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We investigate the existence of several families of symmetric periodic solutions as continuation of circular
orbits of the Kepler problem for certain symmetric differentiable perturbations using an appropriate set of
Poincaré-Delaunay coordinates which are essential in our approach. More precisely, we try separately two
situations in an independent way, namely, when the unperturbed part corresponds to a Kepler problem in inertial
cartesian coordinates and when it corresponds to a Kepler problem in rotating coordinates on R3. Moreover,
the characteristic multipliers of the symmetric periodic solutions are characterized. The planar case arises as
a particular case. Finally, we apply these results to study the existence and stability of periodic orbits of the
Matese-Whitman Hamiltonian and the generalized Stgrmer model.

Keywords: Perturbation theory; Symmetries; Continuation method; Delaunay-Poincaré variables; Circular
Solutions.
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1. Introduction and statement of the main results

The objective of this paper is to show analytically the existence of several families of symmetric
periodic solutions close to circular orbits of differentiable systems which are symmetric perturba-
tions of the Kepler problem. More precisely, our purpose is to study separately the existence of
periodic solutions of Hamiltonian systems in two situations, namely: the first case is associated to
the Hamiltonian function of the form

H*(q,p,€) = Ho(q,p) + €*Hi(q,p) + Hr(q,p.€), q.peR’ aeN, (1.1)

where Hy(q,p) = w - |\Tll|\ is the spatial Kepler problem, and the perturbed functions H;(q,p)

and Hg(q,p, &) are both differentiable and Hy is of order &'(¢%**!). Furthermore, the characteristic
multipliers of the symmetric periodic solutions are characterized, so its type of stability can be
deduced.

*The first author was partially supported by a CNPq post-doc fellowship Grant No. 233145/2014-1.
Partially supported by Fondecyt 1130644 and CONICYT/Project MATH-AMSUD, 14 MATH-02.
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There exists extensive literature where the existence of periodic solutions in Celestial Mechan-
ics is studied using the process of continuation and the symmetry of the problem e.g., [2], [16], [20],
[21]. The continuation method goes back to Poincaré who in [18] studied the existence of periodic
solutions in the three-body problem using the method that now is called the Poincaré continua-
tion method [20]. Another geometric method was introduced by Duistermaat in two papers [6], [7]
which studied the existence of periodic solutions of periodic systems of ordinary differential equa-
tions containing a parameter and near equilibrium points, respectively. In our work we obtain peri-
odic solutions of Hamiltonian function which are perturbation of the integrable Kepler problem
with 3 degrees of freedom. Our results combine the discrete symmetries of the Hamiltonian and the
Continuation Poincaré method, using strongly the first approximation of the solutions of the full
Hamiltonian system given by a variational system, although these ideas have been used in other
works (see for example, [1], [2], [4], [9], [16], [20], [21], [22], [23], etc.) for specific perturbations
or under a different point of view. We point out that our results are interesting, because we try
several situations (for different type of perturbations, symmetries, rotating and non-rotating pertur-
bations of the Kepler problem) and we compare them in different theorems. Moreover, the set of
coordinates (appropriate Delaunay-Poincaré coordinates) that we use in our approach permits us to
give necessary conditions in order to continue different circular Keplerian solutions which are in:
the polar plane (third component of angular momentum equal to zero); in an inclined plane and in
the equatorial plane (see the applications for more details).

In order to enunciate our main results, under our approach, we consider conveniently modified
Poincaré-Delaunay variables (see details for example in [1], [3], [15], [17], [21]). In fact, the main
reasons to consider these types of variables can be summarized as follows: Firstly, in these coor-
dinates the characterization of “reflection” symmetries is simpler, secondly because the periodicity
equation (equation that characterizes the initial conditions of symmetric periodic solutions) can be
reduced to a minimum number of equations, and in third place the elimination of the degeneracy
due to periodicity (maximal rank). We will consider the following Poincaré-Delaunay variables

O1=1+g, P =1L,
0> = —/2(L—G)sin(g), P, = \/2(L— G)cos(g), (PD-1) (1.2)
Q3 = ha P3 =H.

See more details in Section 2. It is verified that in the (PD-1) variables the Hamiltonian (1.1) takes
the form

H(Q,P,e) = 75(Q,P) + €% 71 (Q,P) + #z(Q,P,¢), (1.3)

where #%(Q,P,€) = 0(e**!), and the Hamiltonian of the Kepler problem assumes the form

1
IP) = ——. 1.4
0( ) 2P12 ( )
The Hamiltonian system associated to the Hamiltonian (1.3) is written as
Q=stp, P=-t. (1.5)

We will use the notation ¢(¢,Q,P;€) to denote the flow of the Hamiltonian system associated to
(1.5). Now, we are going to assume that the Hamiltonian function H* in (1.1) is invariant under the
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anti-symplectic reflection:
A (Xay,Z,anpyaPz) — (7xvyaz’pxa *pyaipz)'

with @ = (x,5,2), P = (Px;Py,Pz). Thus, if @(t,q,p) = (x(2),¥(2),2(t), p«(t), py(t), (1)) is
a solution associated to the Hamiltonian (1.1), then S; o @(7,q,p) = (—x(—t),y(—1),z(—t),
Px(—t),—py(—t),—p-(—t)) is also a solution. Now we observe that the fixed set of the symmetry
Sy is the Lagrangian subspace, .2} = {(0,y,z, px,0,0);y,z, px € R}. In particular, if we consider an
initial condition (q,p) € % such that ¢(7/2,q,p) € -2}, then the solution ¢(z,q,p) is T-periodic
and S;-symmetric. Next, we consider a convenient circular solution of the Kepler problem (1.4),
denoted by @y, (t,Yo) with initial condition

YO = (Y](0)7Y2(0)7Y3(0)7Y4(0)7Y5(0)7Y6(0)) = (”/270707571/3707173) € Dzﬂl: (16)

in Section 2, we give the conditions such that the solution hits .%}. After that, we take a small and
convenient perturbation of the initial condition Y of the previous circular solution in the form

Y = (7/2,A0,,0,57 3 + AP0, p3 + AP € 4, (1.7)

that is, we perturb the initial condition of the circular Keplerian solution only in three convenient
directions, namely Q», P; and P;. Then, we take the solution of the Kepler problem ¢y, (¢,Y) with
initial condition Y which is given in Poincaré-Delaunay (PD-1) variables by

Oi(t) =st+m/2, Ox(t) =AQa, 03(t) =0,

P(t) =5 BHAP, P(1)=0,  Pyt) = ps+AP, (1.8)

with s € R" and p3,AQ;,AP;,AP; € R. In order to enunciate our first main result we set the number

T/2 2 . T/ 2
B S P
Q */0 WAIQz((Pkep(TaY»‘ Y dr~/0 m((pkep(T’Y))’Y:Yodri (1.9)

T/2 ., T2 52
32 9"
/O m((pkep(T’Y))’Y:YodT./o WAIQz((pkEP(T’Y))‘Y:YOdT.

=10

Let X = (X1, X0, X3,Xs) = (02,03, P>, Ps) and (1, (1", 1,” + X1,7” + 35,1, vV 4+ x5, 70 +
X4)) be a solution of the Kepler problem with initial condition (Y 1(0) , YZ(O) + X, Y3(0) + X5, Y4(O) , YS(O) +
X3 ) Y6(0) +X4),

T
AX) = /0 Hy (@rep (1, V0,71 4 %1, Y1 + %0, 70 ¥ 4 X5, 70 4 X,))) it (1.10)

be the average function of H; and the matrix

0%H
A_J<8Xi8X,->X_O’ (1.11)

where J denotes the standard skew-symmetric matrix. Now we are ready to state our first result
which provides sufficient conditions for the existence of S;-symmetric periodic solutions of (1.1)
with fixed period and its characteristic multipliers.
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Theorem 1.1. (First kind S-symmetric periodic solutions) Suppose that the Hamiltonian function
H* in(1.1) is Sy-symmetric and let Q. (t,Y) be a solution of the Kepler problem as in (1.8). Assume
the following conditions

T/2 .
@ [ 5 @m0, de=0,

/2 1.12
(b) /O %}Qj ((pkep(TvY)> ‘Y:Yodr = 07 ( )
(c) Q1 #0.

Then for € sufficiently small there are initial by € Y¢ = Yo+ Y(¢) with Y(g) =
(0,AQ>(€),0,AP(€),0,APs(€)) such that ¢(t,Y¢;€) = Qrep(t,Yo) + O(€) is a Si-symmetric peri-
odic solution of the Hamiltonian system associated to the Hamiltonian (1.1) or (1.3) with period
T =21 /s. Moreover, if A1, A2, A3, A4 are the eigenvalues of A in (1.11), then the characteristic mul-
tipliers of the periodic solution @(t,Y¢;€) are 1,1,1+€%A + O(e*T1) 1+ €A+ O(e*1),1 +
%23+ O(e%T1) 1+ %Ay + O(e*).

Theorem 1.1 will be proved in Section 3.

In order to simplify the form of the equations that characterize the T-periodic solution as a
continuation of T-circular Keplerian solution (see details in [18]) and for future applications, we
are going to assume that in addition to the existence of the reflection S, the Hamiltonian function
H* in (1.1) is also invariant under the reflection

S2 . (x,y,Z,Px,py,pz) — (X, -, =% _px,pyapz),

where the fixed set of the symmetry S, is the Lagrangian subspace .4 = {(x,0,0,0,

Dy, Dz)iX, Dy, Pz € R}. Thus, if a solution starts in one of these Lagrangian planes at time = 0 and
hits the other Lagrangian plane at a later time ¢t = T /4, then the solution is T-periodic and the orbit
of this solution is carried into itself by both symmetries. We call such a periodic solution doubly-
symmetric. Geometrically, an orbit intersects .% if it hits the x-axis perpendicularly and it intersects
A if it hits the yz-plane perpendicularly.

