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Integrable systems are derived from inelastic flows of timelike, spacelike, and null curves in 2– and 3– dimen-
sional Minkowski space. The derivation uses a Lorentzian version of a geometrical moving frame method which
is known to yield the modified Korteveg-de Vries (mKdV) equation and the nonlinear Schrödinger (NLS)
equation in 2– and 3– dimensional Euclidean space, respectively. In 2–dimensional Minkowski space, time-
like/spacelike inelastic curve flows are shown to yield the defocusing mKdV equation and its bi-Hamiltonian
integrability structure, while inelastic null curve flows are shown to give rise to Burgers’ equation and its sym-
metry integrability structure. In 3–dimensional Minkowski space, the complex defocusing mKdV equation and
the NLS equation along with their bi-Hamiltonian integrability structures are obtained from timelike inelas-
tic curve flows, whereas spacelike inelastic curve flows yield an interesting variant of these two integrable
equations in which complex numbers are replaced by hyperbolic (split-complex) numbers.
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1. Introduction
There is an interesting geometric relationship between integrable systems and non-stretching
(inelastic) geometrical flows of curves in various geometric spaces. For example, in the Euclidean
plane, inelastic curve flows yield [12] the focusing mKdV equation ut = uxxx +

3
2 u2ux where x is the

arclength of the curve and u is the curvature invariant of the curve, with the geometrical motion of
the curve being given by the vortex patch equation. In Euclidean space, inelastic curve flows whose
geometrical motion is given by the vortex filament equation [15] and its axial generalization [11]
respectively yield [4,11,15,16,18] the focusing NLS equation−iut = uxx+

1
2 |u|

2u and the focusing
complex mKdV equation ut = uxxx +

3
2 |u|

2ux. Here u = κ exp(i
∫

τdx) is the Hasimoto variable [15]
which is a covariant of the curve defined in terms of the curvature and torsion invariants κ and τ up
to arbitrary (constant) phase rotations u→ eiφ u.

The derivation of these integrable systems from the underlying curve flows is based on a moving
frame method that uses a Frenet frame [13] in the case of curves in the Euclidean plane and a
parallel frame [5] in the case of curves in Euclidean space. Parallel frames differ from a Frenet
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frame by a gauge transformation given by a rotation of the two normal vectors (in the normal plane
of the curve) such that, at each point, their derivative along the curve is purely tangential. In both
the case of the Euclidean plane and Euclidean space, the components of the Cartan matrix of the
frame define the flow variable u, and the Cartan structure equations of the frame yield a Lax pair
as well as a pair of Hamiltonian operators, which provide the integrability structure of the flows
on u. In addition, in the case of space curves, the U(1) phase-rotation invariance of the flows on u
geometrically corresponds to the fact that a parallel frame is determined by a curve only up to the
action of arbitrary rigid SO(2) rotations on the normal vectors in the frame, whereas a Frenet frame
is determined uniquely by a curve.

In this paper, integrable systems are derived in an analogous way from inelastic curve flows in
the Minkowski plane and in Minkowski space [21]. Several new results are obtained by considering
timelike curves, spacelike curves, and null curves. The paper is organized as follows.

In Sec. 2, a Lorentzian version of a Frenet frame is applied to inelastic curve flows in the
Minkowski plane. Geometrical inelastic flows of timelike and spacelike curves are found to yield the
defocusing mKdV equation and its bi-Hamiltonian structure. In contrast, for null curves, a Frenet
frame does not exist and instead a null frame is introduced. Geometrical inelastic flows of null
curves are shown to yield Burger’s equation and the Cole-Hopf transformation under which Burger’s
equation is mapped into the heat equation. This geometric realization of Burger’s equation is new.
(See Ref. [10] for related work.) Frame formulations of inelastic flows of timelike, spacelike, and
null curves has appeared previously in Ref. [14].

In Sec. 3, starting from a Frenet frame, a Lorentzian counterpart of a parallel frame is intro-
duced for timelike curves in 3-dimensional Minkowski space. The normal plane of a timelike curve
is spacelike, and so a Lorentzian parallel frame is determined by a curve up to the action of rigid
SO(2) rotations, similarly to the case of Euclidean space. Consequently, the Cartan matrix of this
frame yields the same complex-valued Hasimoto variable as in the case of Euclidean space. For
timelike curves undergoing an inelastic geometrical flow given by a timelike version of the vor-
tex filament equation and its axial generalization, the Cartan structure equations of the Lorentzian
parallel frame are shown to yield the defocusing NLS equation and the defocusing complex mKdV
equation along with their bi-Hamiltonian integrability structure. A similar derivation of the defocus-
ing NLS equation has appeared in Ref. [8] without, however, deriving the bi-Hamiltonian structure
of this equation or considering the defocusing complex mKdV equation. Parallel frames for non-null
curves have been considered previously in Ref. [22].

In Sec. 4, spacelike curves in Minkowski space are considered. Because the normal plane of
a spacelike curve is timelike, two different cases arise depending on whether the principal normal
vector of the curve is non-null or null.

When the principal normal vector of a spacelike curve is non-null, a Frenet frame exists which
is used to define a Lorentzian parallel frame by a gauge transformation given by a boost (hyper-
bolic rotation) of the two normal vectors. Consequently, the resulting frame is determined by the
curve only up to the action of rigid SO(1,1) boosts. These boosts comprise a group of hyperbolic
rotations, and the Hasimoto variable arising from the Cartan matrix of this frame is no longer a
complex variable but instead is a hyperbolic generalization [7] based on the split-complex numbers
defined by j2 = 1 and j̄ =− j. For spacelike curves undergoing an inelastic geometrical flow given
by a spacelike generalization of the vortex filament equation and its axial generalization, the Cartan
structure equations of a non-null parallel frame are shown to yield variants of the defocusing NLS
equation and the defocusing complex mKdV equation, along with their bi-Hamiltonian integrability
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structure, in which i is replaced by j. Such integrable systems have been derived previously in the lit-
erature [6] by purely algebraic methods. Our results provide an interesting geometric realization for
these systems. A special case of the SO(1,1)-invariant complex mKdV equation has been derived in
Ref. [9] using similar geometrical methods, and a system equivalent to the SO(1,1)-invariant NLS
equation appears in Ref. [8] in a less geometric form, without any results on the bi-Hamiltonian
structure of these equations.

When a spacelike curve has a null principal normal vector, a complete Frenet frame does not
exist. Instead a null frame is introduced for the normal plane. Then a Lorentzian parallel frame
is defined by a gauge transformation such that the derivative of the pair of null normal vectors in
the frame is purely tangential to the curve. The gauge transformation acts as a scaling on these
null normal vectors, and consequently the resulting frame is determined by the curve only up to
the action of rigid scalings (where the two null vectors scale reciprocally to each other). Because
the principal normal vector of the curve is constrained to be null, the Cartan matrix has one fewer
component than in the case when the principal normal vector is non-null. Interestingly, the Cartan
structure equations are found to yield Burgers’ equation and the KdV equation, as well as the heat
equation and the Airy equation. These results are new. The corresponding geometrical inelastic
curve flows are shown to be given by variants of a heat map equation and an Airy map equation.

Related work on null curve flows in 3– and 4– dimensional Minkowski space appears in Ref.
[14, 19, 20].

Some concluding remarks are made in Sec. 5.

2. Curve flows and integrable systems in R1,1

The Minkowski plane is a 2-dimensional vector space R1,1 equipped with a Lorentz-signature metric
η and a compatible volume form ε . A vector ~v ∈ R1,1 is respectively timelike, spacelike, or null if
its Minkowski norm η(~v,~v) is negative, positive, or zero. The set of all null vectors spans a pair of
1-dimensional null lines through the origin in R1,1, called the lightcone.

Up to a sign, the volume form is determined from the metric by the relation

ε(~v,~w)2 = η(~v,~w)2−η(~v,~v)η(~w,~w) (2.1)

holding for any vectors~v,~w ∈R1,1. Associated to the metric and the volume form is the Hodge dual
operator ∗ defined by

η(∗~v,~w) = ε(~v,~w) (2.2)

which has the properties

∗(∗~v) =~v, η(∗~v,~v) = 0 (2.3)

and

η(∗~v,~w) =−η(∗~w,~v), η(∗~v,∗~w) =−η(~v,~w) (2.4)

holding for any vectors~v,~w ∈ R1,1.
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In inertial coordinates X i = (X0,X1), the Minkowski metric has the components ηi j =

(
−1 0
0 1

)
and the volume tensor has the components εi j =

(
0 1
−1 0

)
, where X0 is a timelike coordinate and X1

is a spacelike coordinate. The Hodge dual operator ∗ is given by the associated tensor εi
j = εikη jk.

The isometries of the Minkowski plane consist of time and space translations and boosts. These
transformations comprise the 3-dimensional Poincare group ISO(1,1)' SO(1,1)nR2 (also called
the inhomogeneous Lorentz group).

2.1. Timelike/spacelike curves and Frenet frames

Let~γ(x) = (X0(x),X1(x)) be a curve in R1,1 such that

η(~γx,~γx) 6= 0 (2.5)

at every point x on the curve. Such a curve is timelike if η(~γx,~γx)< 0 or spacelike if η(~γx,~γx)> 0.
In both cases we hereafter choose x to be the proper-time or proper-distance arclength parameter
defined by √

|η(~γx,~γx)|= 1. (2.6)

From relation (2.3), we note that the vectors ~γx and ∗~γx are orthogonal in the Minkowski met-
ric. Since ~γx is assumed to be non-null, then this implies ∗~γx is also non-null. Hence, for a time-
like/spacelike curve~γ(x) in R1,1, this pair of vectors can be used to define a Lorentzian version of a
Frenet frame [14]

e‖ =~γx = T, unit timelike/spacelike tangent vector (2.7a)

e⊥ = ∗~γx = ∗T = N, unit spacelike/timelike normal vector (2.7b)

satisfying

η(e‖,e‖) =∓1, η(e⊥,e⊥) =±1, (2.8)

η(e‖,e⊥) = 0. (2.9)

The Frenet equations for this frame (2.7) are easily derived as follows. First, from the x-
derivative of equation (2.8), we have η(e‖x,e‖) = 0 and η(e⊥x,e⊥) = 0, which implies e‖x = u1e⊥
and e⊥x = u2e‖ for some functions u1(x) and u2(x). Next, from the x-derivative of equation (2.9), we
have η(e‖x,e⊥)+η(e⊥x,e‖) = 0. Now substituting the previous expressions for the x-derivatives
of e‖ and e⊥, and then using the norm relations (2.8), we find 0 = u1η(e⊥,e⊥) + u2η(e‖,e‖) =
±(u1−u2). This yields u1 = u2 = u in both cases. Thus the Frenet equations are given by(

e‖
e⊥

)
x
=

(
0 u
u 0

)(
e‖
e⊥

)
(2.10)

where u geometrically represents the Lorentzian curvature invariant of the curve~γ(x), and where the

Cartan matrix
(

0 u
u 0

)
belongs to the Lie algebra so(1,1) of the SO(1,1) group of boost isometries

in R1,1.
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We now consider curve flows ~γ(t,x) that locally preserve both the timelike/spacelike signature
(2.5) of the curve and the proper time/distance normalization (2.6) of the arclength parameter. Such
flows are called inelastic and are specified by a flow vector

~γt = h‖e‖+h⊥e⊥ (2.11)

expressed in terms of tangential and normal components in the Frenet frame (2.7). The Frenet frame
itself will be carried by the flow, according to the equations(

e‖
e⊥

)
t
=

(
0 ω

ω 0

)(
e‖
e⊥

)
(2.12)

which arise from equations (2.8)–(2.9) similarly to the derivation of the Frenet equations (2.10).
Here ω geometrically represents a Lorentzian invariant of the curve flow, and the Cartan matrix(

0 ω

ω 0

)
belongs to the Lie algebra so(1,1).

