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We study a simple nonlinear model defined on the honeycomb and triangular lattices. We propose a bilin-

earization scheme for the field equations and demonstrate that the resulting system is closely related to the

well-studied integrable models, such as the Hirota bilinear difference equation and the Ablowitz-Ladik system.

This result is used to derive the two sets of explicit solutions: the N-soliton solutions and ones constructed of

the Toeplitz determinants.
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1. Introduction

We study a simple nonlinear model defined on the honeycomb and triangular lattices (HL and TL).

The main aim of this work is to extend the direct methods of the soliton theory to the case of

‘non-square’, i.e. different from Z
2, lattices.

Although there has been considerable interest in the integrable nonlinear models on such lattices

(see e.g. [2, 3, 6–12, 15]) there are still many problems to solve in this field. The main source of

difficulties arising in studies of integrable models on the HL and TL is a lack of natural ways to

separate variables. This hinders the usage of the standard approaches like, for example, the inverse

scattering transform.

There are several strategies to address the non-square lattices. One of them, which was used, in,

for example, [7, 10, 15], is to consider the HL and TL as sublattices of sections of the Z
3-lattice. In

other words, this approach is to consider the model in question as a restriction of a more general

(higher dimensional) one. Another approach has been developed in the works of Adler, Bobenko,

Suris and co-authors [2,3,6,8,9,11,12] who elaborated a framework for integrable models on non-

square lattices and, more generally, on arbitrary graphs. Among different aspects of this approach

we would highlight two moments. First, there is an almost algorithmical way to convert an integrable

model on a graph that possesses the property of the three-dimensional consistency [4] to the one

on the quad-graph [3, 11], i.e. to the system of four-point equations (compare with the system of

the discrete Moutard equations from [15]). The second ingredient is the special form of the Lax (or

zero-curvature) representation, which is called in [3] the “trivial monodromy representation”. The

results of [2, 3, 6, 8, 9, 11, 12] provide answers to many questions arising in the theory of integrable

systems. However, if we consider the problem of finding solutions, we have to admit that there is

still much work to be done. While in the classical integrable models (on the square lattice, in our

case) the zero-curvature representation is a base for the inverse scattering transform which is a tool

to derive solutions (at least to linearize the problem), the corresponding methods for models on
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graphs, that use the trivial monodromy representation, are, so far, to be developed. The possibility

to convert an integrable model into the one on the quad-graph is very attracting from the viewpoint

of the so-called direct methods. However, a practical implementation of this idea may face some

difficulties (we return to this question in section 2.3).

In this work we do not study general aspects of the integrability and the geometry of the HL and

TL. We restrict ourselves to the following problem: to find explicit solutions for one of the ‘univer-

sal’ integrable models of the paper [3] which was studied in [11]. This model is described in section

2. In section 3, we introduce new variables (the tau-functions), bilinearize the field equations and

demonstrate that the resulting system is closely related to the well-studied integrable models, such

as the Hirota bilinear difference (or discrete KP) and the Ablowitz-Ladik equations (the important

difference between our approach and the one of [11, 15] is that we use, instead of the four-point

quad-equations, a system of three-point equations). Then, we present the two sets of explicit solu-

tions for this system that provide the two families of explicit solutions for the equations we want to

solve: solutions constructed of the Toeplitz determinants and the N-soliton solutions (see section 4

for the case of HL and section 5 for the case of TL).

Of course, during the implementation of this standard program, we meet the manifestations

of the peculiar features of the HL and TL. However, as a reader will see, one can overcome the

emerging complications by elementary means.

2. Definitions and main equations

2.1. Honeycomb lattice

The model that we study in this paper can be defined in terms of the action

S = ∑
e∈E

L (e) (2.1)

where E = {e} is the set of edges of the lattice. The edge function L (e) depends on variables

defined on the set of nodes V = {v} of the lattice, L (e) = L (v+(e),v−(e)) where v±(e) are the

two nodes connected by the edge e (so, in fact, it is an ‘interaction’ function), and is given by

L (e) = Γ(e) ln |u(v+(e))−u(v−(e))| (2.2)

where Γ(e) are constants that depend only on the direction of the edge e, Γ(e) ∈ {Γ1,Γ2,Γ3} (see

equation (2.11) below) and are subjected to the restriction, which appears in [3, 11],

∑
e (v∈e)

Γ(e) = 0, v ∈ V (2.3)

(we discuss this restriction in the Conclusion). Here, u = u(v) is a function that should be found

from the ‘variational’ equations

∂S
/

∂u(v) = 0, v ∈ V. (2.4)

In what follows, we extensively use the fact that the HL is a bipartite graph. So, from the begin-

ning, we consider its set of vertices V as a sum of two subsets, which we call ‘positive’ and ‘neg-

ative’, V = V+ ∪V− (in figure 1, the vertices that belong to V+ are shown by black circles and

the vertices that belong to V− are shown by white ones). Thus, the maps v±(e) are maps to V±,

v± : E→ V±.
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Fig. 1. Bipartition of the HL and base vectors.

Hereafter, instead of the e-v notation, we use the vector one. To this end we introduce coplanar

vectors eee1, eee2 and eee3 related by

3

∑
i=1

eeei = 000 (2.5)

(see figure 1), the set of lattice vectors Λ (positions of the nodes of the HL),

Λ =

{
nnn =

3

∑
i=1

nieeei, ni ∈ Z

∣∣∣∣∣
3

∑
i=1

ni �= 2 mod 3

}
, (2.6)

which can be decomposed as

Λ = Λ+∪Λ− (2.7)

with

Λ+ =

{
nnn =

3

∑
i=1

nieeei, ni ∈ Z

∣∣∣∣ 3

∑
i=1

ni = 0 mod 3

}
,

Λ− =

{
nnn =

3

∑
i=1

nieeei, ni ∈ Z

∣∣∣∣ 3

∑
i=1

ni = 1 mod 3

} (2.8)

(the vertex whose position is determined by nnn∈Λ± belongs to V±) and write u(nnn) instead of u(v). It

should be noted that, first, the usage of the three integer coordinates ni (i= 1,2,3) does not mean that

we are passing to the cubic lattice Z3 and, secondly, that one should be careful and not forget the fact

that the decomposition nnn = ∑3
i=1 nieeei is not unique: triples (n1,n2,n3) and (n1 +N,n2 +N,n3 +N)

with integer non-zero N define the same vector nnn.

In vector terms, the action S (2.1) can be presented as

S = ∑
nnn∈Λ+

3

∑
i=1

Γi ln |u(nnn)−u(nnn+ eeei)| (2.9)

= ∑
nnn∈Λ−

3

∑
i=1

Γi ln |u(nnn)−u(nnn− eeei)| (2.10)
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Fig. 2. Honeycomb and triangular lattices

where we use, instead of Γ(e), constants Γi,

Γ(e) = Γi if e‖eeei (i = 1,2,3), (2.11)

(where ‖ stands for “parallel”) subjected to the restriction (2.3),

3

∑
i=1

Γi = 0. (2.12)

The ‘variational’ equations (2.4) can now be written as

3

∑
i=1

Γi

u(nnn)−u(nnn+ eeei)
= 0 (nnn ∈ Λ+), (2.13)

3

∑
i=1

Γi

u(nnn)−u(nnn− eeei)
= 0 (nnn ∈ Λ−). (2.14)

Namely these equations are the main object of our study.

2.2. Triangular lattice

It is straightforward to verify that any solution of (2.13) and (2.14) is, at the same time, a solution for

the field equations of the model similar to (2.1) and (2.2) but defined on the TL which is a sublattice

of the HL discussed previously.

