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1. Introduction

Chiral-type systems (see, for example, [4]) are the systems of partial differential equations of the
form

∆
α ≡Uα

xy +Gα

βγ
Uβ

x U γ
y +Qα = 0. (1.1)

Here and further, the Greek indices range from 1 to n and the subscripts denote partial deriva-
tives with respect to the independent variables x and y. The coefficients Gα

βγ
,Qα are assumed to be

smooth functions of the variables U1,U2, ...,Un. The summation rule over the repeated indices is
also assumed.

Further on, the covariant derivatives w.r.t. the connection defined by the coefficients Gα

βγ
are

denoted by ∇δ .

The Euler-Lagrange equations of the form (1.1) are called a nonlinear generalized sigma model.
Following [7], recall that the characteristic of the conservation law L = (L1,L2) of the system

(1.1) is a set of functions R = {Rα} such that

Div L = DxL1 +DyL2 = Rα∆
α ,

where Dx and Dy are the total derivatives w.r.t. x,y, and ∆α denotes the l.h.s. of Eq. (1.1).
We understand integrable systems as the systems admitting a Lax representation also called

zero-curvature representations.
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In the sequel, we assume that the system (1.1) admits the matrix g-valued Lax representation of
the form:

DyÃ−DxB̃+[Ã, B̃] = Sα∆
α , (1.2)

where

Ã = AαUα
x +λM, B̃ = BαUα

y +
1
λ

N, (1.3)

Sα = Aα −Bα ,

λ is an irreducible parameter, A,B,M,N are smooth functions of the variables U1,U2, ...,Un, taking
values in a matrix Lie algebra g.

It is easy to see, collecting the terms by λ , 1
λ
, that M,N,Aα ,Bα satisfy the following conditions

M,α = [Bα ,M], (1.4)

N,α = [Aα ,N]. (1.5)

QαSα = [M,N], (1.6)

Aα,β −Bβ ,α +[Aα ,Bβ ]−SγGγ

αβ
= 0. (1.7)

Here and further, comma denotes the partial derivatives, that is, P,α = ∂P
∂Uα .

The set of functions Sα in Eq. (1.2) is referred to as a characteristic element of the Lax repre-
sentation [6]. In the sequel, it is assumed that S1,S2, ...,Sn are linear independent.

Remark 1.1. Note that the functions M,N, and the characteristic element Sα of the Lax represen-
tation (1.2), (1.3) are transformed under a gauge transformation by the formulas

M→ T−1MT, N→ T−1NT, Sα → T−1SαT.

Thus, the functions of the form f (Sα1 ,Sα2 , ...Sαp ,M,M, ...,M︸ ︷︷ ︸
r

,N,N, ...,N︸ ︷︷ ︸
s

) are well defined tensor

fields for an arbitrary ad-invariant symmetric (p+ r + s)-form on g. It turns out that these tensor
fields carry important information about the system under consideration.

It was mentioned in [1] that for an arbitrary ad-invariant symmetric (k+ p)-form on g, tensor
fields of the form

Fα1α2...αk = f (Sα1 ,Sα2 , ...Sαk ,M,M, ...,M︸ ︷︷ ︸
p

), (k > 0, p≥ 0)

are Killing fields, that is

∇(β Fα1α2...αk) = 0.

Here the proof of it is given (Proposition 2.1).
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The important case k = 1 of such tensors was considered in [2]. It turns out that the sets Fα

defined by the expressions

Fα = f (Sα ,M,M, ...M)

are characteristics of the zero order of conservation laws of system (1.1).
In this paper, in a similar way, we investigate the meaning of the tensors

Kα1α2...αk = f ([Sα1 ,M], [Sα2 ,M], ..., [Sαk ,M],M, ...,M).

It is shown that covariant derivatives of these tensors vanish (Theorem 2.1). According to well
known result, these tensors for k = 2 define conservation laws KαβUα

x Uβ
x dx for the system

∆
α ≡Uα

xy +Gα

βγ
Uβ

x U γ
y = 0, (1.8)

that is, the sets KαβUα
x form the characteristics of the first order of conservation laws for system

(1.8).
Note that the last result is not valid for the general case of system (1.1) with non vanishing Qα

(Example 2.1).
However, the sets KαβUα

x form the characteristics of the first order of conservation laws for
3-dimensional Lie algebras g. This result was announced in [2]. Here the full proof of it is given
(Theorem 2.2).

Remark 1.2. It is obvious that the results obtained from the above mentioned ones are valid also if
we change x↔ y, M↔ N, Gα

βγ
↔ Gα

βγ
−2Gα

[βγ].