Theorem 1.2. (First kind S| — S» doubly-symmetric periodic solutions) Suppose that the Hamil-
tonian function H* in (1.1) is S1 and Sy-symmetric and let Qr,(t,Y) be a solution of the Kepler
problem as in (1.8). Assume that

T/4

274
S (Orep(T,Y dt =0,
(a) /0 o0 (Prep ))‘Y:YO 113

T/4
224
) [ st (w2 X)) dT 0,

hold. Then for € sufficiently small there are initial by €, Y = Yo+ Y(g) with Y(¢) =
(0,AQ>(€),0,AP;(€),0,APs(€)) such that @(t,Ye;€) = Qrep(t,Yo) + O(€) is a doubly-symmetric
periodic solution of the Hamiltonian system associated to the Hamiltonian (1.1) or (1.3) with period
T =21 /s. Moreover, if 11,42, A3, A4 are the eigenvalues of A in (1.11), then the characteristic mul-
tipliers of the periodic solution @(t,Ye;€) are 1,1,1+€%A + O (1) 1+ €A + O (e*H1), 1 +
e+ O (%) 1+ €Ay + O(e*1).

The proof of this theorem can be found in Section 4. We point out that while in Theorem 1.1
we must verify three conditions for the existence of Sj-symmetric periodic solutions (besides the
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Hamiltonian possesses one symmetry of reflection), in the case of doubly symmetric periodic solu-
tions (besides the Hamiltonian function H has two symmetries of reflection) in Theorem 1.1 we
observe that we need to check only two conditions in a simplified way. This difference will be clear
during the process of the proof. We want to make clear the role of the symmetries of the Hamilto-
nian function H and the role of the sufficient conditions which guarantee the existence of periodic
solutions in suitable coordinates. In particular, on one hand this justifies why we try different situa-
tions, and on the other hand it is due to future applications.

In order to get results for a planar case, we will assume that the “plane” or set y = p,, = 0 (which
we call the polar plane) is invariant under the flow defined by the Hamiltonian associated to H* in
(1.1). In Poincaré-Delaunay (PD-1) variables this planar case is equivalent to putting O3 = P; = 0.
Since in the spatial case the inclination of the orbital plane was arbitrary, we can fix a circular
periodic solution of the Kepler problem on the xz-plane, so we must take p3 = 0 and in this way we
do not need to perturb the initial condition Y in the direction Ps.

Therefore, as an immediate consequence of Theorems 1.1 and 1.2, we have the following result.

Corollary 1.1. (First kind symmetric periodic solutions on the polar plane) Suppose that the set
y = py = 0 is invariant under the flow defined by the Hamiltonian associated to H* in (1.1) and let
Qrep(t,Y) be a solution of the Kepler problem as in (1.8) with p3 = 0 and AP; = 0.

(i) If the Hamiltonian function H* in (1.1) is S1-symmetric and the assumptions

@) / i m )|, dr=0
a en\ T T=0,
90, \Tkep Y=Y, (1.14)

(b) 7 Y dt #0
90,0A0, (Pkep(T’ )) Y=Y, T7é )

are satisfied, then for € sufficiently small there are initial by €, Y = Yo+ Y(&) with Y(¢) =
(0,AQ>(€),0,AP;(€),0,0) such that @(t,Ye;€) = Qrep(t,Yo) + O(€) is a Si-symmetric periodic
solution of the Hamiltonian system associated to the Hamiltonian (1.1) or (1.3).

(ii) If the Hamiltonian function H* in (1.1) is S; and Sy-symmetric then for € sufficiently
small there are initial by €, Y, = Yo+ Y(&) with Y(g) = (0,AQ2(€),0,APi(€),0,0) such that
O(t,Ye;€) = Qrep(t,Y0) + O(€) is a doubly-symmetric periodic solution of the Hamiltonian sys-
tem associated to the Hamiltonian (1.1) or (1.3).

Moreover, if Ay = 0,4, =0, A3, A4 are the eigenvalues of A in (1.11), then the characteristic mul-
tipliers of the periodic solution ¢(t,Y), obtained in each case (i) and (ii), are 1,1,1+ 0(e**), 1+
O™, 1 +e%3+ O(e%T), 1 + %Ay + O(e*"). The solutions obtained in item (i) and (ii) are
on the xz-plane and have period T =21 /s.

If the Hamiltonian (1.1) is invariant under rotations about the z-axis, then we can simplify the
study of the stability of the periodic solutions whether they exist by Theorems 1.1 or 1.2. In fact, it
is known that two eigenvalues of A in (1.11) are null since there is an additional first integral.

Corollary 1.2. Suppose that the Hamiltonian H* in (1.1) is invariant under rotations about the
z-axis. Then the characteristic multipliers of the T-periodic solutions @(t,Y¢;€) given by Theorems
1.1or1.2are

L1LLL1T+e%0 4+ 0(e*™), 1+ %A + 0(e*T),
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where Ay and A, are the roots of the polynomial

p(A) = A2 +ayasz —ajzasy,

T 9°H, fT 9%H,;
0

with air = fy 355 (Prep(t,Ye))dt [x=0, a1z = m(q’kep(ljs))dt Ix=0 dt |x—0, a3z =

T 9> % T _9%H
—Jo T (Puap (1.Ye) it [x—0)dt [x—0 and azs = — i 5254

(Qrep(t,Ye))dt |x—o dt |x—o, where Ye = (m/2,AQ:(€),0,57/3,0,p3 + APs(g)) with X =
(AQ2(€),0,0,APs(€)). In particular the periodic solutions @(t,Y¢;€) are unstable if ajjaszz —
aizaz; > 0 and are linearly stable if ay1a3z —ajzaz; <O.

It is known in the literature that there are some Hamiltonians which are perturbation of the
Kepler problem in rotating coordinates (see for example [16]). In some cases these Hamiltonians
are obtained by the Hamiltonian function (1.1) because they are invariant under rotation around the
z-axis, but in other cases they appear as a particular problem which is not obtained by (1.1) (for
a concrete problem see [8] and [19], these situation can be extended to other problems of massive
bodies such as rings or disks). We have some advantage if we consider symmetric perturbations of
the rotating Kepler problem. The first one is that we can reduce the number of periodicity equations
which depend on the perturbing function, or even if we consider both symmetries, we can get the
non-dependence of the periodicity equations in relation to the perturbed function (see Theorem 1.4).
The second case will be clear when we deal with the applications in Section 11, it is related with
the choosing of the initial condition p3, that is in this frame, it can be chosen arbitrary or excluding
a specific value. If we have an arbitrary value for p3, we can obtain symmetric periodic solutions of
the perturbed problem close to circular Keplerian orbits in a arbitrary orbital plane. Because of this
we are motivated to consider a second type of Hamiltonian system associated to the Hamiltonian
function of the form

K =20 (p—yp) — — e 4 69Ky (p,q) + O(e1), @ €N (1.15)
2 Py — YDx \/m I\P, ) ’ .
2 2 2
where of course Ky = W — (xpy —ypx) — \/ﬁ represents the Kepler problem in rotating
X2y +z

coordinates. Next, we write the Hamiltonian (1.15) in Poincaré-Delaunay (PD-1) variables (1.2), so
we get

K(Q,P,¢) = —#—P3+8“K1(Q,P)+ﬁ(sa“). (1.16)
1

To obtain our results, we need to introduce time as a new independent variable in order to eliminate
the degeneracy of the system defined by periodicity equations. The necessity of this condition will
be clear during the proof of Theorems 1.3 and 1.4. On the other hand, the periodic solutions obtained
in these theorems for the Hamiltonian system associated to (1.15) do not have necessarily the same
period as the circular Keplerian solution.

We denote by ¢(¢,-) the flow of the Hamiltonian system associated to the Hamiltonian (1.16).
Now, we look for a circular solution of the Kepler problem ¢, (¢, Yo) with initial condition Yy as
in (1.6) and we consider the small perturbation Y of the initial condition as in (1.7). Let ¢.p (1,Y)
be the solution of the rotating Kepler problem in Poincaré-Delaunay (PD-1) variables with initial
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condition Y given by

Qi(t) =st+m/2, O (1) =AQ2, Os(t) =

1.17
Pi(t)=s"13+AP, P(t) =0, P3(t) = p3 +APs, (117

with s € R™ and p3,AQ»,AP;,AP; € R. It is verified that the energy of the circular Keplerian solution
is given by K = —ﬁ — p3 = ko. Then writing p3 = —(2kos—'/3 + 1) /(2s~%/3), for each ko such
that % (—% — 1) s2/3 < kg < % ( 1) 2/3, we have associated to one circular solution of the Kepler
problem.
_ _ (0) y(0) (0) (0) (0)
LetX—(X17X23X37X4)_(QZ,Q37P27P3) and(p(ta(Yl ,Y2 +X17Y3 +X27Y47Y5 +X35Y6 +

X4)) be a solution of the rotating Kepler rotating problem with initial condition (YI(O),YZ(O) +
X, Y0 4 %0, %4, ¥ 4 X3, 7% + X;) on the level K = i — Py = ko where ¥y := Y (ko,Xy) =
L with ¥%(ko,0) = ¥*. Define
—2(ko+Y " +X4)
T
> 0) (0 0 0 0
K (X) :/0 K (ke (6, (7 10 4+ X0, 70+ %0, 70, YO 4 X3, 70 4 x4)))dt, (1.18)
be the average function of K| and the matrix
J’K;
B=J ) 1.19
(axiax)x_o (119)

where J denotes the standard skew-symmetric matrix and as before T = 27 /s. In this case we have
the following result.

Theorem 1.3. (First kind S1-symmetric periodic solutions in the rotating case) Suppose that the
Hamiltonian function K in (1.15) is Si-symmetric and let Q. (t,Y) be a solution of the rotating
Kepler problem as in (1.17). Assume that

T/2
(@ [ PErep(r.Y))| _ dT=0,
/0 JQ, \Tkep ‘Y:YO (1.20)

T/2
) [ i Gt V)| dr 0,

hold. Then for AP; and € sufficiently small there are initial conditions parametrized by two param-
eters € and AP;, YAP3,£ =Yy +Y(AP3,8) with Y(AP3,8) = (0,AQ2(AP3,£), 0,AP, (AP3,8),O,AP3)
such that ¢(t,Ye;€) = Prep(t,Yo) + O(€) is a S\-symmetric periodic solution of the Hamilto-
nian system associated to (1.15) or (1.16) with period T(APs,€) = 21t/s + O(€%). Moreover, if
M, A2, A3, Ay are the eigenvalues of B in (1.19), then the characteristic multipliers of the periodic
solution ¢(t,Ye;€) are 1,1,1+€%Ay + O (%), 1+ %N + O(e%), 1 + %23 + O(e%1), 1 +
%Ny + O (%),

This theorem is proved in Section 6.
Of course, the periodic solutions obtained in Theorem 1.3 correspond to quasi-periodic solutions of
the Hamiltonian (1.1). But, if the relation of commensurability between the period of the continued
orbit and the rotation period (27) is satisfied, these solutions are in fact periodic solutions of the
system associated to the Hamiltonian (1.1).