The Frenet equations (2.10) and the flow equations (2.12) are related by the compatibility con-
dition that the mixed t,x-derivatives of the Frenet frame (2.7) are equal. Since the Cartan matrices
commute, this yields

ut = ωx. (2.13)

Likewise, the tangent vector (2.7a) and the flow vector (2.11) of the curve are related by the com-
patibility condition that the mixed t,x-derivatives of~γ(t,x) are equal, which gives

h⊥xe⊥+h⊥e⊥x +h‖xe‖+h‖e‖x = e‖t . (2.14)

After substituting the Frenet equations (2.10) and the flow equations (2.12) for the derivatives of e‖
and e⊥, we obtain

e‖(h‖x +uh⊥)+ e⊥(h⊥x +uh‖−ω) = 0. (2.15)

Hence, from the vanishing of the coefficients of the frame vectors e‖ and e⊥, we find

ω = h⊥x +uh‖, (2.16)

h‖x =−uh⊥. (2.17)

These compatibility equations (2.16)–(2.17) and (2.13) are the Cartan structure equations of
the Frenet frame. They have a natural operator formulation as follows. We use equation (2.17) to
express h‖ =−D−1

x (uh⊥), so then (2.16) becomes

ω = h⊥x−uD−1
x (uh⊥). (2.18)

Hence, the Cartan structure equations reduce to the system (2.18) and (2.13).
Recall that an operator H is Hamiltonian iff it defines an associated Poisson bracket

{H,G}H =
∫
(δH/δu)D(δG/δu)dx (2.19)

obeying skew-symmetry {H,G}H + {G,H}H = 0 and the Jacobi identity {{H,G}H ,F}H +

cyclic = 0 for all functionals H, G, F on the x-jet space J∞ of the variable u, where δ/δu denotes
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the standard Euler operator. The formal inverse of a Hamiltonian operator defines a symplectic
operator. Compatibility of a Hamiltonian operator H and a symplectic operator J is the state-
ment that every linear combination c1H + c2J −1 is a Hamiltonian operator, or equivalently that
c1H −1 + c2J is a symplectic operator.

Theorem 1. For timelike or spacelike inelastic curve flows in R1,1, the curve invariant u satisfies
the system

ut = H (ω), H = Dx (2.20)

ω = J (h⊥), J = Dx−uD−1
x u (2.21)

where H and J are a pair of compatible Hamiltonian and symplectic operators. Composition of
these operators yields the evolution equation

ut = R(h⊥) (2.22)

for u in terms of the normal component h⊥ of the flow, where

R = H J = Dx
2−u2−uxD−1

x u (2.23)

is a hereditary recursion operator.

This theorem is a counterpart of a similar result (see e.g. [3, 23]) known for inelastic curve
flows in the Euclidean plane and can be proved by the same methods. In particular, compared to the
Euclidean case, the Hamiltonian operator (2.20) is exactly the same while the symplectic operator
(2.21) differs only by the sign of the nonlocal term.

As a consequence of the compatibility of this pair of operators (2.20) and (2.21), their obvious
invariance under x-translations can be used to derive a hierarchy of flows starting from a root flow
ut = ux corresponding to the generator of x-translations on u, due to a general theorem of Magri [17].
This leads to the following main result.

Theorem 2. There is a hierarchy of integrable bi-Hamiltonian flows on u(t,x) given by

ut = Rn(ux) = H (δH(n)/δu), n = 0,1,2, . . .

= E (δH(n−1)/δu), n = 1,2, . . .
(2.24)

(called the +n flow) in terms of Hamiltonians H(n) =
∫

H(n)dx where

H = Dx, E = RH = Dx
3−u2Dx−uxD−1

x uDx (2.25)

are compatible Hamiltonian operators, and where

H(n) = (1+2n)−1D−1
x (uRn(ux)), n = 0,1,2, . . . (2.26)

are local Hamiltonian densities.

The expression for the Hamiltonians (2.26) in this theorem arises from a scaling formula derived
in Ref. [1].
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The +1 flow in the hierarchy (2.24) is explicitly given by

ut = uxxx− 3
2 u2ux (2.27)

which is the defocusing mKdV equation. It has the explicit bi-Hamiltonian structure

ut = H (δH(1)/δu) = E (δH(0)/δu) (2.28)

in terms of the Hamiltonian densities

H(0) = 1
2 u2, H(1) =−1

2(u
2
x +

1
4 u4) (2.29)

(modulo trivial densities given by total x-derivatives).
The entire hierarchy (2.24) of flows corresponds to a hierarchy of commuting vector fields

X(n) = Rn(ux)∂u, n = 0,1,2, . . . (2.30)

with the root vector field being the generator of x-translations, X(0) = ux∂u. Recall that a vector
field is Hamiltonian iff its prolongation on the x-jet space J∞ satisfies prXG = {G,H}H for some
functional H, where G is an arbitrary functional. Theorem 2 shows that all of the vector fields in
this hierarchy are Hamiltonian, as given by prX(n)G = {G,H(n)}H , where H(n) =

∫
H(n)dx is the

functional with the Hamiltonian density (2.26). Additionally, each vector field except for X(0) =

ux∂u is bi-Hamiltonian, due to prX(n)G = {G,H(n−1)}E for all n ≥ 1. Since the hierarchy for all
n ≥ 0 is commuting, every Hamiltonian vector field (2.30) is the generator of a symmetry for the
defocusing mKdV equation (2.27), and every associated Hamiltonian (2.26) is a conserved density
for the defocusing mKdV equation (2.27).

Proposition 1. Each flow in the hierarchy (2.24) determines an inelastic timelike/spacelike curve
flow

~γt = h(n)‖ T +h(n)⊥ N, n = 1,2, . . . (2.31)

whose tangential and normal components are given by

h(n)‖ = (2n−1)H(n−1), h(n)⊥ = Rn−1(ux), n = 1,2, . . . (2.32)

where

T =~γx, N = ∗~γx. (2.33)

The components (2.32) of these flows are functions of the curve invariant u and its x-derivatives,
so thus the equation of motion (2.31) are invariant under the isometry group ISO(1,1) of the
Minkowski plane.

Each equation of motion (2.31) describes a geometric non-stretching motion of the curve. The
curve flow n = 1 corresponding to the defocusing mKdV equation (2.27) is given by

~γt =−1
2 u2T +uxN. (2.34)

This equation of motion is a Lorentzian version of the vortex patch equation. It can be expressed
entirely in terms of ~γx, ∗~γx, and their x-derivatives through the Frenet equations (2.10) as follows.
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We have

u =±η(e‖x,e⊥) =±η(∗~γx,~γxx), u2 =±η(e‖x,e‖x) =±η(~γxx,~γxx) (2.35)

and hence

ux =±η(∗~γx,~γxxx) (2.36)

using the relation (2.3). Thus the equation of motion (2.34) becomes

~γt =−1
2 η(∗~γx,~γxx)

2~γx±η(∗~γx,~γxxx)∗~γx, η(~γx,~γx) =∓1. (2.37)

We can simplify this equation of motion further by using the frame expansion

~v =±(η(~v,e⊥)e⊥−η(~v,e‖)e‖) (2.38)

holding for any vector~v ∈ R1,1. This yields

~γt =∓3
2 η(~γxx,~γxx)~γx +~γxxx, η(~γx,~γx) =∓1 (2.39)

which is a Lorentzian version of the non-stretching mKdV map equation [2], in the Minkowski
plane.

2.2. Null curves and null frames

Let~γ(x) = (X0(x),X1(x)) be a null curve in R1,1, satisfying

η(~γx,~γx) = 0 (2.40)

at every point x on the curve. Here, in contrast to the case of non-null curves, the parameter x is
arbitrary and cannot be normalized solely in terms of~γx.

Moreover, the vectors~γx and ∗~γx are now parallel, since we have 0 = η(~γx,~γx) =−η(∗~γx,∗~γx) =

ε(∗~γx,~γx), from the relations (2.2) and (2.4), where antisymmetry of ε directly implies ∗~γx = a~γx for
some function a(x). Similarly, the vectors~γx and~γxx are parallel, since the x-derivative of η(~γx,~γx) =

0 yields η(~γx,~γxx)= 0 from which we obtain ε(∗~γx,~γxx)=−η(~γx,~γxx)= 0 through the relations (2.2)
and (2.4). Antisymmetry of ε then implies~γxx = b∗~γx for some function b(x), and thus~γxx is parallel
to ∗~γx which itself is parallel to~γx.

Hence, for defining a frame, we need another vector, linearly independent of ~γx. One natural
choice is to use a null vector on the opposite side of the lightcone. If ~v is a null vector in R1,1, let
N be a linear map that produces a null vector N (~v) such that η(N (~v),~v) =−1. Note this implies
~v+N (~v) is a timelike vector, since η(~v+N (~v),~v+N (~v)) = 2η(~v,N (~v)) =−2. Hence the null
vectors~v and N (~v) are spatial reflections of each other with respect to this timelike vector in R1,1,
with the reflection being given by ~v− 1

2(~v+N (~v)) = 1
2(~v−N (~v)) = −(N (~v)− 1

2(~v+N (~v)))
where ~v−N (~v) is a spacelike vector orthogonal to ~v +N (~v). Also note that a change in the
normalization η(N (~v),~v) =−1 only produces a scaling of the null vector N (~v).
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A null frame for a null curve~γ(x) in R1,1 can then be defined by

e+ =~γx = T, null tangent vector (2.41a)

e− = N (~γx) = N (T ), null opposite vector (2.41b)

with

η(e+,e+) = η(e−,e−) = 0 (2.42)

η(e+,e−) =−1 (2.43)

where these properties (2.42)–(2.43) uniquely determine e− when e+ is given.
The Frenet equations for this frame (2.41) are easily derived by the same steps used in the case

of a Frenet frame. First, the x-derivative of equation (2.42) yields η(e+x,e+) = 0 and η(e−x,e−) =
0. This implies e±x = u±e± for some functions u±(x). Next, the x-derivative of equation (2.43)
combined with the previous expressions for the x-derivatives of e± gives 0 = (u++u−)η(e+,e−) =
−(u++u−), and hence we have u+ =−u− = u. The Frenet equations are thus given by(

e+
e−

)
x
=

(
u 0
0 −u

)(
e+
e−

)
(2.44)

where the Cartan matrix
(

u 0
0 −u

)
belongs to the Lie algebra of the abelian group of null boosts in

R1,1. These equations (2.44) are preserved if the normalization (2.43) of the null frame is changed.
However, if the null parameter x is changed by reparameterizing the curve, then the equations (2.44)
undergo a gauge transformation. In particular, for x→ x̃(x), with x̃′ 6= 0, we have u→ ũ = (1/x̃′)u+
(1/x̃′)′. By restricting such reparameterizations to affine transformations x̃ = αx+β , where α 6=
0 and β are constants, we see that u only undergoes a scaling by α . Therefore, u geometrically
represents a relative affine invariant of the parameterized null curve.

We now consider inelastic null curve flows~γ(t,x), in which both the null signature η(~γx,~γx) = 0
and the null parameter x of the curve are locally preserved by the flow. Such flows are specified by
a flow vector

~γt = h+e++h−e− (2.45)

expressed in terms of the null frame (2.41). The null frame will be carried by the flow, such that(
e+
e−

)
t
=

(
ω 0
0 −ω

)(
e+
e−

)
(2.46)

where the Cartan matrix belongs to the Lie algebra of the abelian group of null boosts in R1,1. These
equations (2.46) arise from the null frame equations (2.42)–(2.43) similarly to the derivation of the
Frenet equations (2.44) and are therefore preserved if the normalization (4.90) of the null frame
is changed. Consequently, ω represents a relative affine invariant of the time-parameterized curve
flow.

The Frenet equations (2.44) and the null flow equations (2.46) are related by the compatibility
condition that the mixed t,x-derivatives of the null frame (2.41) are equal. Likewise, the tangent
vector (2.41a) and the flow vector (2.45) of the curve are related by the compatibility condition that
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the mixed t,x-derivatives of~γ(t,x) are equal. By the same steps used in the spacelike/timelike case,
these conditions yield

ut = ωx (2.47)

ω = h+x +uh+ (2.48)

h−x = uh− (2.49)

which are the Cartan structure equations of the null frame.
From equation (2.49), we naturally obtain a potential variable related to the variable u by

vx = h−x/h− = u, v = lnh− =
∫

udx (2.50)

up to the gauge freedom v→ v+ f (t). The remaining equations (2.47) and (2.48) then become

vt = ω = h+x + vxh+ (2.51)

after a suitable gauge transformation is used to absorb an arbitrary integration constant (which is a
function of t). Note, since u has the geometrical meaning of a relative affine invariant of the curve
under reparameterizations x→ αx+β , where α 6= 0 and β are constants, we see that v =

∫
udx is

invariant up to an additive constant. Therefore v represents an affine covariant of the curve.
The system (2.50)–(2.51) has an interesting operator structure, involving a recursion operator,

as follows.

Theorem 3. For inelastic null curve flows in R1,1, the affine covariant v =
∫

udx satisfies the equa-
tion

vt = R(h+), R = Dx + vx (2.52)

in terms of the tangential component h+ of the flow, where R is the hereditary recursion operator
for Burgers’ equation in potential form.

This recursion operator R can be used to derive a hierarchy of flows starting from a root flow
vt = vx corresponding to the generator of x-translations on v. The following main result shows that
the odd flows have a gradient-energy structure, while the even flows have a Hamiltonian structure.

Theorem 4. There is a hierarchy of integrable flows on v(t,x) given by

vt = Rn(vx), n = 1,2, . . . (2.53)

=

{
−exp(−2v)δH(l)/δv, l = (n+1)/2, n = 1,3, . . .

H (δH(l)/δv), l = n/2, n = 2,4, . . .
(2.54)

(called the +n flow) in terms of energies/Hamiltonians H(n) =
∫

H(n)dx, where

H =−exp(−v)Dx exp(−v) (2.55)

is a Hamiltonian operator, and where

H(l) = 1
2(−1)l−1(Dl

x exp(v))2, l = 1,2, . . . (2.56)

are local densities.
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The +1 flow in this hierarchy (2.53) is explicitly given by

vt = vxx + vx
2 (2.57)

which is Burgers’ equation in potential form. It has the gradient structure

vt =−exp(−2v)δH(1)/δv (2.58)

in terms of the energy density

H(1) = 1
2 exp(2v)vx

2. (2.59)

We remark that this structure implies

dH(1)

dt
=
∫

vt(δH(1)/δv)dx =−
∫

exp(−2v)(δH(1)/δv)2dx < 0 (2.60)

(modulo boundary terms in the integral) whereby the energy integral H(1) =
∫ 1

2 exp(2v)vx
2dx > 0

is a positive, decreasing function of t. (This property can be used to show that solutions v(t,x) of
equation (2.57) having finite energy are dispersive.)

The odd part of the hierarchy (2.53) has a gradient-energy structure similar to this +1 flow. In
contrast, the even part of the hierarchy is quite different.

The +2 flow is given by

vt = vxxx +3vxxvx + vx
3 (2.61)

which has the Hamiltonian structure

vt = H (δH(1)/δv) (2.62)

where the Hamiltonian is the same expression H(1)=
∫ 1

2 exp(2v)vx
2dx as the energy integral appear-

ing in the +1 flow. There is a similar Hamiltonian structure for the other even flows.
The entire hierarchy (2.53) of flows on v(t,x) corresponds to a hierarchy of commuting vector

fields

X(n) = Rn(vx)∂v, n = 0,1,2, . . . (2.63)

with the root vector field being the generator of x-translations, X(0) = vx∂v. From Theorem 4, we
see that all of the odd vector fields (i.e. n = 1,3, . . .) have a gradient structure, while all of the even
vector fields (i.e. n= 2,4, . . .) have a Hamiltonian structure. Since the hierarchy is commuting, every
vector field (2.63) in this hierarchy is the generator of a symmetry for Burgers’ equation in potential
form (2.57).

It is interesting to formulate the preceding results by using the variables u and h− which are
related to v by equation (2.50). This equation has exactly the form of the Hopf-Cole transformation,
under which Burgers’ equation can be mapped to the heat equation.
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In terms of u and h−, the vector fields (2.63) become

X(n) = h(n)+ ∂v = g(n)∂u = k(n)∂h− , n = 0,1,2, . . . (2.64)

where

h(n)+ = Rn(vx), g(n) = Dxh(n)+ = Qn(ux), k(n) = h−h(n)+ = K n(h−x) (2.65)

are given by the recursion operators

R = Dx + vx, Q = DxRD−1
x = Dx +u+uxD−1

x , K = exp(v)R exp(−v) = Dx (2.66)

using equation (2.50). The odd and even vector fields in this hierarchy (2.64) will respectively inherit
a gradient structure and a Hamiltonian structure through the variational relation

δH/δv =−DxδH/δu = exp(v)δH/δh−. (2.67)

This leads to the following result.

Theorem 5. The hierarchy of integrable flows (2.53) on v(t,x) yields the equivalent hierarchy of
linear flows on h−(t,x),

h−t = Dx
n(h−x), n = 1,2, . . . (2.68)

=

{
−δH(l)/δh−, l = (n+1)/2, n = 1,3, . . .

−Dx(δH
(l)/δh−), l = n/2, n = 2,4, . . .

(2.69)

in terms of energies/Hamiltonians H(l) =
∫

H(l)dx, where

H(l) = 1
2(−1)l−1(Dl

xh−)2 l = 1,2, . . . (2.70)

are local densities. Under the Hopf-Cole transformation (2.50), the hierarchy (2.68) is mapped to

ut = Qn(ux), n = 1,2, . . . (2.71)

=

{
S (δH(l)/δu), l = (n+1)/2, n = 1,3, . . .

H (δH(l)/δu), l = n/2, n = 2,4, . . .
(2.72)

where H(l) =
∫

H(l)dx is given by the densities

H(l) = 1
2(−1)l−1 exp(2v)((Dx +u)l−1u)2 l = 1,2, . . . (2.73)

and where

S = Dx exp(−2v)Dx, H = QS = Dx exp(−v)Dx exp(−v)Dx (2.74)

are a positive symmetric operator and a Hamiltonian operator, respectively.
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Corresponding to the potential form of Burgers’ equation (2.57), the +1 flow in these two hier-
archies (2.71) and (2.68) is given by the heat equation

h−t = h−xx (2.75)

and Burgers’ equation (up to a scaling of u)

ut = uxx +2uux. (2.76)

Both of these equations are integrable and have a gradient structure

h−t =−δH(1)/δh−, ut = S (δH(1)/δu) (2.77)

in terms of the energy density

H(1) = 1
2 h−x

2 = 1
2 exp(2v)u2. (2.78)

All of the odd flows have a similar structure.
The +2 flow in the hierarchies (2.71) and (2.68) is given by

ut = uxxx +3(uuxx +ux
2 +u2ux) (2.79)

and

h−t = h−xxx (2.80)

which is the Airy equation. These two integrable equations have the Hamiltonian structure

h−t =−Dx(δH
(1)/δh−), ut = S (δH(1)/δu) (2.81)

where the Hamiltonian is the same expression as the energy integral appearing in the +1 flow. There
is a similar structure for all of the even flows.

Proposition 2. Each flow in both hierarchies (2.71) and (2.68) determines a null inelastic curve
flow

~γt = h(n)+ e++h(n)− e−, n = 1,2, . . . (2.82)

whose components are given by

h(n)+ = h−1
− Dn

x(h−) = (Dx +u)n−1u = Rn−1(vx),

h(n)− = h− = exp(
∫

udx) = exp(v),

n = 1,2, . . .

(2.83)

where

e+ =~γx, e− = N (~γx). (2.84)

The expression

u =±η(e±,e∓x) =−η(N (~γx),~γxx) (2.85)

shows that u and its x-derivatives are invariant under translations and boosts applied to the curve
~γ in the Minkowski plane, so thus the equations of motion (2.82) are invariant under the isometry
group ISO(1,1) of the Minkowski plane.
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These equations of motion (2.82) describe geometrical non-stretching motions of the curve. An
interesting geometrical aspect of the motion emerges when the flow vector~γt at each point x on the
curve is decomposed into complementary null components with respect to the light cone,

(~γt)+ = ((Dx +u)n−1u)e+, n = 1,2, . . . (2.86)

and

(~γt)− = h−e− (2.87)

where (~γt)± is a null vector parallel to e±. Now, from the frame structure equations (2.44), (2.46),
(2.50)–(2.51), we have (h−e−)x = (h−x− uh−)e− = 0 and (h−e−)t = (h−t −ωh−)e− = 0. Hence
h−e− is a constant null vector, which lies on the opposite side of the light cone relative to the
tangent vector of the curve, ~γx, as shown by equation (2.84). This component (2.87) of the flow
vector is the same for all of the flow equations (2.82). Moreover, going back to the original form
of the frame structure equations (2.47)–(2.49), we see that this system has a consistent reduction
if we put h− = 0, or correspondingly, (~γt)− = 0. Under this reduction, the main results given by
theorems 3 and 4 continue to hold, as does the second half of Theorem 5, while only the Hopf-Cole
transformation relating u to h− is lost.

The tangential component (2.86) of the flow vector determines a null inelastic curve flow by
itself, which we denote

(~γt)‖ = h(n)+ T, n = 1,2, . . . (2.88)

in terms of the tangent vector of the curve

T =~γx (2.89)

with

h(n)+ = (Dx +u)n−1u. (2.90)

All of these curve flows preserve the null condition η(~γx,~γx) = 0 and exhibit invariance under
the isometry group ISO(1,1). Thus, each equation of motion (2.88) describes a geometric non-
stretching motion of the curve.

The n = 1 curve flow (2.88) corresponding to the heat equation (2.75), and equivalently to
Burgers’ equation (2.76) or its potential form (2.57), is given by

(~γt)‖ = uT. (2.91)

Through the frame structure equation (2.44), we can express this equation of motion (2.91) in the
simple form

(~γt)‖ =~γxx, η(~γx,~γx) = 0 (2.92)

which is a non-stretching heat map equation in the Minkowski plane.
Similarly, the n = 2 curve flow (2.88) corresponding to the Airy equation (2.80), and equiva-

lently to equations (2.79) and (2.61) obtained through the Hopf-Cole transformation, is given by

(~γt)‖ = (ux +u2)T. (2.93)

This equation of motion (2.93) can be expressed entirely in terms of x-derivatives of ~γx by use of
the frame structure equation (2.44), as follows. We have ux~γx = (u~γx)x− u~γxx =~γxxx− u2~γx, which
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yields

(~γt)‖ =~γxxx, η(~γx,~γx) = 0. (2.94)

This curve flow is a non-stretching Airy map equation in the Minkowski plane.

3. Timelike curve flows and integrable systems in R2,1

Three-dimensional Minkowski space is a vector space R2,1 equipped with a Lorentz-signature
(−1,1,1) metric η and a compatible volume form ε . A vector ~v ∈ R2,1 is respectively timelike,
spacelike, or null if its Minkowski norm η(~v,~v) is negative, positive, or zero. The set of all null
vectors spans a 2-dimensional null surface through the origin in R2,1, called the lightcone.

Up to a sign, the volume form is determined from the metric by the relation

ε(~v,~w,~x)2 =η(~v,~w)2
η(~x,~x)+η(~x,~v)2

η(~w,~w)+η(~w,~x)2
η(~v,~v)

−2η(~v,~w)η(~w,~x)η(~x,~v)−η(~v,~v)η(~w,~w)η(~x,~x)
(3.1)

holding for any vectors ~v,~w,~x ∈ R2,1. Associated to the metric and the volume form is the Hodge
dual operator ∗ defined by

η(∗(~v∧~w),~x) = ε(~v,~w,~x). (3.2)

This operator maps pairs of vectors into vectors, and thus it can be alternatively formulated as a
Lorentzian version of the cross product defined by

~v×~w = ∗(~v∧~w) (3.3)

which has the properties

~v×~v = 0, (~v×~w)×~x = η(~w,~x)~v−η(~v,~x)~w (3.4)

and

η(~v×~w,~v) = η(~v×~w,~w) = 0, η(~v×~w,~v×~w) = η(~v,~w)2−η(~v,~v)η(~w,~w) (3.5)

holding for any vectors~v,~w,~x ∈ R2,1.
In inertial coordinates X i = (X0,X1,X2), the Minkowski metric and the volume tensor respec-

tively have the components

ηi j = diag(−1,1,1) =


−1 i = j = 0

1 i = j = 1,2

0 i 6= j

(3.6)

εi jk = sgn
(

i j k
0 1 2

)
=


1 (i, j,k) = (0,1,2),cyclic

−1 (i, j,k) = (2,1,0),cyclic

0 otherwise

(3.7)

while the Hodge dual operator ∗ and the cross product × are both given by the associated tensor
ε i

jk = εl jkη il . Here X0 is a timelike coordinate and X1,X2 are spacelike coordinates.
The isometries of 3-dimensional Minkowski space are given by the Poincare group ISO(2,1)'

SO(2,1)nR3, which comprises time and space translations, rotations, and boosts.
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3.1. Timelike curves and parallel frames

Let~γ(x) = (X0(x),X1(x),X2(x)) be a timelike curve in R2,1, with the tangent vector~γx satisfying

η(~γx,~γx)< 0 (3.8)

at every point x on the curve. Hereafter we choose x to be the proper-time arclength parameter
defined by

|~γx|=
√
−η(~γx,~γx) = 1. (3.9)

Then

T =~γx, unit timelike tangent vector (3.10)

satisfies

η(T,T ) =−1. (3.11)

Hence the normal plane orthogonal to T at each point on the curve is a spacelike (Euclidean) plane,
R2.