2. Main theorems

Proposition 2.1. Let the system (1.1) admit the matrix g-valued Lax representation of the form (1.3)
and f be a symmetric ad-invariant p-form f on Lie algebra g. Then the tensor field

Fα1α2...αk = f (Sα1 ,Sα2 , ...Sαk ,M,M, ...,M︸ ︷︷ ︸
p

), (k > 0, p≥ 0)

satisfy the condition

∇(β Fα1α2...αk) = 0,

that is, Fα1α2...αk is a Killing field.

Proof. Rewrite Eq. (1.7) in the form

∇β Sα = Sα,β −SγGγ

αβ
= [Bβ ,Sα ]+Dαβ , (2.1)

where

Dαβ = [Bβ ,Bα ]+2B[β ,α]. (2.2)

Then, one can obtain
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∇β Fα1α2...αk = f (∇β Sα1 ,Sα2 , ...Sαk ,M,M, ...,M︸ ︷︷ ︸
p

)

+ f (Sα1 ,∇β Sα2 , ...Sαk ,M,M, ...,M︸ ︷︷ ︸
p

)

+...+ f (Sα1 ,Sα2 , ...,∇β Sαk ,M,M, ...,M︸ ︷︷ ︸
p

)+ p f (Sα1 ,Sα2 , ...Sαk ,M,β ,M, ...,M︸ ︷︷ ︸
p

).

Using Ad-invariancy of form f and Eq. (1.4),(2.1), one can see that

∇β Fα1α2...αk = f (Dα1β ,Sα2 , ...Sαk ,M,M, ...,M︸ ︷︷ ︸
p

)+ f (Sα1 ,Dα2β , ...Sαk ,M,M, ...,M︸ ︷︷ ︸
p

)

+ f (Sα1 ,Sα2 , ...Dαkβ ,M,M, ...,M︸ ︷︷ ︸
p

). (2.3)

Symmetrizing Eq. (2.3) and taking into account that D(αβ ) = 0, we finish the proof.

Denote the α−th Euler operator by

Eα = ∑
J
(−D)J(

∂

∂Uα
J
),

where the sum extending over all multi-indices J = ( j1, j2).
To proceed we need the following lemma.

Lemma 2.1. Let R be a function of the form:

R = KαβUα
xyU

β
x +LαβγU

α
x Uβ

x U γ
y +WαUα

x ,

where Kαβ ,Lαβγ ,Wα are functions of U1,U2, ...,Un.

Then, the equations

Eµ(R) = 0

are equivalent to the following conditions:

K[αµ] = 0, (2.4)

Kµα,β −2L(µα)β = 0, (2.5)

W[α,µ] = 0. (2.6)

Here and further, the comma denotes the partial derivatives, that is, P,α = ∂P
∂Uα .
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Proof. The proof is obtained by direct computation. Collecting the terms by Uα
xxy, Uα

xyU
β
y ,

Uα
x Uβ

x U γ
y , Uα

x in the expression Eµ(R) and taking into account the condition Eµ(R) = 0, we obtain
Eq. (2.4),(2.5), the equation Kαβ ,[µ,γ] = 0 (which is an identity), and Eq. (2.6).

Remark 2.1. Assuming that

Lαβγ = KαµGµ

βγ
, Wα = Kαβ Qβ .

Then one can easily verify that Eq. (2.6) can be rewritten in the form

(QαKαβ ),γ − (QαKαγ),β = 0, (2.7)

and Eq. (2.4),(2.5) are equivalent to the condition

∇γKαβ = 0.

Theorem 2.1. Let the system (1.1) admit the matrix g-valued Lax representation of the form (1.3)
and f be a symmetric ad-invariant p-form f on Lie algebra g.

Then the tensor field

Kα1α2...αk = f ([Sα1 ,M], [Sα2 ,M], ..., [Sαk ,M],M, ...,M︸ ︷︷ ︸
p−k

)

satisfies the condition

∇γKα1α2...αk = 0.

We will give the proof of the theorem in Appendix.

Corollary 2.1. Let the system (1.8) admit the matrix g-valued Lax representation of the form (1.3).
Then for every symmetric ad-invariant p-form f on Lie algebra g the set

Yα = f ([Sα ,M], [Sβ ,M],M,M, ...,M︸ ︷︷ ︸
p−2

)Uβ
x

is the characteristic of the conservation law θ = 1
2 f ([Sα ,M], [Sβ ,M],M,M, ...,M︸ ︷︷ ︸

p−2

)Uα
x Uβ

x dx.

Proof. The proof follows from the well known result that KαβUα
x Uβ

x dx is an integral of system
(1.8) iff ∇γKαβ = 0.

Corollary 2.2. Let n-component system (1.1) admit g-valued Lax representation of the form (1.3),
where g is compact algebra Lie of rank l and l < n. