(b−a)H +mδ
]n+1

=
[
a+(b−a)H +mδ

]n
α̇

[
a+(b−a)H +mδ

]
=
[
an +(bn−an)H +mPn−1(a+λ )δ

]
α̇

[
a+(b−a)H +mδ

]
= an+1 +an(b−a)H +anmδ +(bn−an)aH +(bn−an)(b−a)H +

+(bn−an)mpδ +maPn−1(a+λ )δ +m(b−a)Pn−1(a+λ )qδ +

+m2Pn−1(a+λ )α(0)δ

= an+1 +(bn+1−an+1)H +m
[
an +(bn−an)p+(a+λ )Pn−1(a+λ )

]
δ

= an+1 +(bn+1−an+1)H +m
[
pbn +qan +(a+λ )Pn−1(a+λ )

]
δ

= an+1 +(bn+1−an+1)H +mPn(a+λ ),

which proves the statement.
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4. Composition of entire functions with distributions

Let φ : C→ C be an entire function. Then we have,

φ(s) = a0 +a1s+a2s2 + · · · (4.1)

for the sequence an =
φ (n)(0)

n! of complex numbers and all s∈C. If T ∈M, we define the composition
φ ◦T by formula

φ ◦T = a0 +a1T +a2T 2 + · · · (4.2)

whenever this series converge in D ′. Clearly, this definition is consistent with the usual meaning of
φ ◦T , if T ∈M is a function. Moreover, if M is such that τaT ∈M for all T ∈M and all a ∈ R, we
have τa(φ ◦T ) = φ ◦ (τaT ), if φ ◦T or φ ◦ (τaT ) are well defined. Remember that, in general, φ ◦T
depends on α . For instance, taking M = {mδ : m ∈ C} we have

Theorem 4.1. Let m ∈ C and let φ : C→ C be an entire function. Then, given α , we have

φ ◦ (mδ ) =

{
φ(0)+φ ′(0)mδ if α(0) = 0,

φ(0)+ φ(mα(0))−φ(0)
α(0) δ if α(0) 6= 0.

(4.3)

Proof. If m = 0 the result is obvious. Suppose m 6= 0 and let φ be defined by (4.1). Then, by
definition (4.2)

φ ◦ (mδ ) = a0 +a1mδ +a2(mδ )2 +a3(mδ )3 + · · ·
= a0 +a1mδ +a2m2

α(0)δ +a3m3
α(0)2

δ + · · ·
= a0 +[a1 +a2mα(0)+a3m2

α(0)2 + · · · ](mδ ), (4.4)

if this series converges in D ′. Thus, if α(0) = 0 we have φ ◦ (mδ ) = a0+a1mδ . If α(0) 6= 0, setting

S = a1 +a2mα(0)+a3m2
α(0)2 + · · ·

it follows

mα(0)S = a1[mα(0)]+a2[mα(0)]2 +a3[mα(0)]3 + · · ·= φ
(
mα(0)

)
−a0,

and the result stems from (4.4) because a0 = φ(0) and a1 = φ ′(0).

With the goal of computing φ ◦
(
a+(b−a)H +mδ

)
, we need the following statements.

Lemma 4.1. Let a,b, p,q ∈ C and let Pn be the sequence of polynomials defined by P0(s) = 1,
Pn(s) = sPn−1(s)+ pbn +qan. Then, there exists c≥ 1 such that for any n≥ 0,∣∣Pn(s)

∣∣≤ (|s|+2c2)n
. (4.5)
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Proof. By induction. Let c = max
{
|a|, |b|, |p|, |q|,1

}
. For n = 0 (4.5) is clearly true. Now, suppose

that (4.5) is satisfied for a certain n≥ 0. Then∣∣Pn+1(s)
∣∣= ∣∣sPn(s)+ pbn+1 +qan+1∣∣
≤ |s|

∣∣Pn(s)
∣∣+ |p||b|n+1 + |q||a|n+1

≤ |s|
(
|s|+2c2)n

+2cn+2.

However, 2cn+2 = 2c2cn ≤ 2c2
(
|s|+2c2

)n and so∣∣Pn+1(s)
∣∣≤ |s|(|s|+2c2)n

+2c2(|s|+2c2)n
=
(
|s|+2c2)n+1

.

Lemma 4.2. With the assumptions of lemma 4.1 let us suppose φ an entire function defined by (4.1).
Then, the function Wφ : C→ C defined by Wφ (s) = ∑

∞
n=1 anPn−1(s) is well defined and satisfies the

following conditions:

(a) Wφ is an entire function;

(b) if p+q = 1 then Wφ (pa+qb) =

{
φ(b)−φ(a)

b−a if b 6= a

φ ′(a) if b = a
;

(c) if p+q = 1 then Wφ = 0 if and only if φ ′ = 0.

Proof. (a) In fact, Wφ (s) is a power series of s and it is absolutely convergent for each s because by
lemma 4.1

∣∣anPn−1(s)
∣∣≤ |an|

(
|s|+2c2

)n−1 and the series

∞

∑
n=1
|an|
(
|s|+2c2)n−1

=
1

|s|+2c2

∞

∑
n=1
|an|
(
|s|+2c2)n

converges, since φ(s) is absolutely convergent.
(b) It is easy to prove by induction that if p+q = 1, then for any n≥ 2 entire we have

Pn−1(pa+qb) =

{
bn−an

b−a if b 6= a

nan−1 if b = a
.

Thus, if b 6= a we have

Wφ (pa+qb) =
∞

∑
n=1

anPn−1(pa+qb) = a1 +
∞

∑
n=2

anPn−1(pa+qb)

= a1 +
∞

∑
n=2

an
bn−an

b−a
=

φ(b)−φ(a)
b−a

;

if b = a we have

Wφ (pa+qb) =
∞

∑
n=1

anPn−1(pa+qb) = a1 +
∞

∑
n=2

anPn−1(pa+qb)

= a1 +
∞

∑
n=2

annan−1 = φ
′(a).

(c) Let us suppose that φ ′ 6= 0, that is, let us suppose that φ is not a constant function. Then, there
exist a,b∈C such that a 6= b and φ(a) 6= φ(b). Applying (b) we conclude that Wφ (pa+qb) 6= 0, that
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is, Wφ 6= 0. Conversely, if φ ′ = 0 then φ ′(s) = a1 +2a2s+3a3s2 + · · ·= 0, for all s ∈ C. Therefore,
a1 = a2 = a3 = · · ·= 0 and Wφ = 0 follows.

Theorem 4.2. Given α , let a,b,m ∈ C, q =
∫

∞

0 α and λ = α(0)m+ q(b− a). Suppose also that
T = a+(b−a)H +mδ and φ is an entire function defined by (4.1). Then,

φ ◦T = φ(a)+ [φ(b)−φ(a)]H +mWφ (a+λ )δ ,

where Wφ is defined in lemma 4.2.

Proof. By (4.2) and theorem 3.1 we have

φ ◦T = a0 +
∞

∑
n=1

an[an +(bn−an)H +mPn−1(a+λ )δ ]

= a0 +
∞

∑
n=1

anan +
∞

∑
n=1

an(bn−an)H +m
∞

∑
n=1

anPn−1(a+λ )δ

= a0 +[φ(a)−a0]+ [φ(b)−a0−φ(a)+a0]H +mWφ (a+λ )δ

= φ(a)+ [φ(b)−φ(a)]H +mWφ (a+λ )δ

because
∞

∑
n=1

anan,
∞

∑
n=1

an(bn−an), and
∞

∑
n=1

anPn−1(a+λ ) converge.

5. The α-solution concept

Let I be an interval of R with more that one point, and let F (I) be the space of continuously differ-
entiable maps ũ : I→D ′ in the sense of the usual topology of D ′. For t ∈ I, the notation [ũ(t)](x) is
sometimes used for emphasizing that the distribution ũ(t) acts on functions ξ ∈D depending on x.

Let Σ(I) be the space of functions u : R× I→ R such that:

(a) for each t ∈ I, u(x, t) ∈ L1
loc(R);

(b) ũ : I→D ′, defined by [ũ(t)](x) = u(x, t) is in F (I).