In the doubly symmetric case we have the next result.
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Theorem 1.4. (First kind S| — Sy-symmetric periodic solutions in the rotating case) Assume that
the Hamiltonian function K in (1.15) is S| — Sy-symmetric and let (})kep(t,Y) be a solution of
the rotating Kepler problem as in (1.17). Then for APy and € sufficiently small there are ini-
tial conditions parametrized by the two parameters € and AP; as Yap, ¢ = Yo+ Y(AP3, €) with
Y(AP3,8) = (O,AQQ(AP3,£),O,AP1(AP3,8),0,AP3) such that ¢(I,Yg;8) = ¢kep(l,Y0) + ﬁ(&'a)
gives us a doubly-symmetric periodic solution of the Hamiltonian system associated to (1.15) with
period T (AP;,€) = 21 /s + O(€). Moreover; if A1, A2, A3, Ay are the eigenvalues of B in (1.19), then
the characteristic multipliers of the periodic solution ¢ (t,Ye;€) are 1,1,1+€%A + O (%), 1+
N+ O (%) 1+ €%A3+ O(e¥ ), 1 + %Ay + O (%),

This theorem is proved in Section 7.

Analogously to Corollary 1.2, if we assume that the Hamiltonian (1.15) is invariant under rota-
tions about the z-axis, and note that in Theorems 1.3 and 1.4 we can consider the small perturbation
Y of the initial condition Yq in (1.12) perturbing only in the O, and P directions, i.e., to consider
the rotating Kepler solution (1.17) with AP; = 0. Since the third component H = p3 of the angular
momentum is an integral of motion, we shall restrict our attention to the level H = p3. We enunciate
this situation in the following corollary.

Corollary 1.3. Assume that the Hamiltonian K in (1.15) is invariant under rotations about the

z-axis and suppose that the third component of the angular momentum H = ps is fixed. Then for the

Hamiltonian system associated to the Hamiltonian (1.15) or (1.16) the following statement holds:
(i) If the Hamiltonian function (1.15) is S1-symmetric and the assumptions

T/2 9K, -
@ [ 38 (e V)|, dT=0. .

b [ Y dt 0
( )/0 30,980, (Pkep(T, ))‘Y Yo T#0,

are satisfied, then for € sufficiently small there are initial conditions parametrized by €, Y = Yo+
Y(e) with Y(&) = (0,AQ>(€),0,AP;(€),0,0) such that ¢(t,Ye;€) = Prep(t,Yo) + O(€) is a Si-
symmetric periodic solution.

(ii) If the Hamiltonian function (1.15) is S| and S,-symmetric, then for € sufficiently small there
are initial conditions parametrized by €, Ye = Yo+ Y(€) with Y(&) = (0,AQ>(€),0,AP;(€),0,0)
such that ¢ (t,Y¢;€) = Qrep(t,Yo) + O(€) is a doubly-symmetric periodic solution.

Moreover, if A, 2,23 = 0,44 = 0 are the eigenvalues of B in (1.19), then the characteristic
multipliers of the periodic solution ¢(t,Y¢;€) in (i) or (ii), are 1,1,1,1,1+€%A; + O(e*+1), 1 +
%N + O (e,

In the literature (see details in [15] and [16]) we found a second set of convenient Poincaré-
Delaunay variables

Q1=1+g+h, P =1L,
0, = —+/2(L—G)sin(g+h), P, = \/2(L—G)cos(g+h), (PD-2) (1.22)

03 =—+/2(G—H)sin(h), P;=+/2(G—H)cos(h),

We introduce these variables to get symmetric periodic solutions for an arbitrary problem asso-
ciated to the Hamiltonian (1.15). In fact, we observe that using (PD-2) variables and considering
the problem in rotating coordinates, we obtain periodic solutions for any differentiable perturbation
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(only maintaining the symmetry) of the rotating Kepler problem. Moreover, the variables (PD-2)
are defined in the reference plane (xy-plane) but the variables (PD — 1) that are not defined. But,
with these set of coordinates, we can only continue circular Keplerian orbits in the reference plane,
i.e., the perturbed symmetric periodic solutions are close or are contained in the xy-plane. Contrary
to what occurs with Theorems 1.3 and 1.4 the continued symmetric period solutions have the same
period of the Keplerian circular orbit. In the (PD — 2) variables, the circular orbits correspond to
0> = P, =0, and the orbits lying on the reference plane to O3 = P; = 0. The Kepler problem in
rotating coordinates in (PD — 2) variables assumes the form

1 G +P+ O3+
Ko(Q,P)=———=—-P + =. 1.23
Thus solutions of the rotating Kepler problem in Poincaré-Delaunay (PD-2) variables with initial
condition Zo = (09,095,093, PY, P, PY) are given by

01(r) = (s— 1)r + 0}, P(t) =P,
0>(t) = QYcost + PYsint,  Py(t) = —QYsint + P cost, (1.24)
03(t) = Q)cost + P)sint,  P3(t) = —QYsint + P cost.

Moreover, the Hamiltonian (1.15) in Poincaré-Delaunay (PD-2) variables takes the form

‘%/(Qapag):_i_Pl—i_Qz s Q3 3

o P atly, 1.2
22 5 +e%1(Q,P)+0(e") (1.25)

We denote by Py, (t,-) the flow of the Hamiltonian system associated to the Hamiltonian (1.25).
Now, we will look for a circular solution of the Kepler problem ®y.,(t,Zo) given in Poincaré-
Delaunay (PD-2) variables such that ®y,,(0,Z) € £} and at the instant t = T'/2 satisfies Py, (7 /2,
Zy) € £ . 1t is enough to take Zy = (Z§0),Zéo),Z§3),Z§0),Z§O),Zéo)) = (n/2,0,0,s*1/3,0,0) and the
Keplerian solution has period 7 = 27 /(s — 1) and is lying on the xy plane. It is verified that the
energy of the circular Keplerian solution of rotating Kepler problem in Poincaré-Delaunay (PD-2)
variables is given by & = — 5 5 75— s~1/3 = ky. Since s > 1, by the expression of the period T', then
for each negative kg < —3/2 we have associated to one circular solution of the Kepler problem in
rotating coordinates.

Next we will look for the solution @y, (¢,Z) of the rotating Kepler problem in Poincaré-
Delaunay (PD-2) of the form

Qi(t) =(s—)it+m/2, P(t)=s"3+AP,
0 (t) = AQ; cost, Py(t) = —AQ;sint, (1.26)
Qs(t) = AP5sint, P3(t) = APscost,

AQy, AP, AP; € R. Let X = (X1,Xp,X3,Xs) = (Q2,03,Py, Py) and Dy (t, (2, 27 + %1, 20" +

Xg,Z4,Zs(0) +X3,Zé0) +X4)) be a solution of the Kepler problem with initial condition (ZI(O),Zéo) +

X1,2 +%,,2 2 + X3,2." + Xy, where Zy := Z4 (k. X1, X2, X3, X3) is solution of — 5L, —Z4+
7l
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Q3+ P} + 0%+ P}) — ko = 0 and Za(ko,0,0,0,0) = s~'/3. Define

T
A (X) = /0 6 (@pep (1,20, 29 4+ %1, 29 + %5, 24,2 + X3, 20 £ Xp)))dr.  (1.27)

to be the average function of H; with T' = S{—”l and the matrix

)
c=1<8‘%/1> . (1.28)
X=0

IX,0X;

Theorem 1.5. (First kind S1-symmetric periodic solutions close to the equatorial plane) Suppose
that the Hamiltonian function K in (1.15) is Sy-symmetric and let Dy, ,(t,Z) be a solution of the
rotating Kepler problem as in (1.26) such that ﬁ ¢ N. Then for € sufficiently small there are
initial conditions parametrized by €, Le = Lo+ ZL(€) with Z(€) = (0,AQ:(€),AP;(€),0,AP3(¢))
such that ®(t,X¢;€) = Ppep(t,Zo) + O(€) is a Sy-symmetric periodic solution of the Hamiltonian
system associated to (1.15) or (1.16), with period T = 2r/(s — 1) and close to the xy-plane with
period T = i—”l Moreover, if Ay, Ay, A3, Aq are the eigenvalues of C in (1.28), then the characteristic

multipliers of the periodic solution ®(t,Z¢;€) are 1,1,cosT — isinT + %Ay + O(e**1),cos T —
isinT +&%Ay + O (%), cosT +isinT + %Az + O (%), cosT +isinT + %Ay + O (%H1).

This result is proved in Section 8.

To obtain doubly symmetric periodic solutions, we consider a circular solution of the Kepler
problem ®y,,(0,Z) in Poincaré-Delaunay (PD-2) variables, such that ®,,(0,Zg) € . and at the
instant r = T /4 satisfies @y, (T /4,Zo) € 2. It is verified that the circular Keplerian solution in the
inertial frame has period 7 = 27t /(s — 1), radius s~2/3 and it is on the xy- plane with initial condition
Zo.

Theorem 1.6. (First kind S| — Sy-symmetric periodic solutions close to equatorial plane) Sup-
pose that the Hamiltonian function K in (1.15) is Si and S»-symmetric and let ®y,,(t,Z) be a
solution of the rotating Kepler problem as in (1.26). Then for € sufficiently small there are initial
conditions Le = Lo + Z(¢€) with Z(g) = (0,AQ2(¢€),0,AP;(€),0,APs(€)) such that P(t,X¢;€) =
Dy (t,Zo) + O(€) is a doubly-symmetric periodic solution of the Hamiltonian system associated
to (1.15) with period T =21 /(s — 1) whether 1/(2s —2) # k for all k € N. This periodic solution
is close to Oy (t,Zo) which is on the (x,y)— plane with radius 5723 Moreover, if A1, A2, A3, Ag are
the eigenvalues of C in (1.28), then the characteristic multipliers of the periodic solution ®(t,X¢; €)
are 1,1,cosT —isinT +€%Ay + O (1), cosT —isinT 4+ &%y + O (%), cos T +isinT +€%A3 +
O(e%),cosT +isinT + €*Ag + O (e*H1).

This theorem is proved in Section 9.