Indeed, one can easily derive from (2.13) and (2.14) explicit expressions for u(nnn) in terms of

the values of u at the adjacent points. In other words, we can eliminate, for example, the ‘negative’

vertices,

u(nnn) =−∑3
i=1 Γi u(nnn− eeei−1)u(nnn− eeei+1)

∑3
i=1 Γi u(nnn− eeei)

(nnn ∈ Λ−). (2.15)

In this equation, as well as in the rest of the paper, we use the following convention: all arithmetic

operations with eee- and Γ-indices are understood modulo 3,

eeei±3 = eeei, Γi±3 = Γi (i = 1,2,3). (2.16)
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Equations (2.15) and (2.12) lead to

Γi

u(nnn)−u(nnn+ eeei)
= − Γi−1

u(nnn)−u(nnn+ eeei − eeei+1)

− Γi+1

u(nnn)−u(nnn+ eeei − eeei−1)
(nnn ∈ Λ+) (2.17)

Now, equation (2.13) implies

3

∑
i=1

Γi

[
1

u(nnn)−u(nnn+gggi)
+

1

u(nnn)−u(nnn−gggi)

]
= 0 (nnn ∈ Λ+) (2.18)

where

ggg1 = eee2 − eee3, ggg2 = eee3 − eee1, ggg3 = eee1 − eee2 (2.19)

or

gggi = eeei+1 − eeei−1. (2.20)

It is easy to see that these equations have the form ∂S�/∂u(nnn) = 0 with

S� = ∑
nnn∈Λ+

3

∑
i=1

Γi ln |u(nnn)−u(nnn+gggi)| . (2.21)

Thus, solutions for (2.13) and (2.14) solve also the field equations for the model similar to (2.1) and

(2.2), with the same interaction, only, this time, along the edges of the TL Λ+ (it is clear that one

can repeat the same procedure to arrive at the lattice Λ−).

2.3. Cross-ratio system

In this section we discuss the results of [11] and their possible applications to the problem we are

going to solve. The authors of [11] developed a general construction that enables to transform a

problem on a graph to the system of quad-equations. In particular, they considered a model (which

they call “additive rational Toda system”) which is a generalized version of the model discussed

in this paper. Briefly, their scheme for the HL can described as follows: we extend our lattice by

adding the vertices corresponding to the faces of the HL and consider equations we want to solve

on Λext = Λ∪Λ◦, where

Λ◦ =

{
nnn =

3

∑
i=1

nieeei, ni ∈ Z

∣∣∣∣∣
3

∑
i=1

ni = 2mod3

}
. (2.22)

It has been shown that, if one introduce u(nnn) with nnn ∈ Λ◦ by the equations

Γi

u(nnn)−u(nnn+ eeei)
=

γi+1

u(nnn)−u(nnn− eeei+1)
− γi−1

u(nnn)−u(nnn− eeei−1)
(nnn ∈ Λ+) (2.23)

with

Γi = γi+1 − γi−1 (γi±3 = γi), (2.24)
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then u(nnn) is a solution for (2.13) provided it obey the so-called cross-ratio system on Λext ,

0 = γi+1 [u(nnn+ eeei)−u(nnn− eeei+1)] [u(nnn)−u(nnn− eeei−1)]

− γi−1 [u(nnn+ eeei)−u(nnn− eeei−1)] [u(nnn)−u(nnn− eeei+1)] (nnn ∈ Λ+). (2.25)

In a similar way, it can be shown that the system

0 = γi+1 [u(nnn− eeei)−u(nnn+ eeei+1)] [u(nnn)−u(nnn+ eeei−1)]

− γi−1 [u(nnn− eeei)−u(nnn+ eeei−1)] [u(nnn)−u(nnn+ eeei+1)] (nnn ∈ Λ−). (2.26)

implies (2.14). In both cases, one arrives at the set of the cross-ratio equations

q jk(nnn) := γ j [u(nnn)−u(nnn+ eeek)] [u(nnn+ eee j + eeek)−u(nnn+ eee j)]

− γk [u(nnn)−u(nnn+ eee j)] [u(nnn+ eee j + eeek)−u(nnn+ eeek)] = 0 (2.27)

where ( j,k)∈ {(1,2),(1,3),(2,3)}. Thus, one may try to use the already known solutions for cross-

ratio equation to obtain the ones for (2.13) and (2.14). However, it turns out to be not a trivial prob-

lem. The case is that the cross-ratio system of [11] is not the same that the cross-ratio equation of,

for example, [20, 21] or [17, 19]. The latter, is usually understood as an equation on Z
2 whereas

here, following the construction of [11], we have three types of quadrilaterals and hence three equa-

tions with different labelling (in the terminology of [11]). Thus, to use the results of [17, 19–21]

one has either to find common solutions for the all three cross-ratio equations or to find out how

to ‘glue together’ solutions for equations with different parameters. This is an interesting problem.

which, however, is outside the scope of this paper. Moreover, in what follows we do not exploit the

quad-equations approach and use, instead of the cross-ratio equation, another well-known system.

3. Bilinearization of the field equations

In this section we present the main result of this paper. We bilinearize the field equations (2.13) and

(2.14) and demonstrate the relationships of the resulting system with the already known integrable

models. The procedure that we use is, for the most part, rather standard. However, there are few non-

trivial moments that need some additional comments. We formulate some of the key statements ‘as

is’, without preliminary motivation, hoping that a reader will find the answers to possible questions

in the following proofs and discussion.

We study a two-dimensional lattice. However, we have the three type of translations that cor-

respond to the three vectors eeei. Of course, one can introduce a basis consisting of two vectors and

proceed in the standard manner, but, in our opinion, such approach has its disadvantages, most

of which stem from the fact that it disregards the symmetry of the problem. Here we use another

scheme. We consider our equations as a three-dimensional problem, bearing in mind that at some

stage we have to take into account the fact that ∑3
i=1 eeei = 000.

The ‘three-dimensionality’ of the equations that we want to solve does not provide insuperable

problems: there are some already known integrable systems in dimensions higher than two (see, for

example, [5,16] for the lists of integrable discrete three-dimensional equations) and in what follows

we use one of them. The second moment, stemming from the necessity to ensure the triviality of

the superposition of the translations corresponding to ∑3
i=1 eeei, turns out to be more embarrassing: a

straightforward application of corresponding restrictions can drastically narrow the family of avail-

able solutions (we return to this question in the next sections when discussing the specific solutions).

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

404



V.E. Vekslerchik / Explicit solutions for a nonlinear model on the honeycomb and triangular lattices

To overcome these difficulties, we ‘replace’ the vectors eeei with arbitrary vectors ααα i,

eeei → ααα i −ααα∗, ααα∗ =
1

3

3

∑
i=1

ααα i (3.1)

which automatically takes into account (2.5). In other words, we will consider, instead of u(nnn),
nnn = ∑3

i=1 nieeei, functions of ννν = ∑3
i=1 ni (ααα i −ααα∗).

Then, we make the substitution

u(nnn) =

{
q(ννν) (nnn ∈ Λ+)

−1/r(ννν −2ααα∗) (nnn ∈ Λ−)
(3.2)

and introduce the triplet of the tau-functions (σ ,τ ,ρ) by

q =
σ
τ
, r =

ρ
τ
. (3.3)

Finally, it can be shown that this construction leads to solutions for our equations (2.13) and (2.14)

provided σ , τ , and ρ solve the following bilinear system:

σ(ννν +ααα)τ(ννν +βββ )− τ(ννν +ααα)σ(ννν +βββ ) = aααα,βββ τ(ννν)σ(ννν +ααα +βββ ), (3.4)

τ(ννν +ααα)ρ(ννν +βββ )−ρ(ννν +ααα)τ(ννν +βββ ) = aααα,βββ ρ(ννν)τ(ννν +ααα +βββ ), (3.5)

τ(ννν)τ(ννν +ααα +βββ )+ρ(ννν)σ(ννν +ααα +βββ ) = bααα,βββ τ(ννν +ααα)τ(ννν +βββ ) (3.6)

where skew-symmetric constants aααα,βββ and symmetric constants bααα,βββ are related to Γi by

Γi = aααα i+1,ααα i−1
bααα i+1,ααα i−1

. (3.7)

Here (and in what follows) we use the convention similar to (2.16),

ααα i±3 = ααα i (i = 1,2,3). (3.8)

The main differences between the original system (2.13), (2.14) and system (3.4)–(3.6) (except

that the latter is bilinear) are the following. First, whereas equations (2.13) and (2.14) are defined on

the sublattices of the two-dimensional HL (Λ+ and Λ−), in (3.4)–(3.6) one has to deal with the lattice

which is Z3 (the parameters ααα and βββ belong to {ααα1,ααα2,ααα3}). Secondly, instead of two subsystems

((2.13) for Λ+ and (2.14) for Λ−) we consider all equations of (3.4)–(3.6) as defined on all points

of Z3. Thus, whereas the tau-functions σ and ρ were introduced in (3.3) for different sublattices of

the HL (Λ+ and Λ− correspondingly), in the framework of (3.4)–(3.6) they are parts of the triplet

{σ ,τ,ρ} which is associated with each point of Z3. In other words, we have passed from the bipar-

tite system (2.13) and (2.14), which reflects the geometry of the HL, to a translationally-invariant

system (3.4)–(3.6) which is easier to handle, for example, when one is looking for solutions.

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

405



V.E. Vekslerchik / Explicit solutions for a nonlinear model on the honeycomb and triangular lattices

Sometimes, to avoid writing separate formulae for Λ+ and Λ−, we will take into account the

summand 2ααα∗ in (3.2) by introducing ννν±,

ννν+(nnn) = ννν(nnn) (nnn ∈ Λ+)

ννν−(nnn) = ννν(nnn)−2ααα∗ (nnn ∈ Λ−)
(3.9)

that can be presented as

ννν±

(
3

∑
i=1

nieeei

)
=

3

∑
i=1

[ni −N (n1,n2,n3)]ααα i (3.10)

with

N (n1,n2,n3) =

{
1
3 ∑3

i=1 ni (∑3
i=1 ni = 0 mod3)

1
3

(
∑3

i=1 ni +2
)

(∑3
i=1 ni = 1 mod3)

(3.11)

or, alternatively,

N (n1,n2,n3) =

⌊
1

3

(
3

∑
i=1

ni +2

)⌋
(3.12)

where 
...� stands for the floor function (integer part): for any integer N and 0� δ < 1, 
N+δ�=N.

Note that the differences ni −N (n1,n2,n3) do not depend on the decomposition of a lattice vector

nnn into nnn = ∑3
i=1 nieeei.

To summarize, the main result of this paper can be presented as

Proposition 3.1. Any solution for the bilinear system (3.4)–(3.6) with the coefficients that satisfy
the restriction (3.7) provide a solution for the nonlinear HL equations (2.13) and (2.14), as well as
for the nonlinear TL equations (2.18), which can be obtained by

u(nnn) =

⎧⎨
⎩

σ(ννν+(nnn))/τ(ννν+(nnn)) (nnn ∈ Λ+)

−τ(ννν−(nnn))/ρ(ννν−(nnn)) (nnn ∈ Λ−)
(3.13)

where vectors ννν±(nnn) are defined in (3.10).

In the following subsections we prove this proposition by demonstrating how equations (3.4)–

(3.6) ‘help’ us to solve the field equations (2.13), (2.14) and (2.18).

3.1. Solving equations (2.13)

Let us consider a ‘positive’ vertex, nnn ∈ Λ+. It follows from definition (3.2) that

u(nnn) = q(ννν), u(nnn+ eeei) =−1/r(ννν −ααα i+1 −ααα i−1) (3.14)

which leads to

u(nnn)−u(nnn+ eeei) =
τ(ννν −ααα i+1 −ααα i−1)τ(ννν)+ρ(ννν −ααα i+1 −ααα i−1)σ(ννν)

ρ(ννν −ααα i+1 −ααα i−1)τ(ννν)
. (3.15)

Equation (3.6) factorizes the numerator,

u(nnn)−u(nnn+ eeei) = bααα i+1,ααα i−1

τ(ννν −ααα i+1)τ(ννν −ααα i−1)

ρ(ννν −ααα i+1 −ααα i−1)τ(ννν)
, (3.16)
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which leads, together with (3.7) and (3.5), to

Γi

u(nnn)−u(nnn+ eeei)
= r(ννν −ααα i+1)− r(ννν −ααα i−1). (3.17)

Now, it is clear that the summation over i = 1,2,3 yields (2.13).

This proves that any solution of (3.4)–(3.7) provides a solution for (2.13).

3.2. Solving equations (2.14)

In a similar way one can demonstrate that system (3.4)–(3.6) yields solutions for (2.14). For any

nnn ∈ Λ−,

u(nnn) =−1/r(ννν ′), u(nnn− eeei) = q(ννν ′+ααα i+1 +ααα i−1) (ννν ′ = ννν−(nnn)) (3.18)

and

u(nnn)−u(nnn− eeei) =−τ(ννν ′)τ(ννν ′+ααα i+1 +ααα i−1)+ρ(ννν ′)σ(ννν ′+ααα i+1 +ααα i−1)

ρ(ννν ′)τ(ννν ′+ααα i+1 +ααα i−1)
. (3.19)

After application of (3.6) and (3.5) the above equation leads to

u(nnn)−u(nnn− eeei) =−bααα i+1,ααα i−1

τ(ννν ′+ααα i+1)τ(ννν ′+ααα i−1)

ρ(ννν ′)τ(ννν ′+ααα i+1 +ααα i−1)
(3.20)

and

Γi

u(nnn)−u(nnn− eeei)
= r(ννν ′+ααα i+1)− r(ννν ′+ααα i−1) (3.21)

which demonstrates that u(nnn) solves (2.14), i.e. that any solution of (3.4)–(3.7) provides a solution

for (2.14).

3.3. Solving equations (2.18)

To conclude this section we give another proof of the fact that the proposed construction (3.2)–(3.7)

provides solutions for equations (2.18) for the TL.

For any nnn ∈ Λ+,

u(nnn) = q(ννν), u(nnn+gggi) = q(ννν +ααα i+1 −ααα i−1) (3.22)

and

u(nnn)−u(nnn+gggi) =
σ(ννν)τ(ννν +ααα i+1 −ααα i−1)− τ(ννν)σ(ννν +ααα i+1 −ααα i−1)

τ(ννν)τ(ννν +ααα i+1 −ααα i−1)
(3.23)

which, with the help of (3.4), can be rewritten as

u(nnn)−u(nnn+gggi) =−aααα i+1,ααα i−1

σ(ννν +ααα i+1)τ(ννν −ααα i−1)

τ(ννν)τ(ννν +ααα i+1 −ααα i−1)
. (3.24)

This, together with (3.6), leads to

Γi

u(nnn)−u(nnn+gggi)
=−q−1(ννν +ααα i+1)− r(ννν −ααα i−1) (3.25)
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and then to

Γi

u(ννν)−u(nnn+gggi)
+

Γi

u(ννν)−u(nnn−gggi)
= wi+1(ννν)−wi−1(ννν) (3.26)

where

wi(ννν) = r(ννν −ααα i)−q−1(ννν +ααα i). (3.27)

Again, the structure of the summand in (2.18) exposed in (3.26) leads to the fact that the summation

over i produces zero result. This proves that any solution of (3.4)–(3.7) provides a solution for

(2.18).

3.4. Möbius invariance

Another interesting fact that has not been mentioned yet, is the invariance of the field equations for

HL or TL with respect to the Möbius transformations:

Proposition 3.2. If u(nnn) solves (2.13) and (2.14), or (2.18), so does

au(nnn)+b
cu(nnn)+d

(3.28)

with constant a, b, c and d, ad −bc �= 0.

The proof of this statement is straightforward and is not presented here.

Thus, one can add three arbitrary constants to any solution presented in the following sections.