The natural injection u 7→ ũ from Σ(I) into F (I) identifies any function in Σ(I) with a certain
map in F (I). Since C1(R×I)⊂ Σ(I), we can write the inclusions

C1(R×I)⊂ Σ(I)⊂F (I).

Thus, identifying u with ũ and v with ṽ the system (1.1), (1.2) can be read as follows:

dũ
dt

(t)+D
[1

2 ũ(t)2 +φ ◦
(
ṽ(t)
)]

= 0, (5.1)

dṽ
dt

(t)+D
[
ũ(t)α̇ ṽ(t)

]
= 0. (5.2)

Definition 5.1. Given α , the pair (ũ, ṽ) ∈F (I)×F (I) will be called an α- solution of the system
(5.1), (5.2) on I, if the α-products appearing in this system are well defined, and if both equations
are satisfied for all t ∈ I.

We have the following results:
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Theorem 5.1. If (u,v) is a classical solution of (1.1), (1.2) on R× I then, for any α , the pair
(ũ, ṽ) ∈ F (I)×F (I) defined by [ũ(t)](x) = u(x, t), [ṽ(t)](x) = v(x, t) is an α-solution of (5.1),
(5.2).

Note that, by a classical solution of (1.1), (1.2) on R× I, we mean a pair
(
u(x, t),v(x, t)

)
of

C1-functions that satisfies (1.1), (1.2) on R× I.

Theorem 5.2. If u,v : R× I → R are C1-functions and, for a certain α , the pair (ũ, ṽ) ∈F (I)×
F (I) defined by [ũ(t)](x) = u(x, t), [ṽ(t)](x) = v(x, t) is an α-solution of (5.1), (5.2), then the pair
(u,v) is a classical solution of (1.1), (1.2) on R× I.

For the proof, it is enough to observe that C1-functions u(x, t), v(x, t) can be read as continu-
ously differentiable functions ũ, ṽ∈F (I) defined by [ũ(t)](x) = u(x, t), [ṽ(t)](x) = v(x, t) and to use
the consistency of the α-products with the classical Schwartz products. As a consequence, an α-
solution (ũ, ṽ) in this sense, read as a usual distributional solution (u,v) affords a general consistent
extension of the concept of a classical solution of the system (1.1), (1.2).

If in equation (5.2) we replace ũ(t)α̇ ṽ(t) by ṽ(t)α̇ ũ(t), we get the equation

dṽ
dt

(t)+D
[
ṽ(t)α̇ ũ(t)

]
= 0 (5.3)

which is not equivalent to (5.2), since our α-products are not, in general, commutative. However,
all we have said for the systems (1.1), (1.2) and (5.1), (5.2) is also valid for the systems (1.1), (1.2)
and (5.1), (5.3). Thus, taking advantage of this situation, we will introduce the following definition,
which further extends the concept of a classical solution.

Definition 5.2. Given α , we call α-solution of the system (1.1), (1.2) on I, to any α-solution of the
system (5.1), (5.2), or of the system (5.1), (5.3), on I.

As it is well known, a weak solution of a differential equation is a function for which the deriva-
tives may not exist but satisfies the equation in some precise sense.

One of the most important definitions is based in the classical theory of distributions. In this
theory, the study of differential equations is, of course, restricted to linear equations, owing to the
well known difficulties of multiplying distributions. The classical setting usually considers linear
partial differential equations with C∞-coefficients, and a weak solution is defined as satisfying the
equation in the sense of distributions.

Linear partial differential evolution equations in the unknown u can be re-interpreted as evo-
lution equations with α-products, in the unknown ũ(t), if the (re-interpreted) C∞-coefficients are
placed at the right-hand side of ũ(t) and its derivatives. Actually, in this case, our α-products are
consistent with the products of distributions with C∞-functions. Thus, if u∈ Σ(I) is a weak solution,
then, for any α , the corresponding map ũ ∈F (I) is an α-solution. Conversely, if u ∈ Σ(I) and for a
certain α the corresponding map ũ ∈F (I) is an α-solution, then u is a weak solution. In this sense,
the α-solution concept can be identified with the weak solution concept. Meanwhile, an advantage
arises: the coefficients of such equations can now be considered as distributions, if the α-products
involved are well defined and the solutions are considered as elements of F (I).