We begin by introducing the Lorentzian analog of a Frenet frame for such curves [22]. The x-
derivative of T defines the principal normal vector Tx, which is spacelike since it lies in the normal
plane, due to η(T,Tx) = 0. Therefore

N = κ
−1Tx, unit spacelike normal vector (3.12)

satisfies

η(T,N) = 0, η(N,N) = 1 (3.13)

where the function κ(x) is given by

κ = η(Tx,N) =
√

η(Tx,Tx) (3.14)

which is the Lorentzian curvature invariant of the curve. The cross product of T and Tx yields a
vector which is orthogonal to both T and Tx from property (3.5). Since this vector T ×Tx lies in the
normal plane, it is spacelike. Hence

B = κ
−1T ×Tx, unit spacelike bi-normal vector (3.15)

satisfies

η(B,T ) = η(B,N) = 0, η(B,B) = 1 (3.16)

The triple of mutually orthogonal vectors T
N
B

 (3.17)

defines a Frenet frame for a timelike curve~γ(x) in R2,1. Note that the orientation of this frame is

ε(T,N,B) = 1 (3.18)

in terms of the volume form.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

271



K. Alkan and S.C. Anco / Integrable systems from inelastic curve flows

The Frenet equations of this frame (3.17) are straightforward to derive. First, from equation
(3.12), we have

Tx = κN. (3.19)

Next, the x-derivative of equation (3.13) yields 0 = η(Nx,N) and 0 = η(Tx,N)+η(T,Nx) = κ +

η(Nx,T ), so thus we have

Nx = κT + τB (3.20)

for some function τ(x). To obtain an expression for τ in terms of T and its x-derivatives, we substi-
tute equations (3.12) and (3.15) into equation (3.20) and take its Minkowski inner product with B.
This yields

τ = η(Nx,B) = κ
−2

η(T ×Tx,Txx) (3.21)

which is the Lorentzian torsion invariant of the curve. Last, from the x-derivative of equation (3.15),
we find Bx = Tx×N+T ×Nx = τT ×B after using equations (3.19) and (3.20). Then using property
(3.4), we have

Bx =−τN. (3.22)

Therefore, the Frenet equations are given byTx

Nx

Bx

=

0 κ 0
κ 0 τ

0 −τ 0

T
N
B

 (3.23)

where

0 κ 0
κ 0 τ

0 −τ 0

 ∈ so(2,1) is the Cartan matrix, which belongs to the Lie algebra so(2,1) of the

SO(2,1) group of rotation and boost isometries in R2,1.
A general frame for a timelike curve in R2,1 is related to this Frenet frame by the action of

arbitrary x-dependent SO(2,1) rotations and boosts applied to the vectors (3.17). If the tangent
vector T is preserved as one of the frame vectors, then the resulting frame is given by applying a
general x-dependent SO(2) rotation on the normal vectors N and B in the spacelike normal plane of
the curve. This yields

E =

e0

e1

e2

=

1 0 0
0 cosθ sinθ

0 −sinθ cosθ

T
N
B

=

 T
(cosθ)N +(sinθ)B
−(sinθ)N +(cosθ)B

 (3.24)

where θ(x) is the rotation angle, and where the frame vectors satisfy the orthogonality relations

η(e0,e0) =−1, η(e1,e1) = η(e2,e2) = 1, (3.25)

η(e0,e1) = η(e0,e2) = η(e1,e2) = 0 (3.26)

and the cross product relations

e1× e2 =−e0, e0× e1 = e2, e0× e2 =−e1 (3.27)

which follow from ε(e0,e1,e2) = ε(T,N,B) = 1.
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We now use this gauge freedom to define a Lorentzian parallel frame by the geometrical condi-
tion that the x-derivative of both normal vectors e1 and e2 is parallel to the tangent vector e0. Thus
we require

e1x = u1e0, e2x = u2e0 (3.28)

for some functions u1(x),u2(x). This determines part of the Cartan matrix. To derive the remaining
part, we need to work out e0x. By substituting equation (3.28) into the x-derivative of equations
(3.25) and (3.26), we get η(e0x,e1) = u1, η(e0x,e2) = u2, and η(e0x,e0) = 0. These relations deter-
mine

e0x = u1e1 +u2e2. (3.29)

Therefore, the Cartan matrix of a Lorentzian parallel frame for a timelike curve in R2,1 is given by

Ex = UE (3.30)

where

U =

 0 u1 u2

u1 0 0
u2 0 0

 ∈ so(2,1). (3.31)

This matrix belongs to the perp space of the stabilizer subalgebra so(2) ⊂ so(2,1) of the frame
vector e0. In particular, there is a decomposition so(2,1) = so(2)⊕ so(2)⊥ as a symmetric Lie
algebra, where so(2) is the subalgebra of rotations and so(2)⊥ ' R2 is its perp space given by the
span of the 1-dimensional subalgebras of boosts which act in two orthogonal planes containing e0.

To determine the rotation angle θ(x) under which a Frenet frame is transformed to a parallel
frame, we first need the inverse transformationT

N
B

=

 e0

(cosθ)e1− (sinθ)e2

(sinθ)e1 +(cosθ)e2

 . (3.32)

Now, we take the x-derivative of the frame (3.24) and substitute the Frenet equations (3.23) followed
by the inverse transformation (3.32), which yields

Ex =

 (κ cosθ)e1− (κ sinθ)e2

(κ cosθ)e0 +(θx + τ)e2

−(κ sinθ)e0− (θx + τ)e1

 . (3.33)

Thus the condition (3.30)–(3.31) can be achieved if (and only if)

θx =−τ. (3.34)

The resulting frame given by equations (3.24) and (3.34) thereby defines a parallel frame, where the
components of its Cartan matrix are related to the curvature and torsion invariants κ,τ by

u1 = κ cosθ = κ cos(−
∫

τdx) , u2 =−κ sinθ = κ sin(
∫

τdx) . (3.35)

These expressions are a Lorentzian counterpart of the well-known Hasimoto transformation in
Euclidean space.
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A parallel frame is unique up to x-independent (rigid) rotations

θ → θ +φ (3.36)

where φ is constant. Under these rotations, the tangent vector e0 is preserved, while the normal
vectors e1 and e2 are rigidly rotated

e1→ (cosφ)e1 +(sinφ)e2,

e2→−(sinφ)e1 +(cosφ)e2.
(3.37)

Any two parallel frames related by this transformation are gauge equivalent. The SO(2) group of
rigid rotations thereby defines the gauge (equivalence) group for parallel frames. Stated another
way, a parallel frame is determined by a timelike curve only up to the action of this gauge group.

3.2. Inelastic Flow Equations

We now consider curve flows ~γ(t,x) that locally preserve both the timelike signature (3.8) of the
curve and the proper time normalization (3.9) of the arclength parameter. Such flows are called
inelastic and are specified by a flow vector

~γt = h‖e0 +h1e1 +h2e2 (3.38)

expressed in terms of a tangential component h‖ and a pair of normal components h1,h2 with respect
to the frame vectors e0, e1, e2.

The parallel frame will be carried by the flow, such that the orthogonality relations (3.25)–(3.26)
are preserved. This implies that the t-derivative of the frame vectors e0, e1, e2 is given by

e0t = ω1e1 +ω2e2, (3.39)

e1t = ω1e0 +ω0e2, e2t = ω2e0−ω0e1. (3.40)

We can write these equations in the form

Et = WE (3.41)

with the Cartan matrix

W =

 0 ω1 ω2

ω1 0 ω0

ω2 −ω0 0

 ∈ so(2,1) (3.42)

which belongs to the Lie algebra of the SO(2,1) group of rotation and boost isometries in R2,1.
The flow equations (3.41) and the Frenet equations (3.30) of the parallel frame are related by the

compatibility condition ∂t(Ex) = ∂x(Et). This condition is equivalent to a zero curvature equation

Ut −Wx +[U,W] = 0 (3.43)

relating the Cartan matrices W and U. After substituting these matrices (3.31) and (3.42) into equa-
tion (3.43), we obtain

u1t = ω1x +u2ω0, u2t = ω2x−u1ω0, (3.44)

ω0x = u1ω2−ω1u2. (3.45)
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Likewise, the flow vector (3.38) and the tangent vector (3.10) of the curve are related by the
compatibility condition ∂x(~γt) = ∂t(~γx). By writing

H =

h‖
h1

h2

 ∈ R3, A =

1
0
0

 ∈ R3, (3.46)

we have~γx = ATE and~γt = HTE. Then the compatibility condition becomes

Hx +UTH = WTA (3.47)

relating W to U and H. After we substitute the matrices (3.31) and (3.42) along with the vectors
(3.46) into equation (3.47), we find that its tangential and normal components yield

h‖x =−h1u1−h2u2, (3.48)

ω1 = h1x +u1h‖, ω2 = h2x +u2h‖. (3.49)

These compatibility equations (3.44), (3.45), (3.48), (3.49) are the Cartan structure equations of
the parallel frame. They describe all inelastic timelike curve flows~γ(t,x) in R2,1.

3.3. U(1)-invariant formalism

The gauge group for parallel frames consists of rigid SO(2) rotations (3.37) acting on the normal
vectors. Under the action of this group, the components of the Cartan matrix (3.31) along the curve
are transformed by

u1→ u1 cosφ +u2 sinφ = κ cos(θ +φ),

u2→−u1 sinφ +u2 cosφ =−κ sin(θ +φ).
(3.50)

Similarly, the components of the Cartan matrix (3.42) along the flow are transformed by

ω0→ ω0, (3.51)

ω1→ ω1 cosφ +ω2 sinφ ,

ω2→−ω1 sinφ +ω2 cosφ .
(3.52)

Since the flow vector (3.38) is gauge invariant, its normal and tangential components in a parallel
frame are transformed by

h‖→ h‖, (3.53)

h1→ h1 cosφ +h2 sinφ ,

h2→−h1 sinφ +h2 cosφ .
(3.54)

Hence it is natural to introduce a complex formalism

u = u1 + iu2 = κe−iθ = κ exp(i
∫

τdx) , ω = ω1 + iω2, h⊥ = h1 + ih2 (3.55)

in which the rigid rotations (3.50), (3.52), (3.54) become phase rotations

u→ uexp(−iφ), ω → ω exp(−iφ), h⊥→ h⊥ exp(−iφ). (3.56)
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Now, we can write the system (3.44), (3.45), (3.48), (3.49) in a U(1)-invariant form:

ut = ωx− iuω0, (3.57)

ω0x = Im(ūω), (3.58)

h‖x =−Re(ūh⊥), (3.59)

ω = h⊥x +uh‖. (3.60)

Since u is determined by the curve only up to rigid U(1) phase rotations (3.50), this complex vari-
able u is a Hasimoto variable which geometrically represents a U(1)-covariant of the curve, in
contrast to the invariants κ,τ which are determined uniquely by the curve.

This system (3.57)–(3.60) has the following operator formulation which encodes a triple of
U(1)-invariant Hamiltonian operators.

Theorem 6. For timelike inelastic curve flows in R2,1, the curve covariant u satisfies the U(1)-
invariant system

ut = Dxω− iuD−1
x Im(ω ū) = H (ω) (3.61)

ω = Dxh⊥−uD−1
x Re(ūh⊥) = J (h⊥) (3.62)

where

H = Dx + iuD−1
x Im(uC ) (3.63)

J = Dx−uD−1
x Re(uC ) (3.64)

are a pair of compatible, U(1)-invariant Hamiltonian and symplectic operators, and C denotes the
complex conjugation operator. Moreover, the operators H and J are related by

H I −1 =−I J , J I =−I −1H , I =−i (3.65)

where I is a Hamiltonian operator compatible with H and J . Composition of these operators
yields the U(1)-invariant evolution equation

ut =−R2(h⊥) (3.66)

for u in terms of the normal component h⊥ of the flow, where

R = H I −1 =−I J = i(Dx−uD−1
x Re(uC )) (3.67)

is a hereditary recursion operator.