4. Exact solutions for the HL

In this section we discuss system (3.4)–(3.6) and then present the two sets of exact solutions for the

field equations (2.13) and (2.14) which are obtained by modification of the already known ones that

have been derived for (3.4)–(3.6).

4.1. Ablowitz-Ladik-Hirota system

Here, we collect some known facts about the system (3.4)–(3.6), which we write now as

0 = aα,β τ
(
Tαβ σ

)− (Tα σ)
(
Tβ τ

)
+(Tα τ)

(
Tβ σ

)
, (4.1)

0 = aα,β ρ
(
Tαβ τ

)− (Tα τ)
(
Tβ ρ

)
+(Tα ρ)

(
Tβ τ

)
, (4.2)

0 = bα,β (Tα τ)
(
Tβ τ

)− τ
(
Tαβ τ

)−ρ
(
Tαβ σ

)
(4.3)

where we use the ‘abstract shift’ notation. Further, we recall that the shifts Tα are, in our case, a

way to write the translations Tα : f (ννν)→ f (ννν +ααα) and identify the parameters α with the vectors

ααα i. However, now we want to present some simple, algebraic, consequences of system (4.1)–(4.3)

which do not depend on the origin of these equations and the ‘inner structure’ of the tau-functions.

Thus, one can think of (4.1)–(4.3) as a system of difference (or functional) equations with arbitrary,

save the consistency restriction that we discuss below (see (4.10)), skew-symmetric functions aα,β
and symmetric functions bα,β of arbitrary (scalar or vector) parameters α and β .
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It can be shown that an immediate consequence of, say, (4.2) is the fact that τ solves the famous

Hirota bilinear difference equation (HBDE) [18], also known as the discrete KP equation:

0 = aα,β
(
Tγ τ

)(
Tαβ τ

)−aα,γ
(
Tβ τ

)(
Tαγ τ

)
+aβ ,γ (Tα τ)

(
Tβγ τ

)
(4.4)

(we prove this statement in appendix A.1). Moreover, it turns out that functions σ and ρ also solve

(4.4),

0 = aα,β
(
Tγ ω

)(
Tαβ ω

)−aα,γ
(
Tβ ω

)(
Tαγ ω

)
+aβ ,γ (Tα ω)

(
Tβγ ω

)
, ω = σ ,ρ (4.5)

(see appendix A.1). Thus, equation (4.2), or (4.1), can be viewed as the linear problem (or the so-

called Lax representation) for the HBDE (see, e.g., [13, 14, 22, 24, 29]). On the other hand, another

consequences of equations (4.1) and (4.2),

0 = aα,β
(
Tγ τ

)(
Tαβ σ

)−aα,γ
(
Tβ τ

)(
Tαγ σ

)
+aβ ,γ (Tα τ)

(
Tβγ σ

)
, (4.6)

0 = aα,β
(
Tγ ρ

)(
Tαβ τ

)−aα,γ
(
Tβ ρ

)(
Tαγ τ

)
+aβ ,γ (Tα ρ)

(
Tβγ τ

)
(4.7)

(see appendix A.2 for a proof), can be interpreted as describing the Bäcklund transformations

BTHBDE : σ (4.6)−→ τ (4.7)−→ ρ (4.8)

between different solutions for the HBDE (note that this chain can be continued in both directions,

...→ σ → τ → ρ → ... via the extended version of (4.1) and (4.2)).

Clearly, one can derive a great number of identities for the functions that satisfy (4.1) and (4.2).

Here, we write down only one example,

Aα,β ,γτ
(
Tαβγ σ

)
= aβ ,γ (Tα σ)

(
Tβγ τ

)−aα,γ
(
Tβ σ

)(
Tαγ τ

)
+aα,β

(
Tγ σ

)(
Tαβ τ

)
(4.9)

with Aα,β ,γ = aα,β aα,γaβ ,γ which may be useful, if one wants to demonstrate the so-called three-

dimensional consistency of (4.1) and (4.2) (see appendix A.3).

Till now, we have considered only the first two equations of the (4.1)–(4.3). The last one can be

viewed in the framework of the theory of the HBDE as a nonlinear restriction, which is compatible

with (4.1) and (4.2) provided the constants aα,β and bα,β met the following condition:

aα,β bα,β −aα,γbα,γ +aβ ,γbβ ,γ = 0 (4.10)

which is derived in appendix A.4.

It turns out that the restricted system (3.4)–(3.6) is closely related to another integrable model,

which is even ‘older’ than the HBDE: equations (3.4)–(3.6) describe the so-called Miwa shifts of

the Ablowitz-Ladik hierarchy (ALH) [1].

Indeed, as is demonstrated in Appendix B, the functions

Q =
E

bκ,κ

Tκ σ
τ

, R =
1

E
T
−1
κ ρ
τ

(4.11)

where E is defined by

Tα E =
1

bα ,κ
E (4.12)
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satisfy, for a fixed value of κ ,

EαQ−Q = ξα [1−R(EαQ)] (Tα Q) (4.13)

R−EαR = ξα [1−R(EαQ)]T−1
κ R (4.14)

where Eα = TαT
−1
κ and ξα = aα,κbα,κ . Introducing the n-dependence by

Qn = T
n
κQ, Rn = T

−n
κ R (4.15)

one can rewrite (4.13) and (4.14) as

EαQn −Qn = ξα [1−Rn (EαQn)]EαQn+1, (4.16)

Rn −EαRn = ξα [1−Rn (EαQn)]Rn−1. (4.17)

These equations are nothing but the so-called functional representation of the positive flows of the

ALH [25, 26]: if we consider Qn and Rn as functions of an infinite number of variables, Qn =

Qn (zm)m=1,...,∞, Rn = Rn (zm)m=1,...,∞ and identify the shifts Eα with the Miwa shifts,

EαFn (zm)m=1,...,∞ = Fn (zm + iξ m
α /m)m=1,...,∞ , (4.18)

then equations (4.16) and (4.17) can be viewed as an infinite set of differential equation, the simplest

of which are given by

i ∂Qn
/

∂ z1 = [1−QnRn]Qn+1, (4.19)

−i ∂Rn
/

∂ z1 = [1−QnRn]Rn−1 (4.20)

(the complex version of the discrete nonlinear Schrödinger equation). This infinite set of differential

equation is the positive part of the ALH. We do not discuss here the negative ALH, whose equations

as well can be ‘derived’ from (4.1)–(4.3), referring to, for example, section 6 of [27] for details.

What is important for our present study is that the ALH (and hence the system (4.1)–(4.3)) is an

integrable model, which during its 40-year history have attracted considerable interest and which is

one of the best-studied integrable systems.

Thus, one can use various results that have been obtained for the HBDE and the ALH to derive

solutions for (3.4)–(3.6) and hence for system (2.13) and (2.14). Namely this approach is used

in the following sections where we present two types of solutions: solution built of the Toeplitz

determinants and the soliton solutions.

4.2. Toeplitz solutions for the HL

Here, we presents solutions for our field equations, constructed of the determinants of the Toeplitz

matrices Am
� , defined by

Am
� = det |ωm−a+b|a,b=1,...,� (�� 1) (4.21)

and Am
0 = 1. It can be shown that these determinants satisfy the following identities:

(ξ −η)Am+1
�+1

(
Tξ η A

m
�

)
=
(
Tξ A

m
�

)(
Tη A

m+1
�+1

)− (Tξ A
m+1
�+1

)
(Tη A

m
� ) (4.22)

and (
Tξ A

m
�

)
(Tη A

m
� ) = Am

�

(
Tξ η A

m
�

)
+Am+1

�+1

(
Tξ η A

m−1
�−1

)
(4.23)
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with shifts Tζ being defined by Tζ A
m
� = det

∣∣Tζ ωm−a+b
∣∣
a,b=1,...,�

where

Tζ ωm = ωm+1 −ζ ωm. (4.24)

We present, in Appendix C, a sketch of a proof of these identities which is based on the results

from [28].