Thus, in the framework of evolution equations, the α-solution concept is an extension of the
classical solution concept, and may be also considered as a new type of weak solution provided by
distribution theory in the nonlinear setting.
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6. The Riemann problem (1), (2), (3), (4)

Let us consider the system (1.1), (1.2) with (x, t) ∈ R×R (we could also have considered (x, t) ∈
R× [0,+∞[), φ an entire function taking real values on the real axis, and the unknowns u, v subjected
to the initial conditions (1.3), (1.4) with u1,u2,v1,v2 ∈ R and u1 6= u2. When we read this problem
in F (R) having in mind the identifications u 7→ ũ, v 7→ ṽ, we must replace the system (1.1), (1.2)
by the system (5.1), (5.2) and the initial conditions (1.3), (1.4) by the following ones

ũ(0) = u1 +(u2−u1)H, (6.1)

ṽ(0) = v1 +(v2− v1)H. (6.2)

Theorem (6.1) concerns the α-solutions (ũ, ṽ) of the problem (5.1), (5.2), (6.1), (6.2) in the interval
of time I =R, which belong to a convenient space W̃ ⊂F (R)×F (R), defined the following way:
(ũ, ṽ) ∈ W̃ if and only if

ũ(t) = a(t)+b(t)τγ(t)H, (6.3)

ṽ(t) = f (t)+g(t)τγ(t)H +h(t)τγ(t)δ , (6.4)

for certain C1-functions a,b, f ,g,h,γ : R→ R and all t ∈ R.

Theorem 6.1. Let A,B be such that

A = (v2− v1)
(u1 +u2

2
+

φ(v2)−φ(v1)

u2−u1

)
and B = u2v2−u1v1.

Then, given α , the problem (5.1), (5.2), (6.1), (6.2) has an α-solution (ũ, ṽ) ∈ W̃ defined by

ũ(t) = u1 +(u2−u1)τγ(t)H, (6.5)

ṽ(t) = v1 +(v2− v1)τγ(t)H +(A−B)tτγ(t)δ , (6.6)

with

γ(t) =
(u2 +u1

2
+

φ(v2)−φ(v1)

u2−u1

)
t, (6.7)

in the following conditions:

(I) if A = B then (6.5), (6.6) is an α-solution;
(II) if A 6= B and φ ′ = 0, then (6.5), (6.6) is an α-solution if and only if

∫ 0
−∞

α = 1
2 ;

(III) if A 6= B, φ ′ 6= 0, and v2 6= v1, then we have necessarily v2 6= −v1 and (6.5), (6.6) is an
α-solution if and only if φ(v2) = φ(v1), α(0) = 0, and

∫ 0
−∞

α = 1
2 ;

(IV) if A 6= B, φ ′ 6= 0, and v2 = v1, then we have necessarily v2 = v1 6= 0 and (6.5), (6.6) is an
α-solution if and only if φ ′(v1) = 0, α(0) = 0, and

∫ 0
−∞

α = 1
2 .

When it exists, the α-solution (6.5), (6.6) is unique in W̃ .
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Proof. Let us suppose (ũ, ṽ) ∈ W̃ . Then from (6.3) and (6.4) we must have for each t ∈ R,

dũ
dt

(t) = a′(t)+b′(t)τγ(t)H−b(t)γ ′(t)τγ(t)δ ,

dṽ
dt

(t) = f ′(t)+g′(t)τγ(t)H−g(t)γ ′(t)τγ(t)δ +h′(t)τγ(t)δ −h(t)γ ′(t)τγ(t)(Dδ )

= f ′(t)+g′(t)τγ(t)H +
[
h′(t)−g(t)γ ′(t)

]
τγ(t)δ −h(t)γ ′(t)τγ(t)(Dδ ).