This theorem is a counterpart of a similar result [4,18] for inelastic curve flows in R3 and can be
proved by the same methods. In particular, compared to the Euclidean case, there is only a change
in the sign of the nonlocal term in both operators H and J .

An operator D here is Hamiltonian iff it defines an associated Poisson bracket

{H,G}D =
∫

Re
(
(δH/δu)D(δG/δ ū)

)
dx (3.68)

obeying skew-symmetry {H,G}D + {G,H}D = 0 and the Jacobi identity {{H,G}D ,F}D +

cyclic = 0 for all functionals H, G, F on the x-jet space J∞ of the variables u and ū, where δ/δu and

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

276



K. Alkan and S.C. Anco / Integrable systems from inelastic curve flows

δ/δ ū denote the standard Euler operators. The formal inverse of a Hamiltonian operator defines a
symplectic operator. Compatibility of two Hamiltonian operators D1 and D2 is the statement that
every linear combination c1D1 + c2D2 is a Hamiltonian operator.

Due to a general theorem of Magri [17], the U(1) invariance of the pair of compatible Hamil-
tonian operators H and I can be used to derive a hierarchy of flows starting from a root flow
ut = −iu corresponding to the generator of U(1) phase-rotations on u. This leads to the following
main result.

Theorem 7. There is a hierarchy of integrable tri-Hamiltonian flows on u(t,x) given by

ut = Rn+1(−iu) = I (δH(n+1)/δ ū) = H (δH(n)/δ ū), n = 0,1,2, . . .

= E (δH(n−1)/δ ū), n = 1,2, . . .
(3.69)

(called the +n flow) in terms of Hamiltonians H(n) =
∫

H(n)dx where

I =−i, H = Dx + iuD−1
x Im(uC ),

E = RH = i(Dx
2−|u|2 +uD−1

x Re(uxC )+ iuxD−1
x Im(uC ))

(3.70)

are compatible Hamiltonian operators, and where

H(n) = 2(1+n)−1D−1
x Im(ū(iH )n+1u), n = 0,1,2, . . . (3.71)

are local Hamiltonian densities.

The expression for the Hamiltonians (3.71) in this theorem arises from a scaling formula derived
in Ref. [1].

The +1 flow in the hierarchy (3.69) is explicitly given by

ut = i(uxx− 1
2 |u|

2u) (3.72)

which is the defocusing NLS equation. It has the explicit tri-Hamiltonian structure

ut = I (δH(2)/δ ū) = H (δH(1)/δ ū) = E (δH(0)/δ ū) (3.73)

in terms of the Hamiltonian densities

H(0) = |u|2, H(1) = Im(uūx), H(2) = |ux|2 + 1
4 |u|

4 (3.74)

(modulo trivial densities given by total x-derivatives). Similarly, the +2 flow in the hierarchy (3.69)
is given by

ut = uxxx− 3
2 |u|

2ux (3.75)

which is the complex defocusing mKdV equation. It has the tri-Hamiltonian structure

ut = I (δH(3)/δ ū) = H (δH(2)/δ ū) = E (δH(1)/δ ū) (3.76)

where H(1) and H(2) are given by the Hamiltonian densities (3.74), while H(3) is given by the Hamil-
tonian density

H(3) = Im(uxūxx)+
3
4 |u|

2Im(uūx) (3.77)

(modulo trivial densities given by total x-derivatives).
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The entire hierarchy (3.69) of flows corresponds to a hierarchy of commuting vector fields

X(n) = Rn(−iu)∂u, n = 0,1,2, . . . (3.78)

with the root vector field being the generator of phase rotations X(0) = −iu∂u. In this setting, a
vector field is Hamiltonian iff its prolongation on the x-jet space J∞ of u and ū satisfies prXG =

{G,H}D for some functional H, where G is an arbitrary functional, and D is a given Hamiltonian
operator. As shown by Theorem 2, all of the vector fields in this hierarchy are bi-Hamiltonian, with
prX(n)G= {G,H(n)}H = {G,H(n+1)}I for n≥ 0, where H(n) =

∫
H(n)dx is the functional with the

Hamiltonian density (3.71), while each vector field for n ≥ 1 is also tri-Hamiltonian, prX(n)G =

{G,H(n−1)}E . Since the entire hierarchy is commuting, every Hamiltonian vector field (3.78) is the
generator of a symmetry for the defocusing NLS equation (3.72) as well as the defocusing mKdV
equation (3.75), and every associated Hamiltonian (3.71) is a conserved density for both of these
equations.

Proposition 3. Each tri-Hamiltonian flow in the hierarchy (3.69) can be written in the form (3.66)
as given by

h⊥ =−Rn−1(−iu), n = 1,2, . . . . (3.79)

Consequently, the +n flow for n≥ 1 determines an inelastic timelike curve flow

~γt = h(n)‖ e0 +h(n)1 e1 +h(n)2 e2 n = 1,2, . . . (3.80)

whose tangential and normal components are given by

h(n)‖ = 1
2(n−1)H(n−2), h(n)1 + ih(n)2 =−Rn−1(−iu), n = 1,2, . . . . (3.81)

To write these equation of motions (3.80) in an explicit form, it is convenient to introduce a
complex parallel-frame notation:

e‖ = e0 = T, e⊥ = e1 + ie2 = e−iθ (N + iB) (3.82)

satisfying

e‖× e⊥ =−ie⊥, e⊥× ē⊥ = i2e‖ (3.83)

and

η(e‖,e‖) =−1, η(e⊥, ē⊥) = 2, η(e‖,e⊥) = η(e⊥,e⊥) = 0. (3.84)

The action of the gauge group (3.37) on these frame vectors consists of rigid U(1) phase rotations

e‖→ e‖, e⊥→ e−iφ e⊥ (3.85)

where φ is constant.
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The Frenet equations (3.30) of the underlying parallel frame become

e‖x = Re(ūe⊥), e⊥x = ue‖, (3.86)

while the flow equations (3.41) are similarly given by

e‖t = Re(ω̄e⊥), e⊥t = ωe‖− iω0e⊥ (3.87)

The equation of motions (3.80) for the curve now take the form

~γt = h(n)‖ e‖+Re(h̄(n)⊥ e⊥), n = 1,2, . . . (3.88)

where the tangential component h(n)‖ and the normal component h(n)⊥ = h(n)1 + ih(n)2 are functions
of the curve covariant u, the complex conjugate covariant ū, and their x-derivatives, as given by
the expressions (3.81). Since u→ e−iφ u and ū→ eiφ ū under the gauge group (3.85), the tangential
component is gauge invariant while the normal component is gauge equivariant,

h(n)‖ → h(n)‖ , h(n)⊥ → e−iφ h(n)⊥ . (3.89)

Consequently, each equation of motion (3.38) is invariant under the isometry group ISO(2,1) of
R2,1 and thus describes a geometric non-stretching motion of the curve.

The curve flow n = 1 corresponding to the defocusing NLS equation (3.72) is determined by the
components

h(1)‖ = 0, h(1)⊥ = iu. (3.90)

Substituting these expressions into the n = 1 equation of motion (3.38), we have~γt = Re(−iūe⊥) =
Re(ūe‖× e⊥) = e‖× e‖x by using the cross product identity (3.83) and the Frenet equations (3.86).
Thus we obtain

~γt = T ×Tx =~γx×~γxx, η(~γx,~γx) =−1 (3.91)

which is a timelike version of the vortex filament equation in Minkowski space R2,1.
The curve flow n = 2 corresponding to the defocusing mKdV equation (3.75) has the compo-

nents

h(2)‖ = 1
2 |u|

2, h(2)⊥ =−ux. (3.92)

Substituting these expressions into the n = 2 equation of motion (3.38), we find ~γt = Re(−ūxe⊥)+
1
2 |u|

2e‖. We simplify the term Re(−ūxe⊥) =−Re(ūe⊥)x +Re(ūe⊥x) =−e‖xx + |u|2e‖ by using the
Frenet equations (3.86). Next we note η(e‖x,e‖x) = η(Re(ūe⊥),Re(ūe⊥)) = 1

2 η(ūe⊥,uē⊥) = |u|2
which follows from the relations (3.84). This yields~γt =−e‖xx +

3
2 |u|

2e‖, and thus we obtain

~γt =−Txx +
3
2 η(Tx,Tx)T =−~γxxx +

3
2 η(~γxx,~γxx)~γx, η(~γx,~γx) =−1 (3.93)

which is a timelike version of the non-stretching mKdV map equation [2] in Minkowski space R2,1.
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4. Spacelike curve flows and integrable systems in R2,1

In 3-dimensional Minkowski space R2,1, let~γ(x) = (X0(x),X1(x),X2(x)) be a spacelike curve, with
the tangent vector~γx satisfying

η(~γx,~γx)> 0 (4.1)

at every point x on the curve. Hereafter we choose x to be the proper-distance arclength parameter
defined by

|~γx|=
√

η(~γx,~γx) = 1. (4.2)

Then

T =~γx, unit spacelike tangent vector (4.3)

satisfies

η(T,T ) = 1. (4.4)

Hence the normal plane orthogonal to T at each point on the curve is a Minkowski plane, R1,1. The
x-derivative of T defines the principal normal vector Tx which lies in this plane, due to η(T,Tx) = 0.
Thus Tx can be either timelike, spacelike, or null. The case when Tx is non-null is similar to the
cases of timelike/spacelike curve flows in 2-dimensional Minkowski space discussed in Sec. 2.1. In
contrast, the case when Tx is null has no counterpart in 2-dimensional Minkowski space.

We will consider the non-null case first and discuss the null case afterward.

4.1. Spacelike curve flows with a non-null normal vector

We begin by introducing the Lorentzian analog of a Frenet frame for spacelike curves whose prin-
cipal normal vector Tx is assumed to be non-null

η(Tx,Tx) 6= 0 (4.5)

at every point on the curve. In this case,

N = κ
−1Tx, unit timelike/spacelike normal vector (4.6)

satisfies

η(T,N) = 0, η(N,N) =∓1 (4.7)

where the function κ(x) is given by

κ =∓η(Tx,N) =
√
∓η(Tx,Tx) (4.8)

which is the Lorentzian curvature invariant of the curve. As shown by property (3.5), the cross
product of T and Tx yields a vector which is orthogonal to both T and Tx and has the norm η(T ×
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Tx,T ×Tx) =−η(Tx,Tx) which is opposite in sign to the norm of Tx. Hence

B = κ
−1T ×Tx, unit spacelike/timelike bi-normal vector (4.9)

satisfies

η(B,T ) = η(B,N) = 0, η(B,B) =±1. (4.10)

The triple of mutually orthogonal vectors T
N
B

 (4.11)

thereby defines a Frenet frame for a spacelike curve ~γ(x) with a non-null principal normal in R2,1.
This frame has the orientation

ε(T,N,B) =±1 (4.12)

in terms of the volume form.
The Frenet equations of this frame (4.11) can be derived similarly to the case of timelike curves

in Sec. 3.1, with some changes of signs. First, from equation (4.6),

Tx = κN (4.13)

is the same. Next, from the x-derivative of equation (4.7), we have

Nx =±κT + τB (4.14)

for some function τ(x). An expression for τ can be obtained in terms of T and its x-derivatives by
use of equations (4.6) and (4.9). This yields

τ =±η(Nx,B) =±κ
−2

η(T ×Tx,Txx) (4.15)

which is the Lorentzian torsion invariant of the curve. Last, from the x-derivative of equation (4.9)
combined with equations (4.13), (4.14), and property (3.4), we have

Bx = τN (4.16)

which has changed in sign.
Therefore, the Frenet equations are given byTx

Nx

Bx

=

 0 κ 0
±κ 0 τ

0 τ 0

T
N
B

 (4.17)

where

 0 κ 0
±κ 0 τ

0 τ 0

 ∈ so(2,1) is the Cartan matrix, which belongs to the Lie algebra so(2,1) of the

SO(2,1) group of rotation and boost isometries in R2,1.
A general frame for a spacelike curve in R2,1 is related to this Frenet frame by the action of

arbitrary x-dependent SO(2,1) rotations and boosts applied to the vectors (4.11). If the tangent
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vector T is preserved as one of the frame vectors, then the resulting frame is given by applying a
general x-dependent SO(1,1) boost on the normal vectors N and B in the R1,1 normal plane of the
curve. Geometrically, this transformation on the Frenet frame is a hyperbolic rotation, yielding