It is easy to see from (4.22) and (4.23) that tau-functions defined by

σ = Am−1
�−1 , τ = Am

� , ρ = Am+1
�+1 (�,m = constant) (4.25)

solve equations similar to (4.1)–(4.3) with aξ ,η = ξ −η and bξ ,η = 1,

(ξ −η)τ
(
Tξ η σ

)
=
(
Tξ σ

)
(Tη τ)− (Tη σ)

(
Tξ τ

)
, (4.26)

(ξ −η)ρ
(
Tξ η τ

)
=
(
Tξ τ

)
(Tη ρ)− (Tη τ)

(
Tξ ρ

)
, (4.27)(

Tξ τ
)
(Tη τ) = τ

(
Tξ η τ

)
+ρ

(
Tξ η σ

)
. (4.28)

Thus, one can obtain solutions for our equations by identifying the translations by vectors ααα i with

the shifts Tαi where {αi}i=1..3 is a set of parameters. To write the final formulae, it is convenient to

use the ni-representation of the lattice vectors and the ‘Fourier’ representation of the functions ωm,

ωm =
∫

γ
dh ω̂(h) hm (4.29)

with arbitrary contour γ and function ω̂(h). The definition (4.24) of the shift Tζ can be rewritten as

Tζ ωm =
∫

γ
dh ω̂(h)(h−ζ )hm (4.30)

and can be extended, using (3.10), to

ωm(nnn) =
∫

γ
dh ω̂(h,nnn) hm (4.31)

with

ω̂(h,nnn) = ω̂(h)
3

∏
i=1

(h−αi)
ni−N (n1,n2,n3)

(
nnn =

3

∑
i=1

nieeei

)
(4.32)

and N (n1,n2,n3) being defined in (3.12).

Gathering the above formulae and making simple modifications, like setting m= 0 (note that the

factor hm can be incorporated into the definition of ω̂(h)) and introducing determinants Dk instead

of Am+k
�+k , we can formulate the following
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Proposition 4.1. The Toeplitz solutions for the nonlinear HL equations (2.13)–(2.14) are given by

u(nnn) = ε
[
D−ε(nnn)
D0(nnn)

]ε
(nnn ∈ Λε) (4.33)

where ε =±1, Λ±1 = Λ±,

Dk(nnn) =
{

det |ωk−a+b(nnn)|a,b=1,...,�+k (�+ k � 1)

1 (�+ k = 0)
k = 0,±1 (4.34)

and

ωm(nnn) =
∫

γ
dh ω̂(h) hm

3

∏
i=1

(h−αi)
ni−N (n1,n2,n3)

(
nnn =

3

∑
i=1

nieeei

)
(4.35)

with arbitrary positive integer �, parameters αi (i = 1,2,3), contour γ and function ω̂(h), and
N (n1,n2,n3) being defined in (3.12).

Here, we would like to make a comment about the role of the construction (3.1). One can repeat

the calculations of this section without introducing the vectors ααα i and using the shifts Tεi describing

the ‘original’ translations f (nnn)→ f (nnn+eeei). This leads to the relations (4.35) of proposition 4.1 with

αi replaced with εi and N = 0. However, the restriction ∏iTεi = 1 implies ∏i (h− εi) = 1 which

means that the integral in (4.35) is reduced to the sum over the three roots of the cubic equation.

Clearly, this family of solutions is noticeably less rich than the one presented above.

4.3. Soliton solutions for the HL

To derive the N-soliton solutions for our model we use the results of [27] where we have presented

a large number of identities (soliton Fay identities) for the matrices of a special type. These N×N
matrices are defined by

LA−AR = |1〉〈a |,
RB−BL = |1〉〈b | (4.36)

where L and R are diagonal constant N×N matrices, |1〉 is the N-column with all components

equal to 1, 〈a | and 〈b | are N-component rows that usually depend on the coordinates describing

the model (note that we have replaced the N-columns |α 〉 and |β 〉 used in [27] with |1〉, which can

be done by means of the simple gauge transform).

In [27], the soliton Fay identities are formulated in terms of the shifts defined by

Tξ 〈a | = 〈a |(R−ξ )−1 ,

Tξ 〈b | = 〈b |(L−ξ )
(4.37)

which determine the shifts of all other objects (the matrices A and B, their determinants, the tau-

functions constructed of A and B etc).
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The soliton tau-functions have been defined in [27] as

τ = det |1+AB| (4.38)

and

σ = τ〈a |(1+BA)−1|1〉,
ρ = τ〈b |(1+AB)−1|1〉

(4.39)

The simplest soliton Fay identities, which are equations (3.12)–(3.14) of [27], are exactly equations

(3.6) with bξ ,η = 1 and (3.4)–(3.5) with aξ ,η = ξ −η .

Thus, to obtain the N-soliton solutions one only needs to introduce the nnn-dependence of the

matrices A and B as well as of the rows 〈a | and 〈b |, which can be done by (3.10) and the identifi-

cation of the translations by vectors ααα i with the shifts Tαi (i = 1,2,3):

A(nnn) = A0 ∏3
i=1 (R−αi)

N (n1,n2,n3)−ni

B(nnn) = B0 ∏3
i=1 (L−αi)

ni−N (n1,n2,n3)
(4.40)

with constant matrices A0 and B0 (that are, in fact, A(000) and B(000)) and similar formulae for 〈a(nnn) |
and 〈b(nnn) |.

After expressing, from (4.36), A0 and B0 in terms of 〈a0 |= 〈a(000) | and 〈b0 |= 〈b(000) | one can

write the resulting formulae as follows:

Proposition 4.2. The N-soliton solutions for the nonlinear HL equations (2.13)–(2.14) are given
by

u(nnn) = 〈c± |[A∓1(nnn)+B±1(nnn)
]−1 |1〉±1 (nnn ∈ Λ±). (4.41)

where the matrices A(nnn) and B(nnn) are defined in (4.40) with

A0 =

(
a0k

L j −Rk

)
j,k=1,...,N

, B0 =

(
b0k

R j −Lk

)
j,k=1,...,N

(4.42)

and the constant N-rows 〈c± | are given by 〈c+ | = 〈1 |C and 〈c− | = 〈1 |CT (the superscript ‘T’
stands for the transposition) with

C=M−1, M=

(
1

L j −Rk

)
j,k=1,...,N

. (4.43)

Here, constants αi (i = 1,2,3), Lk, Rk, a0k and b0k (k = 1, ...,N) are the parameters describing the
solution.

Again, as in section 4.2, we would like to note that using the main result of this paper, formu-

lated in proposition 3.1, without introducing the ααα-vectors (see (3.1)) one arrives at the restrictions

∏3
i=1 (L− εi) = ∏3

i=1 (R− εi) = 1. Thus, for a given set of the ε-parameters, one has to construct

two diagonal matrices of only three roots of the cubic equation. Clearly, in this case one can hardly

cross the Hirota’s 3-soliton threshold, whereas proposition 4.2, resulting from (3.1) gives N-soliton

solutions for arbitrary N.
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5. Exact solutions for the TL

In this section, we present solutions for equations (2.18),

3

∑
i=1

Γi

[
1

u(nnn)−u(nnn+gggi)
+

1

u(nnn)−u(nnn−gggi)

]
= 0 (nnn ∈ Λ�) (5.1)

that describe the nonlinear field model (2.21) defined on the TL

Λ� =

{
3

∑
i=1

nigggi, ni ∈ Z

}
. (5.2)