We will assume that the ’plane” z = p, = 0 is invariant under the flow defined by the Hamilto-
nian associated to 7 in (1.5), i.e., we have diminished the number of degrees of freedom by one
dimension. Here we have the following result.

Corollary 1.4. (First kind symmetric periodic solutions on the equatorial plane) Assume that the
set 7 = p, = 0 is invariant and let ®y,,(t,Z) be a solution of the rotating Kepler problem as in
(1.26) with AP; = 0. Then, there exists a family of initial conditions Z¢ as in Theorem 1.5, or
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respectively, Theorem 1.6 with AP3(€) = 0, such that ®(t,Z¢;€) = Qrep(t,Zo) + O(€) give us a Sy -
symmetric, or respectively, doubly-symmetric contained in the xy-plane with period T =27 /(s —
1). Moreover, if Aj = 0,4y = 0,43, A4 are the eigenvalues of C in (1.28), then the characteristic
multipliers of the periodic solution ®(t,Z¢;€) (for the S\-symmetric or doubly-symmetric case) are
L1+ 0N, 1+ 0%, 1+ %3+ O(e%T1), 1 + %Ay + O(e*).

This theorem is proved in Section 10.

We observe that for (PD — 2) variables there are some restrictions on the period and radius of
the Keplerian solutions that can be continued but there are no restrictions on the perturbed part.
Moreover, the use of the (PD — 2) variables is interesting because permits us to get a family of
periodic solutions close to circular Kepler orbits but with fixed period, this is an important difference
when we compare for example with Theorem 1.3.

The planar case also is considered, and it arises as a particular case. Our results give us explicit
conditions associated to the first order perturbation term, which must be satisfied in order to obtain
our results under the use of appropriate coordinates. We call the attention to the fact that the periodic
orbits obtained in Theorems 1.3-1.4-1.5-1.6 associated to the Hamiltonian function K in (1.15)
obtained from H* in (1.1) under a time-periodic symplectic change of variables are in general quasi-
periodic solutions. Finally, in Section 11 we apply our results to study the existence of periodic
orbits of the Matese-Whitman Hamiltonian and the generalized Stgrmer model and we give some
important information of these models. In fact, for the Matese-Whitman Hamiltonian we obtain new
families of periodic solutions, while for the generalized Stgrmer model according to our information
is a new result for this kind of dynamics.

2. Preliminary results

The elements (/,g,h,L,G,H) of the Poincaré-Delaunay variables defined in (1.2) or (1.22) are as
usual, / is the mean anomaly, g the argument of the perigee measured from the ascending node,
h is the longitude of the ascendent node measure from the x-axis, L = a!/2 is the semi-major
axis of the ellipse, G = [a(1 — ¢?)]'/? is the angular momentum, H = [a(1 — ¢2)]'/2cos1 is the
component of angular momentum in the direction of the z-axis and 1 is the inclination of the
orbital plane. The variables /, g are angular variables modulus 27, and L, G, H are radial vari-
ables. The Poincaré-Delaunay coordinates are well defined in a neighborhood of a circular orbit,
and such a solution (e = 0) occurs when L = G. This last condition in the Poincaré-Delaunay
variables can be expressed by the condition Q> = P, = 0. In any type of variables (PD-1) or
(PD-2), we verify that the solutions of the Hamiltonian system associated to the Hamiltonian
equation in (1.1), (1.16) or (1.25) with initial condition Y = (Q,P) are given by ¥(z,Y;€) =
(Ql(t,Y;g),Q2(t,Y;8),Q3([,Y;€),P1(t,Y;E),Pz(l,Y;8),P3(Z,Y;8)) with

01(1) = 0" () +e%0" () + o(e), Pir) =P (1) + %P (1) + O(e),
0:(1) =0V (1) + €20 (1) + 6(e%+1),  Py(t) = PO (1) + 2PV (1) + 6(e%), @.1)
0s(1) =0V (1) + €20 (1) + (%),  Py(t) = PO (1) + 2PV (1) + O(e7),

and the expressions Q(O) (1) = ng) (1,Y), P (1) = P (,Y), Qg-l)(t) = le)(t,Y) and ij(t) =

J J
P}l)(t,Y), Jj =1,2,3 are given by
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' 9.
0)"(1.Y) = || S (Fuep(.Y))dw
(2.2)
' d.
PY) = [ 55 (Fiep (X)),

and

Wiep(1,Y) = (01 (1,), 0 (1,Y), 0 (1, %), P (1,%), B (,9), PO (1Y), 23)
is any solution of the Kepler problem with initial condition Y (see details in [5]).

Now we enunciate the following results that characterize symmetric periodic solutions in (PD-1)
variables and whose proofs are very simple.

Lemma 2.1.

i) An orbit hits 4 at time t =T if it is perpendicular to the yz-plane and in Poincaré-Delaunay
(PD-1) variables is defined by

01(T) == (modrm), Q3(T)=0(modrm), P(T)=0. (2.4)

m\:n

ii) An orbit hits 2, at time t = T if it is perpendicular to the x-axis and in Poincaré-Delaunay
(PD-1) variables is defined by

01(T)=0(modx), Q»(T)=0, Q3(T)=0(modnm). 2.5)

In the Poincaré-Delaunay variables (PD-2), the characterizacion of symmetric solutions is given
by the next lemma.

Lemma 2.2.
i) An orbit hits £ at time t = T if in Poincaré-Delaunay (PD-2) variables satisfies

E(modﬂ% 03(T)=0, P(T)=0. (2.6)

o(T) =7

ii) An orbit hits &, at time t = T if in Poincaré-Delaunay (PD-2) variables satisfies

QI(T) = O(mOdTC), Q2(T) = 07 Q3(T) =0. (27)

3. Proof of Theorem 1.1

Let @p(7,Y) be a solution of the Kepler problem as in (1.8), then the solution ¢(r,Y;¢€) of the
system (1.5) in Poincaré-Delaunay (PD-1) variables is S;-symmetric if at the instant 7 = 7/2 it
intercepts orthogonally the subspaces .Z}. So by Lemma 2.1 it is necessary to verify that atr =7 /2
the following three equations in Poincaré-Delaunay (PD-1) variables must be satisfy the relations
(2.4). From the equation for Q;(t) for j = 1,3 and P(¢) in (2.1) it follows that the periodicity
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equations or equations (2.1) which must be satisfied are

fi(AQ2, AP APy €) = (sT\ 3+ AP) 3 T2 — /2 +0(e%) =0,

=]

f2(AQ2, APy, APy €) = 0V (T /2,Y) +O(e) =0, 3.1)

£(AQ2, AP, APy €) = PV (T /2,Y) +0(e) =0.

Under the choosing of T and the hypotheses (a) and (b) it is clear that f;(0,0,0,0) = f>(0,0,0,0) =
/3(0,0,0,0) = 0. Moreover, by differentiating the system (3.1) with respect to (AQ,,AP;,AP;) and
evaluating at Y = ¥p and € = 0, we obtain that the Jacobian matrix satisfies

0 —35*3T/2 0

Ui _ |22 el o0l
I(AQ2 APLAPY) |y_y o AQ, APy APy
=Yp,e=0 i 1 i
arl)  ap) pV

JAQ, AP APy / y_yye—0

Since by hypothesis (c), Q| = det 3 (a(f Lf2.5) # 0 by the Implicit Function Theorem we

TE0ARAP) |y _y e
obtain that there are unique differentiable functions AQ> = AQ»(€), APy = AP, (&) and AP; = AP;(¢€)
defined for |g| < & where &) is sufficiently small, such that AQ,(0) = 0, AP;(0) =0, AP;(0) =0
and fj(AQ»(€),AP;(€),AP;(€),e) =0 for j = 1,2 and 3. When AQ, = AP, = AP; = 0, it is clearly
verified that the circular periodic solutions in (1.8) are of course S;-symmetric, have period 7 =
2m /s radius s~2/3 and are on any orbital plane (arbitrary inclination) on R? and note that Y € .%}.
In order to study the type of stability of the previous periodic solutions, we are going
to calculate its multipliers characteristic. Let £ = {(Q,P) / (Q,P) = hy, Q1 = Yl(o)},

be a local cross section on the level 77 = —ﬁ = hp in a neighborhood of the point
1

(Yl(o),Yz( ) Y;o) ) XS ) 6( )) We denote by X = (X1,X2,X3,X4) the points in X. Thus, consid-
ering ¥ = (Yl( ),Yz( )+X1,Y3( )—l—Xg,Yéf )>Y5( )+X3,Y6(O> + X4) the Poincaré map P on X is given
by P(X.€) = (02(7,Y,€),05(7,Y ,€),P(T,Y,€),Ps(7,Y,¢€)), where Q; and P; were charac-

terized in (2.1) and .7 is the return time which is close to T + &' (£%). Using the form of Y° and
(2.3)-(2.2) we arrive to

7 9

5, (st Vet

P(X,e) = (X1,X2,X3,p3 +X4) + €% <
0

7 0.4 7 9. 7 0.4
o gt Tt [ ST gt T [ ST uplr T ) +
o+l

ﬁ(g ) - o B (3.2)
= (X1,X2,X3, p3 +X4) + €% / F(‘Pkep(hy))d’a

T 954 - 4 - T 094
/0 8P ((pkep< Y))dt7 _. 0 8Q ((Pkep( Y))dt,— aQ ((pkep(t Y))dt)
@(Saﬁ-l).

Remembering (1.10), we have that the differential of P has the form
DP(X,&) =I+€e*DxH(X)+ O(e*™). (3.3)

Since the initial conditions of the T-symmetric periodic solutions are Yz = ¥y + (0,AQ>(¢€),
0,AP;(g),0,AP;(g)), then the respective points on the section cross ¥ will be X, =
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(AQ»(€),0,0,AP3(€)) with Xo = (0,0,0,0). Therefore,

DP(Xg,€) =1+ %A+ 0(e*™), (3.4)
with A as in (1.11). Since, the nontrivial characteristic multipliers of the T-symmetric periodic

solutions are the eigenvalues of DP(X¢, €), it follows the proof of the theorem follows.