Therefore, taking p =
∫ 0
−∞

α and q =
∫ +∞

0 α , we have p+ q = 1, and using the bilinearity of the
α-products and the formulas (2.5), (2.6), (2.8), (2.10) we can write,

ũ2(t) = a2(t)+2a(t)b(t)τγ(t)H +b2(t)τγ(t)H

= a2(t)+ [b2(t)+2a(t)b(t)]τγ(t)H,

ũ(t)α̇ ṽ(t) = a(t) f (t)+a(t)g(t)τγ(t)H +a(t)h(t)τγ(t)δ +

+b(t) f (t)τγ(t)H +b(t)g(t)τγ(t)H +b(t)h(t)pτγ(t)δ ,

= a(t) f (t)+
[
a(t)g(t)+b(t) f (t)+b(t)g(t)

]
τγ(t)H +

+h(t)
[
a(t)+ pb(t)

]
τγ(t)δ . (6.8)

On the one hand, we have

φ ◦
(
ṽ(t)
)
= φ ◦

(
τγ(t)

(
f (t)+g(t)H +h(t)δ

))
= τγ(t)φ ◦

(
f (t)+g(t)H +h(t)δ

)
.

On the other hand, applying theorem 4.2 with a = f (t), b = f (t)+g(t) and m = h(t), we have

φ ◦
(

f (t)+g(t)H +h(t)δ
)
= φ

(
f (t)
)
+
[
φ
(

f (t)+g(t)
)
−φ
(

f (t)
)]

H +

+h(t)Wφ

(
f (t)+α(0)h(t)+qg(t)

)
δ .

Thus,

φ ◦ ṽ(t) = φ
(

f (t)
)
+
[
φ
(

f (t)+g(t)
)
−φ
(

f (t)
)]

τγ(t)H +h(t)Wφ

(
f (t)+α(0)h(t)+qg(t)

)
τγ(t)δ .

As a consequence, equations (5.1), (5.2) turn out to be

a′(t)+b′(t)τγ(t)H +

+
[
−b(t)γ ′(t)+ 1

2 b2(t)+a(t)b(t)+φ
(

f (t)+g(t)
)
−φ
(

f (t)
)]

τγ(t)δ +

+h(t)Wφ

(
f (t)+α(0)h(t)+qg(t)

)
τγ(t)(Dδ ) = 0,

f ′(t)+g′(t)τγ(t)H +

+
[
h′(t)−g(t)γ ′(t)+a(t)g(t)+b(t) f (t)+b(t)g(t)

]
τγ(t)δ +

+h(t)
[
−γ
′(t)+a(t)+ pb(t)

]
τγ(t)(Dδ ) = 0,
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and we conclude that (ũ, ṽ) defined by (6.3), (6.4) is an α-solution of (5.1), (5.2) if and only if the
following eight equations hold

a′(t) = 0, b′(t) = 0, f ′(t) = 0, g′(t) = 0, (6.9)

−b(t)γ ′(t)+ 1
2 b2(t)+a(t)b(t)+φ

(
f (t)+g(t)

)
−φ
(

f (t)
)
= 0, (6.10)

h(t)Wφ

(
f (t)+α(0)h(t)+qg(t)

)
= 0, (6.11)

h′(t)−g(t)γ ′(t)+a(t)g(t)+b(t) f (t)+b(t)g(t) = 0, (6.12)

h(t)
[
−γ
′(t)+a(t)+ pb(t)

]
= 0. (6.13)

From (6.1) and (6.3), we have a(0) + b(0)τγ(0)H = u1 + (u2 − u1)H and a(0) = u1, b(0) =
u2 − u1 follow. Moreover, γ(0) = 0 because u2 6= u1. Likewise, from (6.2) and (6.4) we have
f (0)+g(0)H +h(0)δ = v1 +(v2− v1)H and f (0) = v1, g(0) = v2− v1, h(0) = 0 also follow. As a
consequence, (6.9), (6.10), (6.11), (6.12), (6.13) turn out to be

a(t) = u1, b(t) = u2−u1, f (t) = v1, g(t) = v2− v1,

−(u2−u1)γ
′(t)+ 1

2

(
u2

2−u2
1
)
+φ(v2)−φ(v1) = 0, (6.14)

h(t)Wφ

(
α(0)h(t)+ pv1 +qv2

)
= 0, (6.15)

h′(t)− (v2− v1)γ
′(t)+B = 0, (6.16)

h(t)
[
−γ
′(t)+u1 + p(u2−u1)