E =

e‖
e1

e2

=

1 0 0
0 coshθ −sinhθ

0 −sinhθ coshθ

T
N
B

=

 T
(coshθ)N− (sinhθ)B
−(sinhθ)N +(coshθ)B

 (4.18)

where θ(x) is the hyperbolic rotation angle, and where the frame vectors satisfy the orthogonality
relations

η(e‖,e‖) = 1, η(e1,e1) =−η(e2,e2) =∓1, (4.19)

η(e‖,e1) = η(e‖,e2) = η(e1,e2) = 0 (4.20)

and the cross product relations

e1× e2 =±e‖, e‖× e1 = e2, e‖× e2 = e1 (4.21)

which follow from ε(e0,e1,e2) = ε(T,N,B) =±1.
Similarly to the case of timelike curves, this gauge freedom can be used to define a Lorentzian

parallel frame by the geometrical condition that the x-derivative of both normal vectors e1 and e2 is
parallel to the tangent vector e‖. Thus we require

e1x = u1e‖, e2x = u2e‖ (4.22)

for some functions u1(x),u2(x). To obtain e‖x, we substitute equation (4.22) into the x-derivative
of equations (4.19) and (4.20). This yields the relations η(e‖x,e1) = −u1, η(e‖x,e2) = −u2, and
η(e‖x,e‖) = 0, which determine

e‖x =±(u1e1−u2e2). (4.23)

Therefore, the Cartan matrix of a Lorentzian parallel frame for a spacelike curve with a non-null
principal normal in R2,1 is given by

Ex = UE (4.24)

where

U =

 0 ±u1 ∓u2

u1 0 0
u2 0 0

 ∈ so(2,1). (4.25)

This matrix belongs to the perp space of the stabilizer subalgebra so(1,1) ⊂ so(2,1) of the frame
vector e‖. The perp space so(1,1)⊥ ' R1,1 is given by the span of the rotation subalgebra so(2)
and another boost subalgebra so(1,1) which act in two orthogonal planes (one spacelike and one
timelike) containing e‖. In particular, so(1,1)⊕ so(1,1)⊥ = so(2,1) is a symmetric Lie algebra
decomposition.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

282



K. Alkan and S.C. Anco / Integrable systems from inelastic curve flows

To determine the hyperbolic rotation angle θ(x) under which a Frenet frame is transformed to a
parallel frame, we first need the inverse transformationT

N
B

=

 e‖
(coshθ)e1 +(sinhθ)e2

(sinhθ)e1 +(coshθ)e2

 . (4.26)

Now, we take the x-derivative of the frame (4.18) and substitute the Frenet equations (4.17) followed
by the inverse transformation (4.26), which yields

Ex =

(κ coshθ)e1 +(κ sinhθ)e2

±(κ coshθ)e‖− (θx− τ)e2

∓(κ sinhθ)e‖− (θx− τ)e1

 . (4.27)

Thus the condition (4.24)–(4.25) can be achieved if (and only if)

θx = τ. (4.28)

The resulting frame given by equations (4.18) and (4.28) thereby defines a parallel frame, where the
components of its Cartan matrix are related to the curvature and torsion invariants κ,τ by

u1 =±κ coshθ =±κ cosh(
∫

τdx) , u2 =∓κ sinhθ =∓κ sinh(
∫

τdx) . (4.29)

These expressions are a Lorentzian counterpart of the well-known Hasimoto transformation [15] in
Euclidean space.

A parallel frame is unique up to x-independent (rigid) hyperbolic rotations

θ → θ +φ (4.30)

where φ is constant. Under these transformations, the tangent vector e‖ is preserved, while the
normal vectors e1 and e2 are rigidly rotated

e1→ (coshφ)e1− (sinhφ)e2,

e2→−(sinhφ)e1 +(coshφ)e2.
(4.31)

Any two parallel frames related by this hyperbolic rotation are gauge equivalent. The SO(1,1) group
of rigid hyperbolic rotations thereby defines the gauge (equivalence) group for parallel frames.
Stated another way, a parallel frame for a spacelike curve with a non-null principal normal is deter-
mined only up to the action of this gauge group.

4.1.1. Inelastic Flow Equations

We now consider spacelike inelastic curve flows ~γ(t,x) that locally preserve the proper distance
normalization (3.9) of the arclength parameter and the non-null signature (4.5) of the principal
normal. Such flows are specified by a flow vector

~γt = h‖e‖+h1e1 +h2e2 (4.32)

expressed in terms of a tangential component h‖ and a pair of normal components h1,h2 with respect
to the frame vectors e‖, e1, e2.
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The parallel frame will be carried by the flow, such that the orthogonality relations (4.19)–(4.20)
are preserved. This implies that the t-derivative of the frame vectors e‖, e1, e2 is given by

e‖t =±(ω1e1−ω2e2), (4.33)

e1t = ω1e‖+ω0e2, e2t = ω2e‖+ω0e1. (4.34)

We can write these equations in the form

Et = WE (4.35)

with the Cartan matrix

W =

 0 ±ω1 ∓ω2

ω1 0 ω0

ω2 ω0 0

 ∈ so(2,1) (4.36)

which belongs to the Lie algebra of the SO(2,1) group of rotation and boost isometries in R2,1.
The flow equations (4.35) and the Frenet equations (4.24) of the parallel frame are related by

the compatibility condition ∂t(Ex) = ∂x(Et), which is equivalent to a zero curvature equation (3.43)
relating the Cartan matrices W and U. Substituting these matrices (4.25) and (4.36) into equation
(3.43), we obtain

u1t = ω1x +u2ω0, u2t = ω2x +u1ω0, (4.37)

ω0x =∓(u1ω2−ω1u2). (4.38)

There is a similar compatibility condition ∂x(~γt) = ∂t(~γx) relating the flow vector (4.32) and the
tangent vector (4.3) of the curve, which is given by equation (3.47) using the notation (3.46). After
substituting the matrices (4.25) and (4.36) along with the vectors (3.46) into this equation, we find
that its tangential and normal components yield

h‖x =−h1u1−h2u2, (4.39)

ω1 =±h1x +u1h‖, ω2 =∓h2x +u2h‖. (4.40)

These compatibility equations (4.37), (4.38), (4.39), (4.40) are the Cartan structure equations
of the parallel frame, describing all inelastic spacelike curve flows ~γ(t,x) with a non-null principal
normal in R2,1.

4.1.2. SO(1,1)-invariant formalism

The gauge group for parallel frames consists of rigid SO(1,1) hyperbolic rotations (4.31) acting
on the normal vectors. Under the action of this group, the components of the Cartan matrix (4.25)
along the curve are transformed by

u1→ u1 coshφ −u2 sinhφ =±κ cosh(θ +φ),

u2→−u1 sinhφ +u2 coshφ =∓κ sinh(θ +φ).
(4.41)
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Similarly, the components of the Cartan matrix (4.36) along the flow are transformed by

ω0→ ω0, (4.42)

ω1→ ω1 coshφ −ω2 sinhφ ,

ω2→−ω1 sinhφ +ω2 coshφ .
(4.43)

Since the flow vector (4.32) is gauge invariant, its normal and tangential components in a parallel
frame are transformed by

h‖→ h‖, (4.44)

h1→ h1 coshφ +h2 sinhφ ,

h2→ h1 sinhφ +h2 coshφ .
(4.45)

A comparison with the case of rigid SO(2) rotations in Sec. 3.3 suggests that we introduce a hyper-
bolic analog of complex variables.

Let j denote a unit hyperbolic number (also called a split-complex number) defined by

j2 =+1, j̄ =− j (4.46)

in analogy to the complex imaginary number i2 =−1, ī =−i. The hyperbolic version of the Euler
relation is

exp( jθ) = coshθ + j sinhθ . (4.47)

If we write

u = u1 + ju2 =±κ exp(− jθ) =±κ exp(− j
∫

τdx), ω = ω1 + jω2, (4.48)

h⊥ =±(h1− jh2), (4.49)

then the rigid SO(1,1) gauge transformations (4.41)–(4.45) become a hyperbolic phase rotation

u→ uexp(− jφ), ω → ω exp(− jφ), h⊥→ h⊥ exp(− jφ). (4.50)

We can now write the evolution equations in a SO(1,1)-invariant form:

ut = ωx + juω0, (4.51)

ω0x =∓Im(ūω), (4.52)

h‖x =∓Re(ūh⊥), (4.53)

ω = h⊥x +uh‖. (4.54)

Since u is determined by the curve only up to rigid hyperbolic phase rotations (4.41), this split-
complex variable u is a Hasimoto variable which geometrically represents a SO(1,1)-covariant of
the curve, in contrast to the invariants κ,τ which are determined uniquely by the curve.

This system (4.51)–(4.54) has an operator formulation, encoding a triple of SO(1,1)-invariant
Hamiltonian operators, as follows.
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Theorem 8. For inelastic flows of spacelike curves with a non-null principal normal in R2,1, the
curve covariant u satisfies the SO(1,1)-invariant system

ut = Dxω∓ juD−1
x Im(ω ū) = H (ω) (4.55)

ω = Dxh⊥∓uD−1
x Re(ūh⊥) = J (h⊥) (4.56)

where

H = Dx± juD−1
x Im(uC ) (4.57)

J = Dx∓uD−1
x Re(uC ) (4.58)

are a pair of compatible, SO(1,1)-invariant Hamiltonian and symplectic operators, and C denotes
the complex conjugation operator. Moreover, the operators H and J are related by

H I −1 = I J , J I = I −1H , I = j (4.59)

where I is is a Hamiltonian operator compatible with H and J . Composition of these operators
yields the SO(1,1)-invariant evolution equation

ut = R2(h⊥) (4.60)

for u in terms of the normal component h⊥ of the flow, where

R = H I −1 = I J = j(Dx∓uD−1
x Re(uC )) (4.61)

is a hereditary recursion operator.

This theorem is analogous to the similar result for timelike inelastic curve flows in Sec. 3.3 and
has a similar proof by replacing i with j.

An operator D here is Hamiltonian iff it defines an associated Poisson bracket (3.68) having the
same structure as in the case of timelike inelastic curve flows, with j in place of i. Similarly, based
on Magri’s general theorem [17], the SO(1,1) invariance of the pair of compatible Hamiltonian
operators H and I can be used here to derive a hierarchy of flows starting from a root flow
ut = ju corresponding to the generator of SO(1,1) hyperbolic phase-rotations on u. This leads to
the following main result.

Theorem 9. There is a hierarchy of integrable tri-Hamiltonian flows on u(t,x) given by

ut = Rn+1( ju) = I (δH(n+1)/δ ū) = H (δH(n)/δ ū), n = 0,1,2, . . .

= E (δH(n−1)/δ ū), n = 1,2, . . .
(4.62)

(called the +n flow) in terms of Hamiltonians H(n) =
∫

H(n)dx where

I = j, H = Dx± juD−1
x Im(uC ),

E = RH = j(Dx
2∓|u|2±uD−1

x Re(uxC )± juxD−1
x Im(uC ))

(4.63)

are compatible Hamiltonian operators, and where

H(n) = 2(1+n)−1D−1
x Im(ū( jH )n+1u), n = 0,1,2, . . . (4.64)

are local Hamiltonian densities.
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The expression for the Hamiltonians (4.64) in this theorem arises from a scaling formula derived
in Ref. [1].