In view of the results of section 2.2, we do not need to perform any additional calculations. We can

identify TL with Λ+,

Λ� = Λ+ =

{
nnn =

3

∑
i=1

nieeei

∣∣∣∣∣
3

∑
i=1

ni = 0mod3

}
, (5.3)

and use the formulae presented in the previous section. Here, we rewrite them in the vector form

evading the use of the coordinates ni. This can be done as follows. Any vector from Λ+, can be

presented as

nnn =
3

∑
i=1

n̂ieeei (5.4)

where the new integer coordinates, that satisfy ∑3
i=1 n̂i = 0, are given by

n̂i = ni −N (n1,n2,n3) (5.5)

with integer (due to (5.3)) N (n1,n2,n3) =
1
3 ∑3

i=1 ni. In the case of the equilateral lattice,

eee2
i = e2, ∠(eeei,eeei+1) = 2π/3 (i = 1,2,3) (5.6)

the coordinates n̂i can be expressed as

n̂i =
2

3e2
(nnn,eeei) (5.7)

where braces ( ,) denote the standard scalar product. Thus, we can rewrite the coordinate-dependent

formulae from the previous section in the vector form using the identity

3

∑
i=1

n̂iλi = (nnn,λλλ ) , λλλ =
2

3e2

3

∑
i=1

λieeei. (5.8)

In particular, sums that stem from the construction (3.1) can be rewritten as follows: if

α∗ =
1

3

3

∑
i=1

αi, (5.9)

then

3

∑
i=1

ni (αi −α∗) =
2

3e2

(
nnn,

3

∑
i=1

αieeei

)
, (5.10)
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while the typical lattice factor, that appear in (4.35) and (4.40), can be written in the exponential

form as

3

∏
i=1

(x−αi)
ni−N (n1,n2,n3) = e(ϕϕϕ(x),nnn) (5.11)

where

ϕϕϕ(x) =
2

3e2

3

∑
i=1

eeei ln(x−αi) . (5.12)

In what follows, we apply these vector formulae to modify the results of section 4.

5.1. Toeplitz solutions for the TL

It is clear that to obtain the Toeplitz solutions for equation (5.1), one can use results presented in

proposition 4.1. The only change that we make (except of adding the condition nnn ∈ Λ� = Λ+), is to

the rewrite formula (4.35) for the nnn-dependence of ωm. This leads to

Proposition 5.1. The Toeplitz solutions for the nonlinear TL equations (5.1) are given by

u(nnn) =
D−1(nnn)
D0(nnn)

(nnn ∈ Λ�) (5.13)

where

Dk(nnn) =
{

det |ωk−a+b(nnn)|a,b=1,...,�+k (�+ k � 1)

1 (�+ k = 0)
k = 0,−1 (5.14)

and

ωm(nnn) =
∫

γ
dh ω̂(h) hm e(ϕϕϕ(h),nnn) (5.15)

with arbitrary positive constant �, parameters αi (i = 1,2,3), contour γ and function ω̂(h), and the
vector function ϕϕϕ(h) being defined in (5.12).

5.2. Soliton solutions for the TL

As in the case of the Toeplitz solutions, we use results obtained for the HL, gathered in proposition

4.2, and present them as

Proposition 5.2. The N-soliton solutions for the nonlinear TL equations (5.1) are given by

u(nnn) = 〈1 |M−1
[
A−1(nnn)+B(nnn)

]−1 |1〉 (nnn ∈ Λ�). (5.16)

where the matrices A(nnn) and B(nnn) are given by

A(nnn) = A0 diag
(

e−(φφφ k,nnn)
)

k=1,...,N φφφ k = ϕϕϕ (Rk)

B(nnn) = B0 diag
(

e(ψψψk,nnn)
)

k=1,...,N ψψψk = ϕϕϕ (Lk)
(5.17)
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with the vector function ϕϕϕ(h) defined in (5.12),

A0 =

(
a0k

L j −Rk

)
j,k=1,...,N

, B0 =

(
b0k

R j −Lk

)
j,k=1,...,N

(5.18)

and

M=

(
1

L j −Rk

)
j,k=1,...,N

. (5.19)

Here, constants αi (i = 1,2,3), Lk, Rk, a0k and b0k (k = 1, ...,N) are the parameters describing
the solution.

The one-soliton solution (N = 1) can be presented, after replacing the vectors φφφ 1 and ψψψ1 with

φφφ± = 1
2
(ψψψ1 ±φφφ 1) and the redefinition of the constants, in the following form:

u(nnn) =
exp
[
δ+− (φφφ+,nnn

)]
cosh

[
δ−− (φφφ−,nnn

)] (5.20)

where

φφφ± =
1

3e2

3

∑
i=1

[ln(R−αi)± ln(L−αi)]eeei. (5.21)

Here, L, R (that we use instead of L1 and R1) and δ± are arbitrary constants and αi (i = 1,2,3) are

related to Γi by Γi = αi+1−αi−1 (because of the arbitrariness of L and R, one can take any particular

solution of these equations, for example, α1 = −Γ2, α2 = Γ1 and α3 = 0). Note that the presented

solution is, at the same time, the Λ+-part of the one-soliton solution for the HL (the values of u(nnn)
with nnn ∈ Λ− can be obtained from (2.15)).

6. Conclusion

To conclude, we would like to give some comments related to the derivation of the explicit solutions

presented in this paper, as well as to some questions that have not been discussed in the preceding

sections.

First we want to repeat the main steps that we made to take into account the specific features

of the HL. The key moment of the bilinearization is the introduction of the tau-functions. One can

see that in the equations of proposition 3.1 the tau-functions appear in a nonstandard way. The

asymmetry between σ and ρ (the latter appears in the denominator) can be ‘explained’ by the wish

to obtain the homogeneity of the differences u(nnn)− u(nnn± eeei) with respect to the scaling/gauge

transformations (σ ,τ,ρ) → (
eλ σ ,τ,e−λ ρ

)
which is typical in complex models, like the one by

Ablowitz and Ladik, where, usually, one has to use the triplet of tau-functions. As to the shift

ννν → ννν −2ααα∗ that we introduced in (3.2) for the negative sublattice Λ−, we cannot give any sound

‘motivation’, one can consider it as a trick to eliminate the asymmetry between the equations on Λ+

and Λ−.

Now, we would like to return to the restriction (2.3) or (2.12). Restrictions of this type often

appear in the studies of integrable models. If we consider, for example, the HBDE, the restriction

similar to (2.12) is present in the most of the works devoted to this system (including the original

paper [18]). However, as it has been demonstrated in, for example, [23], it is not needed for inte-

grability (the widespread opinion now is that it is required for the existence of Hirota-form soliton
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solutions). The same result one can find in, for example, [5]: in the list of the integrable systems the

HBDE is written in the form that contradicts the Hirota’s assumption. Thus, one can try to obtain

solutions for the model considered in this paper without (2.3) or (2.12) which is an interesting prob-

lem from the viewpoint of applications. The ln-type potential (like in (2.2)) appears in physics as the

two-dimensional Coulomb potential. However, (2.12) makes it impossible to interpret our model as

describing a system of two-dimensional point charges because in this case the constants of interac-

tion should be multiplicative, i.e. to be of the form Γi ∝ QnnnQnnn±eeei (Qnnn is the value of the charge of

the particle occupying a node at nnn) with ∑3
i=1 Qnnn±eeei = 0, and it is rather difficult to find examples of

physical systems with such distribution of charges.

Finally, we would like to point out possible continuations of this work. The most straightforward

one is to consider the three-dimensional graphite-type lattices using the integrability of the enlarged

set of equations (3.4)–(3.6). Another possible generalization is to study time-dependent systems

related to the action (2.1) and (2.2). However, these questions are out of the scope of the present

paper and will be addressed in future publications.
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crete Painlevé and Riccati equations. J.Math.Phys., 44 (2003) 3455–3469.

[8] A.I. Bobenko and T. Hoffmann, Hexagonal circle patterns and integrable systems: Patterns with con-

stant angles. Duke Math.J., 116 (2003) 525–566.

[9] A.I. Bobenko, T. Hoffmann and Yu.B. Suris, Hexagonal circle patterns and integrable systems: Patterns

with the multi-ratio property and Lax equations on the regular triangular lattice. Int.Math.Res.Notices,

2002 (2002) 111–164.

[10] A.I. Bobenko, C. Mercat and Yu.B. Suris, Linear and nonlinear theories of discrete analytic functions.