]
= 0, (6.17)

where Wφ is the function defined in lemma 4.2 with a = v1 and b = v2. From (6.14) we get

γ
′(t) =

u1 +u2

2
+

φ(v2)−φ(v1)

u2−u1

and (6.7) follows. From (6.16) we get

h′(t) = (v2− v1)
(u1 +u2

2
+

φ(v2)−φ(v1)

u2−u1

)
−B = A−B,

and then h(t) = (A−B)t. Thus,
(I) If A = B, then h(t) = 0, (6.15), (6.16), (6.17) are satisfied and (6.5), (6.6) follow for any α ,

with γ(t) given by (6.7).
(II) If A 6= B and φ ′ = 0, then by lemma 4.2(c) Wφ = 0, the equations (6.15), (6.16) are satisfied

and from (6.17), since φ is a constant function , we get

(A−B)t
[
−1

2(u1 +u2)+u1 + p(u2−u1)
]
= 0,

which is satisfied for all t ∈ R if and only if [· · ·] = 0, that is, if and only if p = 1
2 .

(III) If A 6= B, φ ′ 6= 0, and v1 6= v2 then, by lemma 4.2(c), Wφ 6= 0 and (6.15) turns out to be

(A−B)tWφ

(
α(0)(A−B)t + pv1 +qv2

)
= 0,

which is satisfied for all t if and only if for all t 6= 0

Wφ

(
α(0)(A−B)t + pv1 +qv2

)
= 0. (6.18)

Thus, we have necessarily α(0) = 0 because if α(0) 6= 0, then for each t 6= 0 the number α(0)(A−
B)t + pv1 +qv2 would be a zero of Wφ , which is impossible because the zeros of the entire function

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

342



C.O.R. Sarrico and A. Paiva / Multiplication of distributions and fluid dynamics

Wφ 6= 0 are isolated points. Furthermore, from (6.18), we have necessarily Wφ (pv1 + qv2) = 0 and
applying lemma 4.2(b) with a = v1 and b = v2 we conclude that φ(v2) = φ(v1) so that

A−B = (v2− v1)
1
2(u1 +u2)−u2v2 +u1v1 =

1
2(v1 + v2)(u1−u2),

and v2 6=−v1 follows because A 6= B. Since (6.16) is satisfied and (6.17) implies p = 1
2 , the neces-

sity of the statement is proved. Conversely, if φ(v2) = φ(v1), then by lemma 4.2(b) with a = v1 and
b = v2 we conclude that Wφ (pv1 + qv2) = 0 and (6.15) is satisfied for all t ∈ R because α(0) = 0.
Moreover, (6.17) is satisfied because p = 1

2 . Hence, (III) is proved.
(IV) Clearly, in this case, we cannot have v1 = v2 = 0 because it would follows A = B. Further-

more, from φ ′ 6= 0 we conclude, as in the proof of (III), that Wφ (pv1 +qv2) = 0 and α(0) = 0. By
lemma 4.2(b) with a = b = v1 = v2 it follows φ ′(v1) = 0. Conversely, if φ ′(v1) = 0, from lemma
4.2(b) with a = b = v1 = v2 we have Wφ (pv1 +qv2) = 0 and since α(0) = 0, (6.15) is satisfied for
all t ∈ R. Moreover (6.16) is satisfied, and also (6.17) because p = 1

2 .
Finally, it is easy to see that in anyone of the four cases the α-solution (ũ, ṽ) defined by (6.5),

(6.6) is unique in W̃ .

If we replace (5.2) by (5.3), that is, if we replace ũ(t)α̇ ṽ(t) by ṽ(t)α̇ ũ(t), then the value of
ṽ(t)α̇ ũ(t) is still given by the same formula (6.8), with q in the place of p, as a result of the product
δα̇H given by (2.10). Thus, for the problem (5.1), (5.3), (6.1), (6.2), theorem 6.1 must be replaced by
another theorem where p =

∫ 0
−∞

α must be replaced by q =
∫ +∞

0 α . However, since in this theorem
p = 1

2 we have q = 1− p = 1
2 and both theorems coincide !