4. Proof of Theorem 1.2

Let ¢r,(7,Y) be a solution of the Kepler problem as in (1.8) with initial condition in .#}. Then the
solution ¢(z,Y;¢) of the system (1.5) in Poincaré-Delaunay (PD-1) variables is doubly-symmetric
if at the instant 7 = T /4 it intercepts orthogonally the subspaces .%5. So by Lemma 2.1 it is necessary
to verify that at t = T /4 the following three equations must be satisfied

01(T/4) =0(modx), Q»(T/4) =0, Q3(T/4)=0(modn). @.1)

From the equation for Q;() for j = 1,3 and P(¢) in (2.1), it sufficient to solve the periodicity
equations

fi(AQ2, AP APy &) = (s '3+ AP) 3 T/A—1/2 +0(%) =0,
f2(AQ2, AP, APs €) = AQ» +0(e%) =0, (4.2)
£3(AQ2, AP, APy ) = O\ (T /4,Y) +0(g) =0.

Under the choice of T and the hypothesis (a) we obtain that f;(0,0,0,0) = £»(0,0,0,0) =
/3(0,0,0,0) = 0. Moreover, by differentiating the system (4.2) with respect to (AQ,,AP;, AP;)
and evaluating at Y = ¥ and € = 0 we obtain that the Jacobian matrix satisfies

0 —3s*3T/4 0

9(f1.f2.f3) _ 1 0 0
(802, APLAPS) |y _y, e a0 a0 a0V
JA0; JAP, IAPy ) y—y,.e=0
: 9(f1.f2.13) _ _24/3 90" ; :
Since det TBOLARAPY |y_y oo 3542 T /45 A7 |y_y. e = 0 by hypothesis (b), it follows by

the Implicit Function Theorem that there are unique differentiable functions AQ> = AQx (), AP =
AP (€) and AP; = AP;(¢€) defined for |€| < & where & is sufficiently small, such that AQ»(0) =0,
AP;(0) =0, AP;(0) =0 and fj(AQ2(€),APi(€), APs(€),€) = 0 for j = 1,2 and 3. The proof of the
computation of the characteristic multipliers is analogous to the previous theorem. Thus, we have
proved the theorem. O

5. Proof of Corollary 1.2

Suppose that the Hamiltonian (1.1) is invariant about rotations around the z-axis. In this case the
matrix A has always two zero eigenvalues. In fact, by symmetry of rotation, the perturbed function
H, does not depend on Q3 = Z,. Therefore, with the same notation that appears in the proof of
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Theorem 3, we obtain that the matrix A has the form:

ain 0az ais
a1 0 ax3 ax

az1 0 as3 ass
00 0 asy

It is easy to see that the eigenvalues of the matrix A are the roots of the polynomial equation p(1) =
A2(A% — (a1 +as3)A +anas; — agzasy), with aj,ai3,a3; and aszz given in the statement of the
corollary. Since a|; = —aass, it follows that the eigenvalues of A are the roots of

p(A) = A2 (A* +anass — azas).

Therefore, we conclude de proof. O

6. Proof of Theorem 1.3

Let ¢(z,Y,€) be a solution of the Hamiltonian system associated to the Hamiltonian (1.16) as in
(1.17). By Lemma 2.1 a necessary condition in order to have a S;-symmetric solution in Poincaré-
Delaunay (PD-1) variables is that the equations (2.4) must be satisfied. In this case, from the equa-
tion for Q;(t) for j = 1,3 and P»(r) in (2.1) it follows that the periodicity equations are given by

Q1(T/2,AQ:, AP, APs. &) = (s~ '3+ AP) 3T /2 — 1t /2 +0(g*) = 0,
L0,(T /2,0, AP, AP;, ) = O3 (T/2,Y) +0(e) =0,

03(T/2,AQ2, APy, AP;, €) = —T /2 +nx +O(e%) =0.

In order to increase the rank of the Jacobian matrix, we introduce the time as a dependent variable,
thus we define the following periodicity system

fl(TvAQ27AP17AP378) = (371/3 +AP1)73T— 7[/2 +ﬁ(€a)’
fZ(T7AQ27APl>AP378):le)(raY) +ﬁ(8)7 (61)

f3(T,AQ2,AP1,AP3,8): —T+nmw +6’(8“).

Under the choose of T it is clear that f,(7/2,0,0,0,0) = f3(7/2,0,0,0,0) = 0 and by hypothesis
(a) it follows that f>(7/2,0,0,0,0) = 0. Moreover, differentiating the system (6.1) with respect to
(1,AQ2,AP;,AP3) and evaluating at T = T/2, Y = ¥ and € = 0, we obtain that the Jacobian matrix

9(f1,/2./3)

I(%.AQ2,AP; AP;) 1

7=T/2,Y=Y(,e=0
s 0 =357T/2 0
&le) aQ(zl) anl) aQ(zl)
Jadt  JAQ, JAP; JAP;
-1 0 0

T=T/2,Y=Y,e=0

If in the previous analysis we eliminate the variable AP; we obtain that the determinant of the
Jacobian matrix is reduced to

s =3s*7T/2 0

P} (1) P (1) 9 (1) . 473 BQ“)
det gi agéz a%)l =312 A, |1:T/2,Y:Y0 # 0. (6.2)
-1 0 0

t=T/2,Y=Yy,e=0
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This last condition is equivalent to the hypothesis (b), then by the Implicit Function Theorem there
are unique differentiable functions AQ, (AP;, €), AP (AP3,€), and T(APs,€) =T /24 0 (&%) defined
for € and AP; sufficiently small, such that, AP»(0,0) =0, AP;(0,0) =0, and 7(0,0) = 7'/2. Thus, we
obtain a periodic S-symmetric solution of the perturbed system associated to the Hamiltonian func-
tion (1.16) with initial condition Yap,e = (7/2,AQ2(APs,€),0,57'/3 + AP (AP;,€),0, p3 + AP;)
which is 27 periodic and it is close to T = 27 /s. Therefore, we have concluded the proof.

We remark that we can consider AP; = 0 in equations (6.1) and differentiating this system only
with respect to (7,AQ»,AP;), maintaining fixed the variable in the direction P;. In this way, we
shall restrict our attention to the invariant set H = p3. Thus, we obtain a periodic Sj-symmetric
solution of the perturbed system associated to the Hamiltonian function (1.16) with initial condition
Ye = (7/2,A04(),0,5~'/3 4 AP (€),0, p3) which is 27 periodic and it is close to T = 27 /s.

In order to compute the characteristic multipliers of the previous symmetric periodic solu-
tions, we consider a local cross section £ = {(Q,P) / K = ko, Q1 = Y = m/2}, We label the
coordinates in £ by X = (X1,X2,X3,X4) = (02,03, P>,P3), and let P be the Poincaré map on L.
Considering Y = (YI(O) ) YZ(O) +X1,Y3(O) —|—X2,Y4,Y5(0) —|—X3,Y6(0) + X4), where Yy is like in the state-
ment of Theorem 1.3 and following the same ideas as in Theorem 1.1, we have that P is given by
P(X,e)=(0:(7.,Y,€),0s(7,Y,€),P(7.,Y,€), 5(7,Y,¢€))), where I is the return time which
is close to T(AP3,¢€) = S{—”l + 0(&%). Using the form of Y° and (2.3)-(2.2), we arrive to

T 0K .
P(X,e) = (X1,— T +X2,X3,p3+X4) + €% (/ TPI d)kep(t Y))dt,

7 0K 7 0K

o &Pl ¢kep / 8 ¢kep )) T l(‘Pkep(t Y))dt>
ﬁ(£a+1)

T

= (Xla _T+X2>X3»P3 +X4) +8a (/0 %(qbkep(t?Y))dta

T oK T 0K - T 9K _ (6.3)
|, Gent D)t = | 55 (Guep (1Tt = | =5 (Bt Y))dr>+
ﬁ(gaﬂ)
=(X1,—T+X2,X3,p3+X4) + / 9P ¢kep(t Y))dt,

T 9K T 9K,

0 aPl (‘Pkep t, Y / 3Q ‘Pkep t Y))d 0 &Q] ((Pkep(t Y))dt>
ﬁ(gaﬂ).

Recalling that the initial condition of the T-symmetric periodic solutions is Xe = ¥y + (0,AQ;
(AP;,€),0,AP (APs,€),0,APs), then the respective points on the cross section ¥ will be X, =
(AQ»(AP;,€)),0,0,AP;) with Xo = (0,0,0, p3). Then, the nontrivial characteristic multipliers asso-
ciated to the symetric T-periodic solutions ¢ (¢, Ye;€) given in Theorem 1.5 are the eigenvalues
of

DxP(Xe,€) =1+ €%C+ 0(e*™), 6.4)

where the matrix C is as in (1.28). Thus, we have proved the theorem. 0
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7. Proof of Theorem 1.4

We proceed in a similar way as in the proof in Section 6. Here, we need to consider the circular
solution of the Kepler problem in (PD-1) variables as

O1(t)=st+m/2, Qx(t)=0, Os(t)=—t,

Pt =5 P()=0, P(1)=ps, 1)

with p3 € R. In order to have a doubly-symmetric periodic solution of this Kepler problem, by
Lemma 1.12 it is necessary to solve, for r = T /4, the following periodicity equations

Ql(T/4,Y0) :ST/4—|—TL'/2 =T,
Q3(T/4,Y0) = —T/4 = —nmw,

with n € N. Note that from (7.1) the equation Q»(7 /4,Yo) = 0 is trivially satisfied. It is verified
that this solution, in inertial frame, is a circular periodic solution doubly-symmetric, and has period
T =21 /s, with the choice s = 1/2n, and it is on any orbital plane (arbitrary inclination) on R* with
initial condition Yo = (7/2,0,0,s~ /3,0, p3) € 4.

We consider now the solution ¢.,(7,Y) of the Kepler problem as in (1.17). This solution is
doubly symmetric if at the instant + = T /4 it intercepts orthogonally the subspaces .%>. So by
Lemma 2.1 and the equation for Q;(z) for j = 1,3 and P>(¢) in (2.1) it follows that the following
periodicity equations must be satisfied

fi1(t,AQ2, AP, APs &) = (s '3+ AP) 31— 1 /2 +0(e%),
f2(T,AQ2, AP, APs &) = AQ> +0(g%), (7.2)
f3(T,AQ2, AP, APs €) = —T+nw +0(e%).