The +1 flow in the hierarchy (4.62) is explicitly given by

ut = j(uxx∓ 1
2 |u|

2u) (4.65)

which is a variant of the defocusing NLS equation with j in place of i. This equation (4.65) has the
explicit tri-Hamiltonian structure

ut = I (δH(2)/δ ū) = H (δH(1)/δ ū) = E (δH(0)/δ ū) (4.66)

in terms of the Hamiltonian densities

H(0) = |u|2, H(1) = Im(uxū), H(2) =−|ux|2∓ 3
4 |u|

4 (4.67)

(modulo trivial densities given by total x-derivatives). Similarly, the +2 flow in the hierarchy (4.62)
is given by

ut = uxxx∓ 3
2 |u|

2ux (4.68)

which is a variant of the complex defocusing mKdV equation, where j replaces i. It has the tri-
Hamiltonian structure

ut = I (δH(3)/δ ū) = H (δH(2)/δ ū) = E (δH(1)/δ ū) (4.69)

where H(1) and H(2) are given by the Hamiltonian densities (4.67), while H(3) is given by the Hamil-
tonian density

H(3) = Im(uxūxx)± 3
4 |u|

2Im(uūx) (4.70)

(modulo trivial densities given by total x-derivatives).
In exactly the same way as for timelike inelastic curve flows, here the entire hierarchy (4.62) of

flows corresponds to a hierarchy of commuting vector fields

X(n) = Rn( ju)∂u, n = 0,1,2, . . . (4.71)

with the root vector field being the generator of hyperbolic phase-rotations X(0) = ju∂u. All of the
vector fields in the hierarchy are bi-Hamiltonian, with prX(n)G= {G,H(n)}H = {G,H(n+1)}I for
n ≥ 0, where H(n) =

∫
H(n)dx is the functional with the Hamiltonian density (4.64), while each

vector field for n ≥ 1 is also tri-Hamiltonian, prX(n)G = {G,H(n−1)}E . Since the entire hierarchy
is commuting, every Hamiltonian vector field (4.71) is the generator of a symmetry for the defo-
cusing NLS equation (4.65) as well as the defocusing mKdV equation (4.68), and every associated
Hamiltonian (4.64) is a conserved density for both of these equations.
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Proposition 4. Each tri-Hamiltonian flow in the hierarchy (4.62) can be written in the form (4.60)
as given by

h⊥ = Rn−1( ju), n = 1,2, . . . . (4.72)

Consequently, the +n flow for n≥ 1 determines an inelastic timelike curve flow

~γt = h(n)‖ e‖+h(n)1 e1 +h(n)2 e2 n = 1,2, . . . (4.73)

whose tangential and normal components are given by

h(n)‖ = 1
2(n−1)H(n−2), h(n)1 − jh(n)2 =±Rn−1( ju), n = 1,2, . . . . (4.74)

These equations of motions (4.73) can be written in an explicit form by use of the following
variant of a complex parallel-frame notation:

e‖ = T, e⊥ = e1 + je2 = e− jθ (N + jB) (4.75)

satisfying

e‖× e⊥ = je⊥, e⊥× ē⊥ =∓ j2e‖ (4.76)

and

η(e‖,e‖) = 1, η(e⊥, ē⊥) =∓2, η(e‖,e⊥) = η(e⊥,e⊥) = 0. (4.77)

The action of the gauge group (4.31) on these frame vectors consists of rigid hyperbolic phase
rotations

e‖→ e‖, e⊥→ e− jφ e⊥ (4.78)

where φ is constant.
The Frenet equations (4.24) of the underlying parallel frame become

e‖x =±Re(ūe⊥), e⊥x = ue‖, (4.79)

while the flow equations (4.35) are similarly given by

e‖t =±Re(ω̄e⊥), e⊥t = ωe‖+ jω0e⊥. (4.80)

The equation of motions (4.73) for the curve then take the form

~γt = h(n)‖ e‖±Re(h̄(n)⊥ e⊥), n = 1,2, . . . (4.81)

where the tangential component h(n)‖ and the normal component h(n)⊥ =±(h(n)1 − jh(n)2 ) are functions
of the curve covariant u, the conjugate covariant ū, and their x-derivatives, as given by the expres-
sions (4.74). Since u→ e− jφ u and ū→ e jφ ū under the gauge group (4.78), the tangential component
is gauge invariant while the normal component is gauge equivariant,

h(n)‖ → h(n)‖ , h(n)⊥ → e− jφ h(n)‖ . (4.82)

Consequently, each equation of motion (4.32) is invariant under the isometry group ISO(2,1) of
R2,1 and thus describes a geometric non-stretching motion of the curve.
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The curve flow n = 1 corresponding to the defocusing NLS equation (4.65) is determined by the
components

h(1)‖ = 0, h(1)⊥ = ju. (4.83)

Substituting these expressions into the n = 1 equation of motion (4.81), we have ~γt =

±Re(− jūe⊥) = ∓Re(ūe‖ × e⊥) = −e‖ × e‖x by using the cross product identity (4.76) and the
Frenet equations (4.79). Thus we obtain

−~γt = T ×Tx =~γx×~γxx, η(~γx,~γx) =−1, η(~γxx,~γxx) 6= 0 (4.84)

which is a spacelike version of the vortex filament equation in Minkowski space R2,1.
The curve flow n = 2 corresponding to the defocusing mKdV equation (4.68) has the compo-

nents

h(2)‖ =∓1
2 |u|

2, h(2)⊥ = ux. (4.85)

Substituting these expressions into the n = 2 equation of motion (4.32), we find ~γt =±Re(ūxe⊥)∓
1
2 |u|

2e‖. We simplify the term Re(ūxe⊥) = Re(ūe⊥)x −Re(ūe⊥x) = ±e‖xx − |u|2e‖ by using the
Frenet equations (4.79). Next we note η(e‖x,e‖x) = η(±Re(ūe⊥),±Re(ūe⊥)) = 1

2 η(ūe⊥,uē⊥) =
∓|u|2 which follows from the relations (4.77). This yields~γt = e‖xx∓ 3

2 |u|
2e‖, and thus we obtain

~γt = Txx∓ 3
2 η(Tx,Tx)T =~γxxx∓ 3

2 η(~γxx,~γxx)~γx, η(~γx,~γx) = 1, η(~γxx,~γxx) 6= 0 (4.86)

which is a spacelike version of the non-stretching mKdV map equation [2] in Minkowski space
R2,1.

4.2. Spacelike curve flows with a null normal vector

We now consider spacelike curves whose principal normal vector Tx is assumed to be null

η(Tx,Tx) = 0 (4.87)

at every point on the curve.
In contrast to the case when the principal normal is non-null, here the vectors Tx and

T × Tx are parallel, by the following argument. We note ε(T × Tx,T,Tx) = η(T × Tx,T × Tx) =

−η(T,T )η(Tx,Tx) = 0 from the properties (3.2), (3.3), and (3.5). Antisymmetry of ε thereby
implies T ×Tx = aT +bTx for some functions a(x), b(x). Then, since T ×Tx is orthogonal to T from
property (3.5), we find 0 = η(T,T ×Tx) = a due to η(T,Tx) = 0, and hence we have T ×Tx = bTx.

To define a frame, we therefore need another vector, linearly independent of T and Tx. Similarly
to the case of null curves in 2 dimensions, it is natural to use a null vector on the opposite side of
the lightcone in the normal plane R1,1 (which is orthogonal to T ). If ~v is a null vector in the plane
R1,1, let N be a linear map that produces a null vector N (~v) such that η(N (~v),~v) =−1. Recall,
from Sec. 2.2, that the null vectors~v and N (~v) are spatial reflections of each other with respect to
the timelike vector ~v+N (~v) in R1,1, and that any change in the normalization η(N (~v),~v) = −1
only produces a scaling of the null vector N (~v).
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A frame for a spacelike curve~γ(x) with a null principal normal in R2,1 can then be defined by

e‖ =~γx = T, spacelike tangent vector (4.88a)

e+ =~γxx = Tx, null normal vector (4.88b)

e− = N (~γxx) = N (Tx), null opposite vector (4.88c)

with

η(e±,e‖) = 0 (4.89)

η(e±,e±) = 0 (4.90)

η(e+,e−) =−1 (4.91)

where the properties (4.89)–(4.91) uniquely determine e− when e+ and e‖ are given. Let

ε =−1
2 ε(e+,e−,e‖) = ε(e0,e1,e‖), |ε|= 1 (4.92)

denote the orientation (equal to +1 or −1) of the frame vectors as given in terms of the volume
form, where e0 =

1√
2
(e++ e−) is a unit timelike vector and e1 =

1√
2
(e+− e−) is a unit spacelike

vector determined by the null normal vectors in the frame.
The Frenet equations for this frame (4.88) are easily derived by the same steps used in the case

of null curves in 2 dimensions. First, from (4.88b) we have

e‖x = e+. (4.93)

Next, from the x-derivative of equations (4.89) and (4.90), we have 0 = η(e+x,e+) and 0 =

η(e+x,e‖) after using equation (4.93). Thus we get

e+x = σe+ (4.94)

for some function σ(x). Then, similarly we obtain η(e−x,e−) = 0, η(e−x,e‖) = 1, η(e−x,e+) = σ ,
by using equations (4.91), (4.93), and (4.94). This yields

e−x = e‖−σe−. (4.95)

Therefore, the Frenet equations are given bye‖
e+
e−


x

=

0 1 0
0 σ 0
1 0 −σ

e‖
e+
e−

 (4.96)

where the Cartan matrix

0 1 0
0 σ 0
1 0 −σ

 ∈ so(2,1) of the frame (4.88) belongs to the Lie algebra of

the SO(2,1) group of rotation and boost isometries in R2,1. These equations (4.96) are preserved
if the normalization (4.91) of the null frame is changed. Therefore, σ geometrically represents a
Lorentzian curvature invariant of the curve.

A general frame for a spacelike curve in R2,1 is related to this Frenet frame by the action of
arbitrary x-dependent SO(2,1) rotations and boosts applied to the vectors (4.88). If the tangent
vector T is preserved as one of the frame vectors, then the resulting frame is given by applying a
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general x-dependent SO(1,1) boost on the null normal vectors e± in the R1,1 normal plane of the
curve. This yields the boosted frame

E =

e‖
ẽ+
ẽ−

=

 e‖
exp(θ)e+

exp(−θ)e−

 (4.97)

where the boost acts as a scaling, parameterize by θ(x), and where the frame vectors satisfy the
orthogonality relations

η(e‖, ẽ±) = η(ẽ±, ẽ±) = 0 (4.98)

η(e‖,e‖) =−η(ẽ+, ẽ−) = 1 (4.99)

and the cross product relations

ẽ+× ẽ− =−2εe‖, e‖× ẽ± =±2εe±. (4.100)

To derive the Cartan matrix of the boosted frame (4.97), we first take the x-derivative of the frame
vectors, and then we substitute the Frenet equations (4.96) followed bye‖

e+
e−

=

 e‖
exp(−θ)ẽ+
exp(θ)ẽ−

 (4.101)

which yields e‖
ẽ+
ẽ−


x

=

 0 exp(−θ) 0
0 σ +θx 0

exp(−θ) 0 −θx−σ

e‖
ẽ+
ẽ−

 . (4.102)

We now see that, similarly to the case of a spacelike curve with a non-null principal normal, here
the gauge freedom in equation (4.102) can be used to define a Lorentzian parallel frame by the
geometrical condition that the x-derivative of each null normal vector e± is parallel to the tangent
vector e‖. This condition can be achieved if (and only if)

θx =−σ . (4.103)

The resulting frame given by equations (4.97) and (4.103) is a parallel frame whose Cartan matrix
is given by

Ex = UE (4.104)

where

U =

0 u 0
0 0 0
u 0 0

 ∈ so(2,1) (4.105)

with

u = exp(−θ) = exp(−
∫

σdx) . (4.106)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

291



K. Alkan and S.C. Anco / Integrable systems from inelastic curve flows

Note that the Cartan matrix (4.105) has one fewer component than in the case of a spacelike curve
with a non-null principal normal, since here the principal normal is constrained to lie on the light-
cone. In particular, this Cartan matrix belongs to a 1-dimensional subalgebra consisting of a boost
combined with a rotation, which lies in a subspace of the perp space so(1,1)⊥ ' R1,1 of the stabi-
lizer subalgebra so(1,1)⊂ so(2,1) of the frame vector e‖.

A parallel frame is unique up to x-independent (rigid) boosts given by

θ → θ +φ (4.107)

where φ is constant. Under these transformations, the tangent vector e‖ is preserved, while the null
normal vectors ẽ± are rigidly scaled

ẽ+→ exp(φ)ẽ+, ẽ−→ exp(−φ)ẽ−. (4.108)

Any two parallel frames related by this transformation are gauge equivalent, and thus the SO(1,1)
group of these rigid boosts thereby defines the gauge (equivalence) group for parallel frames. Stated
another way, a parallel frame for a spacelike curve with a null principal normal is determined only
up to the action of this gauge group.

4.2.1. Inelastic Flow Equations

Let~γ(t,x) be a spacelike inelastic curve flow that locally preserves the proper distance normalization
(3.9) of the arclength parameter and the null signature (4.87) of the principal normal. Such flows
are specified by a flow vector

~γt = h‖e‖+h+ẽ++h−ẽ− (4.109)

expressed in terms of a tangential component h‖ and a pair of normal components h± with respect
to the frame vectors e‖, ẽ±.