Integrable structure and isomonodromic Greens function. J.Reine Angew.Math., 583 (2005) 117–161.

[11] A.I. Bobenko and Yu.B. Suris, Integrable systems on quad-graphs. Int.Math.Res.Notices, 2002 (2002)

573–611.

[12] R. Boll and Yu.B. Suris, Non-symmetric discrete Toda systems from quad-graphs. Applicable Analysis,

89 (2010) 547–569.

[13] E. Date, M. Jinbo and T. Miwa, Method for generating discrete soliton equations.1. JPSJ, 51 (1982)

4116–4124.

[14] E. Date, M. Jinbo and T. Miwa, Method for generating discrete soliton equations.2. JPSJ, 51 (1982)

4125–4131.

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

417



V.E. Vekslerchik / Explicit solutions for a nonlinear model on the honeycomb and triangular lattices

[15] A. Doliwa, M. Nieszporski and P.M. Santini, Integrable lattices and their sublattices II. From the

B-quadrilateral lattice to the self-adjoint schemes on the triangular and the honeycomb lattices.

J.Math.Phys., 48 (2007) 113506.

[16] E.V. Ferapontov, V.S. Novikov and I. Roustemoglou, On the classification of discrete Hirota-type equa-

tions in 3D. Int.Math.Res.Notices, 2015 (2015) 4933–4974.

[17] J. Hietarinta and D. Zhang, Soliton solutions for ABS lattice equations: II. Casoratians and bilineariza-

tion. J.Phys.A, 42 (2009) 404006.

[18] R. Hirota, Discrete analogue of a generalized Toda equation. JPSJ, 50 (1981) 3785–3791.

[19] F. Nijhoff, J. Atkinson and J. Hietarinta, Soliton solutions for ABS lattice equations: I. Cauchy matrix

approach. J.Phys.A, 42 (2009) 404005.

[20] F. Nijhoff and H. Capel, The discrete Korteweg-de Vries equation. Acta Appl.Math., 39 (1995) 133–158.

[21] F.W. Nijhoff, G.R.W. Quispel and H.W. Capel, Direct linearization of nonlinear difference-difference

equations. Phys.Lett.A, 97 (1983) 125–128.

[22] J.J.C. Nimmo, Darboux transformations and the discrete KP equation. J.Phys.A, 30 (1997) 8693–8704.

[23] A. Ramani, B. Grammaticos and J.Satsuma, Integrability of multidimensional discrete systems.

Phys.Lett.A, 169 (1992) 323–328.

[24] T. Tokihiro, J. Satsuma and R. Willox, On special function solutions to nonlinear integrable equations.

Phys.Lett.A, 236 (1997) 23–29.

[25] V.E. Vekslerchik, Functional representation of the Ablowitz-Ladik hierarchy. J.Phys.A, 31 (1998) 1087–

1099.

[26] V.E. Vekslerchik, Functional representation of the Ablowitz-Ladik hierarchy.II. J.Nonlin.Math.Phys., 9
(2002) 157–180.

[27] V.E. Vekslerchik, Soliton Fay identities: II. Bright soliton case. Journal of Physics A, 48 (2015) 445204.

[28] V.E. Vekslerchik, Explicit solutions for a (2+1)-dimensional Toda-like chain. Journal of Physics A, 46
(2013) 055202.

[29] R. Willox , T. Tokihiro and J. Satsuma, Darboux and binary Darboux transformations for the nonau-

tonomous discrete KP equation J.Math.Phys., 38 (1997) 6455–6469.

Appendix A. Properties of the Hirota system

To simplify the presentation of the proofs of the statements made in section 4.1 we introduce

sα,β = aα,β τ
(
Tαβ σ

)− (Tα σ)
(
Tβ τ

)
+(Tα τ)

(
Tβ σ

)
, (A.1)

rα,β = aα,β ρ
(
Tαβ τ

)− (Tα τ)
(
Tβ ρ

)
+(Tα ρ)

(
Tβ τ

)
, (A.2)

tα,β = bα,β (Tα τ)
(
Tβ τ

)− τ
(
Tαβ τ

)−ρ
(
Tαβ σ

)
(A.3)

which are nothing but the right-hand sides of equations (4.1)–(4.3) (all gothic letters stand for the

functions which are zero in the framework of the problem we study).

A.1. Proof of (4.4) and (4.5)

By trivial algebra one can show that the quantity

t′α,β ,γ = aα,β
(
Tγ τ

)(
Tαβ τ

)−aα,γ
(
Tβ τ

)(
Tαγ τ

)
+aβ ,γ (Tα τ)

(
Tβγ τ

)
(A.4)

can be presented as a linear combination of rα,β :

ρ t′α,β ,γ =
(
Tγ τ

)
rα,β − (Tβ τ

)
rα,γ +(Tα τ)rβ ,γ (A.5)
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This means that equations rα,β = 0, i.e. equations (4.2) imply t′α,β ,γ = 0, i.e. equations (4.4). In a

similar way, the functions

s′α,β ,γ = aα,β
(
Tγ σ

)(
Tαβ σ

)−aα,γ
(
Tβ σ

)(
Tαγ σ

)
+aβ ,γ (Tα σ)

(
Tβγ σ

)
(A.6)

r′α,β ,γ = aα,β
(
Tγ ρ

)(
Tαβ ρ

)−aα,γ
(
Tβ ρ

)(
Tαγ ρ

)
+aβ ,γ (Tα ρ)

(
Tβγ ρ

)
(A.7)

can be presented as

τ s′α,β ,γ =
(
Tγ σ

)
sα,β − (Tβ σ

)
sα,γ +(Tα σ)sβ ,γ (A.8)(

Tαβγ τ
)
r′α,β ,γ =

(
Tαβ ρ

)(
Tγ rα,β

)− (Tαγ ρ
)(

Tβ rα,γ
)
+
(
Tβγ ρ

)(
Tα rβ ,γ

)
(A.9)

which proves (4.5).

A.2. Proof of (4.6) and (4.7)

To prove (4.6) and (4.7) we present the right-hand sides of the latter,

s′′α,β ,γ = aα,β
(
Tγ τ

)(
Tαβ σ

)−aα,γ
(
Tβ τ

)(
Tαγ σ

)
+aβ ,γ (Tα τ)

(
Tβγ σ

)
(A.10)

r′′α,β ,γ = aα,β
(
Tγ ρ

)(
Tαβ τ

)−aα,γ
(
Tβ ρ

)(
Tαγ τ

)
+aβ ,γ (Tα ρ)

(
Tβγ τ

)
(A.11)

as

τ s′′α,β ,γ =
(
Tγ τ

)
sα,β − (Tβ τ

)
sα,γ +(Tα τ)sβ ,γ (A.12)

ρ r′′α,β ,γ =
(
Tγ ρ

)
rα ,β − (Tβ ρ

)
rα,γ +(Tα ρ)rβ ,γ (A.13)

A.3. Proof of (4.9)

The identity (4.9) follows from the fact that

Sα,β ,γ = aα,β aα,γaβ ,γτ
(
Tαβγ σ

)
−aβ ,γ (Tα σ)

(
Tβγ τ

)
+aα,γ

(
Tβ σ

)(
Tαγ τ

)−aα,β
(
Tγ σ

)(
Tαβ τ

)
(A.14)

satisfies(
Tγ σ

)
t′α ,β ,γ +

(
Tγ τ

)
Sα,β ,γ = aα,γaβ ,γτ

(
Tγ sα,β

)
+aβ ,γ

(
Tβγ τ

)
sα,γ −aα,γ

(
Tαγ τ

)
sβ ,γ (A.15)

It should be noted that permutations of the parameters α , β and γ lead to the same result (the left-

hand side of the above equation is a skew-symmetric function). Thus, the equations (4.1) for the

three pairs of the parameters, (α,β ), (α,γ) and (β ,γ) lead to the same expression for the function(
Tαβγ σ

)
which means that they have the property of the three-dimensional consistency.

A.4. Derivation of (4.10)

The necessity of the condition (4.10) for the compatibility of (4.1)–(4.3) comes from the following

observation:

τt′α,β ,γ +ρs′′α,β ,γ +aα,β
(
Tγ τ

)
tα,β −aα,γ

(
Tβ τ

)
tα,γ +aβ ,γ (Tα τ) tβ ,γ

= (Tα τ)
(
Tβ τ

)(
Tγ τ

)
oα,β ,γ (A.16)

where oα,β ,γ is the right-hand side of equation (4.10).
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Appendix B. Equations (4.1)–(4.3) and the ALH

To derive the ALH equations (4.13) and (4.14) we need the ‘deformed’ version of (4.1) and (4.2),

aα,β τ
(
Tαβγ σ

)
= −bα,γ (Tα τ)

(
Tβγ σ

)
+bβ ,γ

(
Tβ τ

)(
Tαγ σ

)
(B.1)

aα,β ρ
(
Tαβγ τ

)
= bβ ,γ

(
Tβ ρ

)(
Tαγ τ

)−bα,γ (Tα ρ)
(
Tβγ τ

)
(B.2)

which can be obtained along the lines of Appendix A. The above equations,

ŝα,β ,γ = aα,β τ
(
Tαβγ σ

)
+bα,γ (Tα τ)

(
Tβγ σ

)−bβ ,γ
(
Tβ τ

)(
Tαγ σ

)
(B.3)

r̂α,β ,γ = aα,β ρ
(
Tαβγ τ

)−bβ ,γ
(
Tβ ρ

)(
Tαγ τ

)
+bα,γ (Tα ρ)

(
Tβγ τ

)
(B.4)

are the linear cobinations of the already used ‘zeroes’:(
Tγ τ

)
ŝα,β ,γ = τ

(
Tγ sα,β

)
+
(
Tβγ σ

)
tα,γ −

(
Tαγ σ

)
tβ ,γ (B.5)(

Tαβ τ
)
r̂α,β ,γ =

(
Tαβγ τ

)
rα,β − (Tβ ρ

)(
Tα tβ ,γ

)
+(Tα ρ)

(
Tβ tα,γ

)
(B.6)

which means that equations sα,β = rα,β = tα,β = 0 imply ŝα,β ,γ = r̂α,β ,γ = 0.

But setting β = γ = κ in (B.1) and (B.2), applying T
−1
κ and rewriting the resulting equations in

terms of Q and R (see (4.11) and (4.12)) one arrives at

TαT
−1
κ Q−Q = aα,κbα,κ Pα TαQ (B.7)

R−TαT
−1
κ R = aα,κbα,κ Pα T

−1
κ R (B.8)

where

Pα =
(Tατ)

(
T
−1
κ τ
)

bα,κ τ
(
TαT

−1
κ τ
) (B.9)

which can be presented (by means of the shifted by T
−1
κ equations (4.3) with β = κ and the defini-

tions of Q and R) as

Pα = 1−R
(
TαT

−1
κ Q

)
. (B.10)

This completes the proof of (4.13) and (4.14).

Appendix C. Proof of (4.22) and (4.23)

Here, we present the outline of the derivation (or verification) of equations (4.22) and (4.23) for the

Toeplitz determinants.

We use some of the identities that where collected in [28] and that can be derived by applying

the Jacobi identity to the determinants (4.21) and the framed ones,

Fm
�+1(ζ ) = det

∣∣∣∣∣∣∣
1 ζ ζ 2 . . . ζ �

ωm−1 ωm ωm+1 . . . ωm+�−1

...
...

...
. . .

...

∣∣∣∣∣∣∣ . (C.1)

We start with equations (A.3) and (A.7) from the Appendix A of [28]:

Ak
�−1F

k+1
�+1(ζ )−Ak+1

� Fk
�(ζ )+ζAk

� F
k+1
� (ζ ) = 0 (C.2)
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and

Ak
�F

k
�+1 −Ak

�+1F
k
� −Ak−1

� Fk+1
�+1 = 0. (C.3)

Rewriting Fm
�+1 as a �-determinant,

Fm
�+1(ζ ) = det |Ωm+a−b(ζ )|a,b=1,...,� (C.4)

with

Ωm(ζ ) = ωm −ζ ωm−1. (C.5)

and using definition (4.24) one can present Fm
�+1-determinants as shifted Am

� -determinants,

Fm
�+1(ζ ) = Tζ A

m−1
� (C.6)

which converts (C.2) and (C.3) into

pm
� (ζ ) := ζAm

�+1

(
Tζ A

m
�

)−Am+1
�+1

(
Tζ A

m−1
�

)
+Am

�

(
Tζ A

m
�+1

)
= 0, (C.7)

qm
� (ζ ) := Am

�

(
Tζ A

m+1
�

)−Am+1
�

(
Tζ A

m
�

)
+Am+1

�+1

(
Tζ A

m
�−1

)
= 0. (C.8)

Now, we demonstrate that the combinations of the determinants that appear in (4.22) and (4.23),

um
� (ξ ,η) := (ξ −η)Am+1

�+1

(
Tξ η A

m
�

)− (Tξ A
m
�

)(
Tη A

m+1
�+1

)
+
(
Tξ A

m+1
�+1

)
(Tη A

m
� ) (C.9)

and

vm
� (ξ ,η) :=

(
Tξ A

m
�

)
(Tη A

m
� )−Am

�

(
Tξ η A

m
�

)−Am+1
�+1

(
Tξ η A

m−1
�−1

)
(C.10)

vanish by virtue of the equations pm
� (ζ ) = qm

� (ζ ) = 0.

It is a straightforward (though rather tedious) exercise in algebra to verify that

Am+1
�

(
Tξ η A

m
�−1

)
um
� (ξ ,η)

−Am+1
�+1

(
Tξ η A

m
�

)
um
�−1(ξ ,η)

=

(
Tη A

m
�

)(
Tξ η A

m
�−1

)
pm+1
� (ξ )

−(Tξ A
m
�

)(
Tξ η A

m
�−1

)
pm+1
� (η)

−Am+1
�+1

(
Tξ A

m+1
�

)(
Tη p

m
�−1(ξ )

)
+Am+1

�+1

(
Tη A

m+1
�

)(
Tξ p

m
�−1(η)

)
(C.11)

which means that

um
� (ξ ,η) = um(ξ ,η)Am+1

�+1

(
Tξ η A

m
�

)
(C.12)

where the coefficients um(ξ ,η) do not depend on the sizes of the involved determinants. Thus, to

determine um(ξ ,η) one can use the lowest-order version of this equation (say, with � = 1) and

obtain um(ξ ,η) = 0 and, hence, um
� (ξ ,η) = 0 which is the statement (4.22) that we want to prove.
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In a similar way, it is straightforward to ascertain that

(
Tξ A

m
�

)(
Tη A

m
�

)
vm
�+1(ξ ,η)

−(Tξ A
m
�+1

)(
Tη A

m
�+1

)
vm
� (ξ ,η)

=

−Am
�+1

(
Tη A

m
�

)(
Tξ p

m
� (η)

)
−(Tη A

m
�

)(
Tξ η A

m−1
�

)
qm
�+1(ξ )

+
(
Tξ A

m
�+1

)(
Tξ η A

m
�

)
pm
� (η)

+Am+1
�+1

(
Tξ A

m
�+1

)(
Tη q

m−1
� (ξ )

) (C.13)

that leads to

vm
� (ξ ,η) = vm(ξ ,η)

(
Tξ A

m
�

)
(Tη A

m
� ) (C.14)

where the coefficient vm(ξ ,η) is the same for all �. Again, rewriting the definition of vm
� (ξ ,η) for

small � one can show that vm(ξ ,η) and, hence, vm
� (ξ ,η) are equal to zero, which proves (4.23).
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