Under the choice of T it is clear that f1(7/4,0,0,0,0) = /(T /4,0,0,0,0) = f3(T /4,0,0,0,0) =0.
Moreover differentiating the system (7.2) w1th respect to (T, AQz,APl,AP3) and evaluatmg at T =

T/4,Y =Y, and € = 0, we obtain that the Jacobian matrix % 7/4.¥=Yo =0 is
T= 0,€=

s 0—=3s"3T/40
01 0 0 -
-10 0 0/ e /a¥=Yy.e=0

If in the previous analysis we eliminate the variable AP; we obtained that the determinant of the Jacobian
matrix is reduced to

s 0 —3s*3T/4
-10 0

01 0 ) =3s*3T /4 #£0. (7.3)
=T /4,Y=Yy,e=0

Again as in the S; periodic symmetric case we can to consider AP; = 0, next we differentiate
the system (7.2) only with respect to (7,AQ»,AP;) maintaining fixed the variable in the direction
P;. In this way, we shall restrict our attention to the invariant set H = p3. The study of the stability
is analogous to Theorem 1.3. Thus, we conclude the proof. 0
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8. Proof of Theorem 1.5

Now we will consider the Hamiltonian system associated to the Hamiltonian function (1.25) but
in this case we will write it in Poincaré-Delaunay (PD-2) variables. Thus the Kepler solution must
satisfy

01(T/)2,Zy) =(s—1)T/2+r/2=(1+1/2)m,

03(T /2,Zo) = p3sinT /2 —0, (8.1)

where s € R — {1}. Note that the equation Q» (7T /2,Zo) = 0 is trivially satisfied. Then we must have
two possibilities:

(i) p3=0and T =2n/(s—1) or
(ii)) T = 2km and s — 1 = 1 /k with pj arbitrary.
We use the Poincaré-Delaunay (PD-2) variables and in this case the initial condition is on the

subspace %} and at time 7' /2 is also on the subspace .Z]. In this case, from (2.6), the periodicity
equations assume the form

f1(802, AP APy €) = ((s7' P +AP) 7 = )T /2 — 1 +0(e%) =0,
fz(AQz,APl,AP3,8) = (p3 +AP3)sinT/2 —I—ﬁ(&‘a) =0, (8.2)
f3(AQ2,AP1,AP3,8) = —AQ»sinT /2 +0(e*) =0.

Observe that (i) or (i) imply f1(0,0,0,0) = £2(0,0,0,0) = £3(0,0,0,0) = 0. Now, differentiating
the system (8.2) with respect to (AQ»,AP;,AP;) and evaluating at T =T /2, Z = Zp and € = 0, we
obtain that the Jacobian matrix is

0 -3*3T/)2 0
9(f1./2.3)

IBOLAPLAR) |7 700 | . 0 0 p3sinT/2
: sinT' /2 0 0 77060
a(f 7f >f») _ 4/3 -2
Therefore to have detm Z-Zye=0 p3(—3s / T/2)sin”T /2 # 0 we must assume that

sinT /2 # 0 and then p3 = 0. Since p3 = 0 the solution (1.26) with AQ, = AP, = AP; =0is a
circular solution of Kepler problem, that in inertial frame is in the xy-plane.

To compute the characteristic multipliers of the previous symmetric periodic solutions, we
consider a local cross section £ = {(Q,P) / # = ko, 01 = Z) = 1/2}, on the level set in the
level % = —%Plz - P+ %(Q% + P? + Q3 + P?) = ko. Again, we label the coordinates in ¥ by
X = (X1,X2,X3,X4) = (Q2,03,P,P3), and let P be the Poincaré map on X. Considering X =
(Z§0),Z§O) +Xi ,Zéo) —|—X2,Z4,Z§O) +X3,Z§0) + X4) and following the same ideas as in Theorem 1.1,
we have that P is given by P(X,€) = (02(7,X,€),03(7 X ,€),P,(7 X ,€),P5(7 ,X,€))), where
7 is the return time which is close to T = i—”l Using the form of 70 and (2.3)-(2.2), we arrive to

T 0.4 -
0i(7,X,€) = (2 +X; 1) cos T + (2% + X 1) sin T + €% A a—P_'(CDke,,(t,X))dt+
ﬁ(goc—»—l)7
T
P(7.X, €)= —(Zl.(o)+X,»_1)sinT+(z§$L+X,-+1)cosT—ea/ %ﬁ(@kep(t,X))dH
. 0 i
ﬁ(gowl)’

for i = 2,3. Since the initial condition of the 7-symmetric periodic solutions is X = Zy +
(0,A0>(€),0,AP;(€),0,APs(€)), then the respective points on the cross section £ will be X, =
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(AQ»(€),0,0,AP3(¢€)) with Xy = (0,0,0,0). Then, the nontrivial characteristic multipliers associ-
ated to the symmetric T-periodic solutions ®(z,Z¢;€) given in Theorem 1.5 are the eigenvalues
of

DxP(Xg,€) = cosT I +sinT J+£*C+ 0(e*), (8.3)

where the matrix C is as in (1.28). Thus, we have proved the theorem. L]

9. Proof of Theorem 1.6

The proof follows the same ideas as in Theorem 1.5. Consider the solution ®(¢,Z) of the Kepler
problem as in (1.26) with initial condition on the subspace .Z]. Let ®(¢,Z,€) be a solution of the
Hamiltonian system associated to the Hamiltonian (1.25). To obtain a doubly symmetric solution is
necessary that at time 7'/4 the solution is on the subspace .%. We observe that from (2.6) and (2.7)
of Lemma 2.2, the periodicity equations in this situation assume the form

fi(AQ2, AP APy €) = ((s7' P +AP) P = )T f4—m +-0(%) =0,
fz(AQz,Apl,AP3,8) = AQQCOST/4 +ﬁ(£°‘) =0, 9.1)
f3(AQ2,AP1,AP3,8) =AP; sinT/4 Jrﬁ(&'a) =0

Observe that under the hypotheses about 7 and s, we have f;(0,0,0,0) = £,(0,0,0,0) =

/3(0,0,0,0) = 0. Moreover
0 -3s*3T1/4 0

9(f1.f2.f3) _
d(AQ:,AP| ,AP3) Z=Z0,e=0 - 0085/4 8 . g 4
SinT/4/ 7_z,e-0
Therefore to have det% 17 et # 0, we must assume that sin7' /4 # 0 and cos T' /4 # 0.
B ’ =Z,e=

The proof of stability is analogous to the proof in Theorem 1.5 and so the proof is concluded.

10. Proof of Corollary 1.4

We proceed in a similar way as in the proof of Theorems 1.5 and 1.6. If the set z = p, = 0 is invariant
then in terms of (PD-2) variables Q3(¢) = P;(t) = 0 for all 7. For S| symmetric solutions, it follows
from Section 8 that the periodicity equations (8.2) must be

f1(AQ2, AP APy €) = ((sT' 3+ AP) 3= )T /2 — 7t +0/(%) =
f3(AQ2, AP, APs, €) = —AQ,sinT /2 +0(e%)

_ 0 —35*3T1)2
Z=Zpe=0 \sinT/2 0 ym oo )
Therefore detaa(f%fi)

(A0,,APY) ’Z:ZO,ezo = (—35*3 T/2)sinT /2 # 0. The planar case of the doubly sym-
metric solution is verified in a similar way. To compute the characteristic multipliers it is enough
to follow the same ideas used in the proof of Theorem 1.5 and to observe that X = (X;,X3), and
X = (20,20 +x,,2, 2,2 + x;,72). 0

0
’ 10.1
0. (10.1)

In this particular case, we have

9(f1.f3)
d(AQy,AP)
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11. Applications
11.1. The Matese-Whitman Hamiltonian

In what follows we shall study the Matese-Whitman Hamiltonian, or shortly, MWH, whose Hamil-
tonian models the galactic tidal interaction with the Oort coment cloud. The MWH Hamiltonian is
given by

I N S 1
HMWH—E(px—i'py‘i'pz)_'—\/ﬁ

and it was proposed in the seminal papers of Matese and Whitman [13,14] for studying the dynamics
of the Oort cloud. See also [9]. Of course, this Hamiltonian function Hywg in (11.1) is a particular
case of the Hamiltonian (1.1) and is invariant under the anti-symplectic reflections S; and S;.

We verify that the Hamiltonian (11.1) in (PD-1) variables assumes the form

+ ez, (11.1)

%(P7Q78):%+8%7 (11.2)

where the perturbed function .77 is given by

- -1 2P$(-P§-Q§+2P]—2P3)(—P§—Q§+2P1+2P3)
8(-P2-03+2p) (P2+03)
(— (P +03)*((—=2Py + P3)* + (16Py —3P7) Q5 — 4Q3) — 2P Py (P; — 1105) (P + 03)

\/4P1— P — Q3 cos(Q1) + (4PF (P3 — 6PF Q3 + Q3) — 4Py (P5 + Q3) (2P — 15P3 03
1304) + (P + 03)°(2P} — 15P303 +304)) cos(201) — 20A PS03 4P, — P} — 0}
cos(3Q1) +2P P\ /4P — P} — Q3 cos(301) + 10P P03/ (4P) — P} — Q%) cos(30)
—(—4P; + P} + Q3)(PS — 15Pf Q3 + 15P2 Q4 — 05) cos(4Qy ) — 14Py /4P, — P} — 03
P Q>sin(Qy) — 4P P3 03 /4P — P} — Q3sin(Q1) + 10P1 05 /4P, — P7 — Q3sin(Q1)
+P02(16P} (P — 02) (P2 + Q) + (9PF — 1103) (P} + Q3)* + (8P5 03 — 36P; +4403))
Py sin(2Q;) + 10P P} 0y /4Py — P} — Q3sin(3Q1) + 2P, 05/ 4P, — P7 — Q%sin(30y)
—20P P;Q31/4P, — P? — 03sin(3Q1) — 2P, 0> (Pf + Q3 — 4P) (3P — 10P5 05 +303)
sin(4Q1])).

We do not enter into the details of the algebraic operations involved in constructing the perturbed

function 771 . They were executed with the symbolic processor Mathematica. We have the following
result on the periodic orbits for the Hamiltonian system associated to the Hamiltonian (11.1).

(11.3)

Theorem 11.1. Given s € R* and T = 2x/s. Then for the MWH problem associated to the Hamil-
tonian (11.1) or (11.2) the following statements hold:

(a)If € is sufficiently small, then there exists a family of initial conditions Ye = (m/2,
AQ>(£),0,57 13 + AP (€),0,APs(¢)) in (PD-1) variables parametrized by €, such that each of them
gives us a Sy-symmetric T-periodic solution.