The parallel frame will be carried by the flow, such that the orthogonality relations (4.89)–(4.91)
are preserved. This implies that the t-derivative of the frame vectors e‖, ẽ± is given by

e‖t = ω+ẽ++ω−ẽ−, (4.110)

ẽ+t = ω−e‖+ω0ẽ+, ẽ−t = ω+e‖−ω0ẽ−. (4.111)

We can write these equations in the form

Et = WE (4.112)

with the Cartan matrix

W =

 0 ω+ ω−
ω− ω0 0
ω+ 0 −ω0

 ∈ so(2,1) (4.113)

which belongs to the Lie algebra of the SO(2,1) group of rotation and boost isometries in R2,1.
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Under the action of the gauge group of the parallel frame, the Cartan matrix (4.105) along the
curve is scaled by

u→ exp(−φ)u (4.114)

while the Cartan matrix (4.113) along the flow is similarly scaled by

ω0→ ω0, (4.115)

ω±→ exp(∓φ)ω±. (4.116)

Since the flow vector (4.109) is gauge invariant, its normal and tangential components also scale by

h‖→ h‖, (4.117)

h±→ exp(∓φ)h±. (4.118)

The flow equations (4.112) and the Frenet equations (4.104) of the parallel frame are related by
the compatibility condition ∂t(Ex) = ∂x(Et), which is equivalent to a zero curvature equation (3.43)
relating the Cartan matrices W and U. Substituting these matrices (4.105) and (4.113) into equation
(3.43), we obtain

ω−x = 0, (4.119)

ω0x =−uω−, (4.120)

ut = ω+x−uω0. (4.121)

A similar compatibility condition ∂x(~γt) = ∂t(~γx) relates the flow vector (4.109) and the tangent vec-
tor (4.3) of the curve, as formulated by equation (3.47) using the notation (3.46). After substituting
the matrices (4.105) and (4.113) along with the vectors (3.46) into this equation, we find that its
tangential and normal components yield

h‖x =−uh−, (4.122)

ω− = h−x, (4.123)

ω+ = h+x +uh‖. (4.124)

These compatibility equations (4.119)–(4.121) and (4.122)–(4.124) are the Cartan structure
equations of the parallel frame, describing all inelastic spacelike curve flows ~γ(t,x) with a null
principal normal in R2,1. Compared to all of the previous cases, here the system (4.119)–(4.124)
has a quite different operator structure, as follows.

From equations (4.119) and (4.123), we have

h− = ax+b, ω− = a (4.125)

for some functions a(t), b(t). Next, equation (4.120) yields

ω0 =−av, v =
∫

u dx (4.126)

and then equation (4.122) similarly yields

h‖ =−(ax+b)v+aw, w =
∫

v dx. (4.127)
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Substituting these expressions into equation (4.124), we get

ω+ = h+x +(aw− (ax+b)wx)wxx. (4.128)

Finally, from equation (4.121), we obtain

ut = wtxx = (h++awwx− 1
2(ax+b)w2

x)xx (4.129)

which directly implies

wt = h++awwx− 1
2(ax+b)w2

x + cx+d (4.130)

for some functions c(t), d(t). Hence we have derived the following result.

Theorem 10. For inelastic flows of spacelike curves with a null principal normal in R2,1, the curve
invariant u satisfies the system

wt = h++awwx− 1
2(ax+b)w2

x + cx+d, wx = v, vx = u (4.131)

for w in terms of the normal component h+ of the flow, where a(t), b(t), c(t), d(t) are arbitrary
functions.

We will now restrict attention to the class of flows that exhibit invariance under x-translations.
This implies a = c = 0, so thus the system (4.131) reduces to

wt +
1
2 wx

2 = h+, (4.132)

wxx = u, (4.133)

or equivalently

vt + vvx = Dxh+, (4.134)

vx = u, (4.135)

after a transformation t→ t̃ =
∫

bdt and h+→ h̃+ =(h++d)/b, when b 6= 0. The form of this system
(4.134)–(4.135) is closely related to both Burgers’ equation and the KdV equation. Consider, first,
the flow generated by

h+ =−vx =−wxx. (4.136)

This yields Burgers’ equation

vt + vvx + vxx = 0 (4.137)

for u =
∫

v dx, or equivalently

wt +
1
2 wx

2 +wxx = 0 (4.138)

in potential form, for v =
∫

w dx. We recall that, from Sec. 2.2, Burgers’ equation has a gradient-
energy structure,

vt =−Dx(exp(w)DxδH/δv) (4.139)
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and in potential form

wt = exp(w)δH/δw (4.140)

with H=
∫

H dx where

H = 1
2 exp(−w)v2 (4.141)

is the energy density. Next, consider the flow generated by

h+ =−vxx =−wxxx. (4.142)

This yields the KdV equation

vt + vvx + vxxx = 0 (4.143)

for u =
∫

v dx, or equivalently in potential form,

wt +
1
2 wx

2 +wxxx = 0 (4.144)

for v =
∫

w dx. The KdV equation has the Hamiltonian structure,

vt = H (H/δv) (4.145)

with H=
∫

H dx where

H = 1
2 vx

2− 1
6 v3 (4.146)

is the Hamiltonian density, and where

H = Dx (4.147)

is a Hamiltonian operator. Equivalently, this structure has the potential form

wt =−D(δH/δw) (4.148)

where

D = D−1
x (4.149)

is a Hamiltonian operator.
Both Burgers’ equation (4.137) and the KdV equation (4.143) are integrable systems. However,

their respective recursion operators do not appear in the underlying x-translation invariant system
(4.134)–(4.135), or (4.132)–(4.133), describing the class of flows (4.131) with a = 0 and b 6= 0.

Finally, we consider the class of flows with a = b = c = d = 0,

wt = h+, wx = v, (4.150)

or equivalently

vt = Dxh+, vx = u. (4.151)

These flows give rise to a hierarchy of linear flows generated by a recursion operator R = Dx,
starting from the root flow h+ = vx = wxx. Hence we have the following result.
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Theorem 11. There is a hierarchy of integrable linear flows on v(t,x) given by

vt = h(n)+ = Rn(vx), n = 1,2, . . . (4.152)

=

{
−δH(l)/δv, l = (n+1)/2, n = 1,3, . . .

−Dx(δH
(l)/δv), l = n/2, n = 2,4, . . .

(4.153)

in terms of energies/Hamiltonians H(l) =
∫

H(l)dx, where

H(l) = 1
2(−1)l−1(Dl

xv)2 l = 1,2, . . . (4.154)

are local densities, and where

R = Dx (4.155)

is a recursion operator.

This theorem is a direct counterpart of the hierarchy of linear flows (2.68) shown in Theorem 5
for the case of null curves in 2 dimensions.

The +1 flow in the hierarchy (4.152) is given by the heat equation

vt = vxx (4.156)

which has the gradient structure

vt =−δH(1)/δv (4.157)

in terms of the energy density

H(1) = 1
2 vx

2. (4.158)

All of the odd flows in this hierarchy have a similar structure.
The +2 flow in the hierarchy (4.152) is given by

vt = vxxx (4.159)

which is the Airy equation. This equation has the Hamiltonian structure

vt =−H (δH(1)/δv) (4.160)

where the Hamiltonian H(1) is the same expression as the energy integral appearing in the +1 flow,
and where H is the Hamiltonian operator (4.147). There is a similar structure for all of the even
flows in the hierarchy.

To conclude, we now work out the underlying equations of motion for the curve flows deter-
mined by the preceding flows. We begin by using the Frenet relations (4.88) to express the frame
vectors (4.97) in terms of the tangent vector~γx:

e‖ =~γx (4.161)

ẽ+ = u−1e‖x = u−1~γxx (4.162)

ẽ− = uN (e‖x) = uN (~γxx) (4.163)

where, recall, N is the linear map on null vectors in the Minkowski plane orthogonal to e‖ in R2,1.
In particular, for any null vector v such that η(e‖,v) = 0, this map is uniquely determined by the
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properties

η(N (~v),e‖) = 0, η(N (~v),~v) =−1, η(N (~v),N (~v)) = 0. (4.164)

We next derive an expression for the curve invariant u in terms of x-derivatives of these frame
vectors. From the Frenet equations (4.104) of the frame, we have e‖xx = uxẽ+ = uxu−1e‖x. Then,
since e‖x is a null vector orthogonal to e‖, we obtain

(lnu)x =−η(e‖xx,N (e‖x)) =−η(~γxxx,N (~γxx)) (4.165)

and hence

u =
∫

exp(−η(~γxxx,N (~γxx)))dx. (4.166)

The flow vector (4.109) now leads to the following results.

Proposition 5. The flows (4.136) and (4.142) producing, respectively, Burgers’ equation (4.137)
and the KdV equation (4.143) determine an inelastic spacelike curve flow with a null principal
normal, where the components of the flow vector (4.109) are given by

h‖ =−v =−
∫

u dx, h− = 1 (4.167)

h+ =−u and h+ =−ux (4.168)

where u is the curve covariant (4.166) and v is its potential.

The resulting curve flows are explicitly given by

~γt =−v~γx +uN (~γxx)−~γxx, η(~γx,~γx) = 1, η(~γxx,~γxx) = 0 (4.169)

which corresponds to Burgers’ equation (4.137), and

~γt =−v~γx +uN (~γxx)−~γxxx, η(~γx,~γx) = 1, η(~γxx,~γxx) = 0 (4.170)

which corresponds to the KdV equation (4.143).

Proposition 6. In the hierarchy (4.152), each flow determines an inelastic spacelike curve flow with
a null principal normal, where the components of the flow vector (4.109) are given by

h‖ = 0, h− = 0, h(n)+ = Rn(vx) = Dx
nu, n = 1,2, . . . (4.171)

in terms of the curve covariant (4.166).

The curve flow n = 1 corresponding to the heat equation (4.156) is explicitly given by

~γt =~γxx, η(~γx,~γx) = 1, η(~γxx,~γxx) = 0 (4.172)

which is a non-stretching variant of the heat map equation, in Minkowski space R2,1. Similarly, the
curve flow n = 2 corresponding to the Airy equation (4.159) is given by

~γt =~γxxx η(~γx,~γx) = 1, η(~γxx,~γxx) 6= 0 (4.173)

which is a non-stretching Airy map equation in Minkowski space R2,1.
Note that all of these equations of motion (4.169), (4.170), (4.172), (4.173) are invariant under

the isometry group ISO(2,1) of R2,1 and thus describe geometric non-stretching motions of the
curve.
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5. Conclusion

There are several interesting directions in which the methods and results in this paper can be
extended.

Firstly, one can consider inelastic curve flows in n-dimensional Minkowski space Rn,1 for n≥ 4.
Inelastic flows of timelike curves will yield an integrable multi-component SO(n− 1)-invariant
vector version of the defocusing mKdV equation and its bi-Hamiltonian integrability structure,
while spacelike curves will similarly yield a SO(n−2,1)-invariant variant of that equation. Inelastic
flows of null curves will yield multi-component Burgers’ equations and their symmetry-integrability
structures.

Secondly, one can consider inelastic curve flows in Lorentzian symmetry spaces M =G/SO(n−
1,1), with G = SO(n,1) and G = SU(n− 1,1) for n ≥ 3. These two spaces are curved generaliza-
tions of Minkowski space in which their frame bundles have the same SO(n−1,1) gauge group of
rotations and boosts as in the flat space Rn,1. The space M = SO(n,1)/SO(n− 1,1) will yield the
same multi-component vector defocusing mKdV equations obtained from Rn,1, whereas the space
M = SU(n−1,1)/SO(n−1,1) will yield different multi-component vector mKdV equations, analo-
gously to the geometric origin of the two known multi-component vector focusing mKdV equations
from [2] the Riemannian symmetric spaces M = G/SO(n), with G = SO(n+1) and G = SU(n) for
n ≥ 3. For n = 3, the Lorentzian symmetric space M = SO(3,1)/SO(2,1) will yield the same two
integrable defocusing NLS equations as found in this paper, while the space M = SU(2,1)/SO(2,1)
will yield two other integrable defocusing NLS equations (and their bi-Hamiltonian integrability
structures).

Lastly, one can also obtain integrable sinh-Gordon equations, including (split) complex versions
and multi-component vector versions, by considering inelastic curve flows related to non-stretching
wave map equations in M = SO(n,1)/SO(n−1,1) and M = SU(n−1,1)/SO(n−1,1), in analogy
with the various versions of sine-Gordon equations obtained from [2,3] the Riemannian symmetric
spaces M = SO(n+1)/SO(n) and M = SU(n)/SO(n), for n≥ 3.
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