As a consequence of definition 5.2, these considerations allows us to conclude that when the
output of the problem (1.1), (1.2), (1.3), (1.4) is conditioned to the space W , we get:

• if A = B, a travelling shock wave given by

u(x, t) = u1 +(u2−u1)H
(
x− γ(t)

)
, (6.19)

v(x, t) = v1 +(v2− v1)H
(
x− γ(t)

)
, (6.20)

• if A 6= B, the possible emergence of a delta shock wave given by (1.5), (1.6).

In both cases, γ(t) is given by (1.7).

7. Examples

By applying theorem 6.1, we now work out the three examples referred in the introduction.
(a) If φ = 0 we have A−B = 1

2(v1 + v2)(u1− u2) and if A = B, that is, if v2 = −v1, we get
the travelling shock α-solution (6.19), (6.20) with γ(t) = 1

2(u1 +u2)t, for any α . The appearing of
the delta shock α-solution (1.5), (1.6) is also possible but only if v2 6= −v1 and

∫ 0
−∞

α = 1
2 . This

coincides with the result obtained by the first author for the generalized pressureless gas dynamics,
taking in [25] p. 1450007-7, φ(u) = 1

2 u2 and ψ(u) = u. This setting and some generalizations have
been extensively studied (see [6–8, 11, 16, 17]). We stress that the referred delta shock wave was
obtained in [6, 16] under less general conditions than the ones obtained in [25] (see [6], Corollary
11, p. 3723 and Theorem 13, p. 3729). Thus, for the pressureless gas dynamics system the arising
of shock waves and delta shock waves may happen.

(b) If φ(v) = kγ

γ−1 vγ−1 (k 6= 0 is a real number and γ ≥ 2 is an integer), only case (I) of theorem
6.1 can be applied. Actually, we cannot apply

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

343



C.O.R. Sarrico and A. Paiva / Multiplication of distributions and fluid dynamics

• (II) because φ ′ 6= 0;
• (III) because φ(v2) = φ(v1) is equivalent to vγ−1

2 = vγ−1
1 and γ cannot be even because

v2 6= v1; however, if γ is odd we would have v2 = v1, which is impossible.
• (IV) because v1 6= 0 implies φ ′(v1) 6= 0.

Thus, for the isentropic fluid dynamics system with the polytropic pressure-density relation
P(v) = kvγ , we can only assure the possible emergence of the shock wave (6.19), (6.20) with γ(t) =

[u2+u1
2 +

vγ−1
2 −vγ−1

1
u2−u1

]t.
(c) If φ(v) = 4

3 v3− 3v2 + 2v, taking for short v1 =
1
2 and v2 =

5
4 , only case (III) of theorem 10

can be applied. Actually, we cannot apply

• (I) because, φ(v1) = φ(v2) and u1 6= u2 implies A 6= B;
• (II) because φ ′ 6= 0;
• (IV) because v2 6= v1.

As a consequence, we get the delta shock α-solution

u(x, t) = u1 +(u2−u1)H
(
x− γ(t)

)
,

v(x, t) = 1
2 +

3
4 H
(
x− γ(t)

)
+ 7

8(u1−u2)tδ
(
x− γ(t)

)
,

where γ(t) = 1
2(u1 +u2)t, if and only if α(0) = 0 and

∫ 0
−∞

α = 1
2 .

This example shows that for the isentropic fluid dynamics system (1.8), (1.9) with the pressure-
density relation P(v)= v4−2v3+v2 the formation of a delta shock wave is possible when we subject
the state variables u,v to the initial conditions

u(x,0) = u1 +(u2−u1)H(x),

v(x,0) = 1
2 +

3
4 H(x).

If we want to take into account the usual physical domain of the density v, we may consider, this
evolution problem in the time interval [0,+∞[ and also u1 > u2 in order that the moving mass
corresponding to the density 7

8(u1−u2)tδ (x− u1+u2
2 t) be positive at each instant t > 0. Notice also

that the pressure P(v) = v4−2v3 + v2 ≥ 0 for all values of v.
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