(b) If € is sufficiently small, then there exists a family of initial conditions Y, = (mw/2,
AQ>(£),0,s 13+ AP|(€),0, APs(€)) in (PD-1) variables parametrized by €, such that each of them
gives us a doubly-symmetric T - periodic solution.

Moreover, the periodic solutions obtained in item (a) and item (b) have characteristic multipliers
1,1,1,1,1+ 8% + ﬁ(sz), 1— 8% + ﬁ(sz) and therefore these periodic solutions are unstable. The
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periodic solutions are close to a circular Keplerian solution which has radius 5723, period T and

lies on the xz-plane.

Proof. In the proof, we omit the details of algebraic operations involved that were executed with
Mathematica. To prove item (a), we need to verify the conditions (1.12) of Theorem 1.1. We main-
tain the same notation of Theorem 1.1 and after some algebraic manipulations, from the expression
(11.3) we obtain

. /T/2 2. /s cos?(st)dT 5/3
A )

) [ S (e )| de=—2ps [ 0T — s

To verify item (a) in (1.12), we need that p3m/ s°/3 = 0, therefore we must take p3 = 0, thus the

Keplerian circular orbit is on the vertical plane xz. For ps = 0 it follows

T2,
i) [ @ (m YD)

T/2
_ cos(3s7)—5cos(s7) _

/s —4cos(2sT)—4 d

o 1 7t/s 768 cos(2sT) 256 cos(4sT) 1024
i) Q1 = — 52257 Jo A - 7 dt- fo" —ar —dt

_ _4r 4
=—7 570

Therefore, from i), ii) and iii) it follows that (1.12) holds and we have proved item (a).
Now, we prove item (b). Maintaining the notation of Theorem 1.2, we obtain from (11.3) the
following statements

T/4

. 4
zv) 8P3I ((pkep(TvY)) ‘Y:YQdT = 2725/33 )

7/4 (11.4)
V) / L2 (g (1,Y)) dt=—-%_£0
y  9PoaR \Phep(T X)) | AT =355 75,

To verify first the condition in (1.13), we need 2’;@’/33 = 0 and as in the previous item, we must put
p3 = 0. The second condition in (1.13) follows directly from v. We now study the stability. After
some algebraic manipulations, the matrix A in (1.11) for the S;-symmetric and doubly-symmetric

solutions obtained for the MWH problem is given by

0 0-2 0

000 —2&
A: S5/3

80 0 o0

R

000 O

Thus the eigenvalues of A are 0,0,47 /s, —47/s?. Therefore we have proved the theorem. [J

Since the set y = p, = 0 is invariant under the flow defined by the Hamiltonian associated to
Hywpg in (11.1), we prove analogous versions of items (a) and (b) of Theorem 11.1 to the polar
plane, i.e. we obtain symmetric periodic solutions contained in the vertical plane xz close to circular
Keplerian solutions on the same plane.

The Hamiltonian (11.1) is invariant under the group SO(2) relative to the xy-plane. Therefore,
we apply a 2w —time sympletic transformation given by a rotation around the z-axis to the Hamil-
tonian function Hywg in (11.1), then the new Hamiltonian function assumes the form as in (1.16).
We define which will be called the critical inclination as the value of the inclination 1 such that
4 —5cos?1 = 0. Then we can apply Theorems 1.3-1.4-1.5 and 1.6, to obtain periodic orbits for the
Hamiltonian system associated to the Hamiltonian (11.1).
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Of course, when we apply Theorems 1.3-1.6, the periodic solutions obtained in these theorems
correspond to quasi-periodic solutions of the Hamiltonian (11.1). Particulary, in Theorem 1.3 we
can obtain an analytic function T (APs,€) = 27(AP;, €), for AP; and ¢ sufficiently small, close to
T = 2nmw. Now, for all values of the parameter €, sufficiently small, we can take AP; such that

T(APs(g),€) =27p/q, p,q €N, and % = £ € Q, that is, the relation of commensurability
between the period of the continued orbit and the rotation period is satisfied. Thus, in fact, we
can get periodic solutions, from Theorem 1.3, to the problem associated to the Hamiltonian (11.1).

Similarly, we obtain the following conclusion to Theorems 1.4-1.5 and 1.6.

Theorem 11.2. Given s € R™ and m,n € N prime to each other. Then for the MWH problem asso-
ciated to the Hamiltonian (11.1) the following statements hold:

(a) If s = 1/n, and the inclination 1 of the plane of the circular Keplerian orbit satisfies 4 —5cos* 1 #
0, then for € and AP; sufficiently small, there exists a family of periodic S\-symmetric solutions
y(t,APs,€) = (Q1(t,€),02(t,APs,€),05(t,€), P (t,APs,€),Ps(t,€), P3(t,€)) in (PD-1) variables
parametrized by € and APs.

(b) If s = ﬁ, then for € and AP sufficiently small, there exists a family of periodic doubly-
symmetric solutions y(t,APs,€) = (Q1(t,€),02(t,APs,€),05(t,€), P, (t,APs,€),Py(t,€), P3(t,€)) in
(PD-1) variables parametrized by € and AP;.

(c) If s = m7+", then for € sufficiently small, there exists a family of periodic S|-symmetric solutions
y(t,€) = (Q1(t,€),0:(t,€),0s(t,€),P(t,€),P(t,€),Ps(t,€)) in (PD-2) variables parametrized by
E.

(d) If s = m;g”, then for € sufficiently small, there exists a family of periodic doubly-symmetric

solutions y(t,€) = (Q1(t,€),02(t,€), O3(t,€),Pi(t,€),P>(t,€),P3(t,€)) in (PD-2) variables para-
metrized by €.

Moreover, in item (a) and (b) for € and AP; sufficiently small, there exist unique analytical
Sfunctions AQ,(APs, €) and AP|(APs, €) for the parameters € and APs, such that

7(0,APs, &) = (7/2,AQ2(APs, €),0,5~ '3 + AP, (APs, €),0, p3 + AP3),

and each symmetric periodic solution has period T =2np/q, p,q € N close to T = 2x/s and is
close to a circular Keplerian solution that in inertial frame has radius s~/ and period T. In items
(c) and (d), for € sufficiently small, there exist analytical functions AQ;(€),AP;(€) and AP;(€), such

that
7(0,€) = (1/2,A0:(€),0,5 > + AP (€),0,AP;(g)),

and each symmetric periodic solution has period T = 2nm/n =27t /(s — 1) and they are close to a
circular Keplerian solution that in inertial frame has radius s=/* and period T.
The periodic solutions obtained in items (a) and (b) have characteristic multipliers 1,1,1,1,1+
N/A—_51:242/3 /4_5,.2.2/3
8% +0(e%),1 - 8% + O(€%). Thus, for 4 —5p32s*3 > 0, or equivalently

|cost| < \/4/5, these solutions are unstable and for 4 — 5p32s*3 < 0, or equivalently, cost| >
\/4/5, these solutions are linearly stable.

Proof. Again, we use the processor Mathematica to execute the algebraic manipulations. In the
proof of item (a), we maintain the notation of Theorem 1.3 and we observe that the perturbed
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function #] is given by J# in (11.3), because the problem is invariant by rotations about z axis.
Therefore, from the expression of 74 in (11.3), we obtain the following expressions:

T/2 22/3_ ) ,

J pP3~s (cos(3sT)—5cos(sT))

/0 Tglz(q)kep(T,Y))‘Y:YodT =— 0”/5 (r) ) — dt =0,

-T/2 2.2/3
22K . n/s §5/6 8(64p3=s 96 ) cos(2sT)
| i Gl Y| o= g (- S 0o
, _5,.22/3

256p5%5' 2 cos(4sT) + 1280py%s! /2 — 20S(i55) 1024 g TIRET),

If 4 — 5p325%/3 £ 0, or equivalently, 4 — 5cos? 1 # 0, we have that the conditions (1.20) of Theorem
1.3 hold. Therefore, we have proved item (a).

Now, we observe that items (b), (c) and (d) follow directly from Theorems 1.4, 1.5 and 1.6,
respectively. To determinate the characteritic multipliers, observe that the matrix B in (1.19) for the
S1-symmetric or doubly-symmetric periodic solutions obtained in items (a) and (b) respectively, is
given by

0 0-2 0
2n
B= 277:<5p39sz/3—4) 00 e )
p 00 O
0 00 O

. . 27y/4—5p32s2/3  2my/4—5p32s2/3
and the respective eigenvalues are 0,0, — == SZP . Szp T Therefore, we have concluded
the proof. O

The circular Keplerian solution which gives rise to the periodic solutions of item (a) and (b) of
Theorem 11.2 has inclination t € (0, 7) arbitrary (in item (b), the inclination must be different from
the critical inclination) while in the items (c) and (d) the inclination is 1 = 0.

Since the set z = p, = 0 is invariant under the flow defined by the Hamiltonian associated to
H in (11.1), from items (c) and (d) of Theorem 11.2, we can obtain symmetric periodic solutions
contained in the xy-plane.

11.2. The Generalized Stgrmer model
The generalized Stgrmer model, which will be denoted from now by GS, is associated to the Hamil-
tonian function

2 2 2.2 2
£ x“+y E°x"+y
73 (xpy —ypy) +€B + :
[CUERE . lal> 2 [lq]l®

where ||q|| = \/x2+ y% + 7% stands for the distance of the particle to the center of the planet, H =
(xpy —ypy) is the third component of the angular momentum and € and 3 are external parameters
depending on the planet and on the charge mass ratio of the particle respectively. Note that the
perturbation part of the Hamiltonian Hgs depends explicitly on q = (x,y,z) and p = (px, py, P2)-
The GS model has been revisited in a series of recent papers [10-12]. The authors use a GS model
that includes Keplerian gravity, a magnetic dipole aligned along the axis of rotation of the planet
and a corotational electric field. The Hamiltonian (11.5) is of the form (1.1) and in (PD-1) variables

1
HGSZ*(P;%‘*‘P%‘*‘PZZ,) (11.5)

2 [lall
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is given by
1
H(Q,P) = — o T (Q,P)+ O(e?) (11.6)
1
with
P3 B 2 o Py
JA4(Q,P) = ———= + ——(cos” Y +sin“ y—=). (11.7)
HQP)= g * g ¥ 5 V)

2 2
where G = P — % and ||q|| is given in the new variables by
llqll = P(1 —[ecosgcosQ; +esingsin Q] + [ecos gsin Q) —esingcos 01]%) +O(e?),

here e is the eccentricity of the orbit, y = g+ f, f is the true anomaly and g the argument of the

perigee of the unperturbed elliptic orbit measured in the invariant plane. Due to the long expression
of perturbed function 7] in terms of Poincaré-Delaunay variables (PD-1), we put it in the Appendix.
Of course that the Hamiltonian function (11.5) is invariant under the anti-symplectic reflections S;
and S,. Our main result on the existence of symmetric periodic solutions of the Hamiltonian system
associated to the GS model is the following.

Theorem 11.3. Given s € (0,1), B € R such that |B| > s and T = 2n/s. If € is sufficiently small,
then for the GS problem associated to the Hamiltonian (11.5) or (11.6) the following statements
hold:

(a) There exists a family of T-periodic S\-symmetric solutions y(t,€) = (Q1(t,€),02(t,€),03(t,€),
Pi(t,€),Ps(t,€),Ps(t,€)) in (PD-1) variables parametrized by €.

(b) There exists a family of T-periodic doubly-symmetric solutions y(t,€) = (Qi(t,€),
O»(t,€),05(t,€),Pi(t,€),P(t,€),Ps3(t,€)) in (PD-1) variables parametrized by €. Moreover, in
each case, there exist analytic functions AQ»(€),AP; (&) and APs(€) such that

Y(ng) = (O,AQz(S),O,S_1/3 +AP (8),0,.5‘2/3/[3 +AP3(8))7

i.e., the symmetric periodic solutions are close to a circular Keplerian solution which has radius
s=2/3, period T and orbital plane with inclination 1 = arccos(s/).
The periodic solutions obtained in item (a) and item (b) have characteristic multipliers
2_0¢2 2 2 2_0¢2 2 2
1,1,1,1,1 — e IS 4 5(62) 1 4 £ TVE 9§ﬁ)(ﬁ ) L G(€2). Then, for 0 < s < B/3
these periodic solutions are unstable and for s > [3 /3 these periodic solutions are linearly stable.

Proof. To prove item (a), we maintain the same notation of Theorem 1.1. After some algebraic
manipulations that we have executed with Mathematica, from the expression (A.1) in Appendix, it
follows that

/s

/2
l)/o %(‘Pkeﬁ(T,Y)) _ dt :S4/3/0 [ﬁp3(1 + cos(2s7)) —S2/3]d’L’
Lo —s(1—p3p/s*3),

and to verify item (a) in (1.12), we need that 1 — p38/s%/3 = 0, or equivalently, p3 = s*/3/B and
the Keplerian circular orbit is in a plane with inclination 1 = arccos(s/B). Fixing p3 = s*/3/B, it
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follows

T/2
i) [ )|, dr

Y=Y,
/s
= I — %s5/6COS<S‘L') (—5[3 —|—3ﬁp§s2/3 —5B (pgs2/3 _ 1) COS(ZST) —|—6p3s4/3) drt
=0.
iii) Q) = 1(1)/23/ 256[355/6 1792517/6 +4864P5%/° cos(4st) — w

~325%/%(160B — 3523 32 cos(2s7)dT- ‘/ ﬁ f”/ (16 + 16cos(2s7))dt
- (ﬁz”é) ﬁsl/a

Note that if B # 0, then from iii) we have that Q; # 0. From i), ii) and iii) above it follows
conditions (1.12) and thus we have concluded the proof of item (a).
Now we use Theorem 1.2, with the same notation of it, to prove item (b). Using the expression
(A.1) in the Appendix, after some algebraic manipulations, we arrive to

T/4,

iv) /0 T (‘Pkep("' Y))’Y:Yo

0 [ e (e
0 dP;0APs (Pkep )

dt=—3n(1 —ﬁp3s2/3),

/2s
dr:/ ﬁs4/3(cos(25r)+1)dr: %nﬁsm,
0

In equation iv) we need that 1 — B p3s*/3 = 0 and it is sufficient to take p3 = s?/3/B. On the other
hand, we need that the right hand side of equation v) is nonzero and it is enough to take 8 # 0.
Therefore, from iv) and v) we verify the conditions (1.13) and we conclude the proof of item (b).
To study the stability, observe that, after some algebraic manipulations, the matrix C in (1.28) for
the symmetric periodic solutions obtained in items (a) and (b) respectively, is given by

R R Gl

2B
co 0 0 0 27s'/3B
B 7r(7s2+[32) )
—F 0 0
0 0 0 0
and the respective eigenvalues are 0,0, — /(6 279;;)([3 H475) ”\/ - 9;; J(B475%) . Therefore, we have
concluded the proof. O

We remark that the choice of s € (0,1) was given in order to obtain realistic orbits, because in
the coordinates of formulation of the Hamiltonian (11.5) the planet has radius 1 and consequently
the radius of the circular Keplerian solution needs to be greater than 1. For more details about the
formulation of the problem and the physical interpretation see [10].
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Appendix A.
We shall present the expression for the perturbed function .77 in (11.7) for the GS model, in terms
of Poincaré-Delaunay variables (PD-1). We use the Mathematica processor to obtain it.

e (P22+Q%);(1_2P1+P22+Q%)2 (—20P} 3B cos(301)P3 +28P7026B sin(01) P + 48P
P30, sin(Q1)P3 — 100P} 0,8 B sin(3Q1)P§ +80PS S cos(3Q1)P) + 160P} 03 cos(30Q1)
SP] +64P>Q38 B sin(Qy)PS — 112P 0,8 B sin(Q1)PS + 192P, P3Q35 sin(Qy ) P — 192P?
P30, sin(Q1) P8 +400P 0,5 B sin(3Q; ) P8 — 80P 83 cos(3Q1)P5 +280P} 033 cos(301)
SP) + 80P PS5 cos(301)P) — 720PP Q38 B cos(3Q1 ) P5 + 24P 038 B sin(Qy )Py — 144PP
038 sin(Q1)Py + 112P] Q28 B sin(Q1) Py — 176P} P} 0,8 B sin(Q1) Py +288P PsQ36 P
sin(Q1) — 576P2P;Q3 8 sin(Q1) Py + 192P} P30, 5 sin(Q1) Py +280P) Q38 sin(301) Py
—400PP Q38 sin(3Q1)Py —400P] 028 sin(3Q1 )Py +400P> P70, Py S sin(3Q1) — 4008
8PSQ3 cos(301)P5 +800P Q383 cos(3Q1)P; — 800P) Py Q33 cos(3Q1) 8P —32P7 038
§sin(Q1)P5 +48P 038P sin(Q1)P3 +32P] 038 B sin(Q1)P5 — 160P) P; Q35 sin(Q1)P3
+192P ;0] 8sin(Q1)P3 — 576P2P3 Q56 sin(Q1 ) P5 + 384P} P3038P5 sin(Q1) + 160P B
807 sin(3Q)Ps —720PP Q36 B sin(3Q1)P; + 800P] 038 B sin(3Q; )Py — 800P} P Q3 P53 B
8sin(3Q1) +4P15 (P} +03) ((— 1105+ (44P, —21P}) Q3 + (— 9P; + 40P Pf — 44P}
+28P2) 03+ P2 ((P3 —2P1)* —20P2) ) BP! + 12P3 (P} + Q3 — 2P1) (P + Q3) ) P»
cos(Q1) — 100P} Q35 B cos(3Q1) P> +400PS QS8 B cos(3Q1 )P, — 400P] Q3B S cos (301 ) Py
+400P P{ 0588 c0s(3Q1)Pr — 802 (P} (32(Py — 02) (Py + Q2) P + 16P (203 P5 — 9P
+1103) +4(37P$ +2703P) — (5705 + 8PF) Py — 4705+ 8P; Q%) P} — 8(P2 + 03)

(7P +503P} — (1104 + 18P2) P2 — 908 + 14P203) Py + (P2 + 03)° (7PS + 503P}

— (1104 +36P2) P2 — 905 +28P202) ) B — 9P; (— P} — Q3 +4P;) (P} + 02)* (P2 + 03
—2P)?) sin(201)Py + (P2 + 02)° (( — 64P* + 16(3P2 + 5Q3) P} + 4P2 (P} — 803 P2
—904 — 16P}) = 8(P, — 02) (P2 +02) (P +03)” —2P}) Pi + (P — 03) (P} + 03)°
—4P2))BP} +4Py (P2 + Q3 —2P)* (8P2 + 12(P2 + Q2) P — 3(P2 + 03)%)) — 4 (16 (P}
—603P; + 03) PP} —32(P; + 03) (2P — 1503PF +303) BP] +8(8PF —47Q3P8 — P}
(10503 +2PF) + (12P} Q3 — 3708) P7 + 1305 —2P3 03) BPY — 8(P5 + 03) (3P — 1803
PS —10(4Q% + P2) P} +2(24P203 —708) P2 + 505 — 6P20%) BP5 + (P2 + 03)” (3PS
—18Q3P) —20(205 + P§) Py +2(48P3 Q3 — 705) P + 505 — 12P; Q%) BP} — 144P5(P,
—02)(Py+ Q1) (P2 + 02)* P} +180P3 (P, — 02) (Py+ Q1) (P2 + 02)° P2 — 72P,Py (P,
—00)(P+Q2) (PP + Q%)4 +9P5(Py— Q2)(P+ 02) (P + Q%)S) cos(201) + 19P} (2P,
—P} — Q3 +2P3) (— P} — Q) +2P —2P3) (P} + Q3 — 4P, (P§ — 1503P3 + 1503P
—Q5)Bcos(4Q1) —20P Q98B sin(Q; ) +80PP Q)5 B sin(Qy) — 80P Q38 sin(Q, ) + 16P} B
P2Q368sin(Q1) + 48P P3Q3 8 sin(Qy) — 192P2P30] 5 sin(Q1) + 192P} P; 038 sin(Q) — 20
P3Q56Bsin(3Q) +80PPQ} 5B sin(3Q1) — 80P/ Q38 B sin(3Q1) + 80P} P} 055 B sin(30Q1)
+38P} Q0 (— P} — Q3+ 2P, +2P3) (— P} — Q3+ 2P, — 2P3) (P3 + Q3 — 4Py) (303P,
—1002P3 +3F5)B sin(4Q1)),

where 6 = 6(Q2,P1,P2) = \/4P1 — Q% —P22.
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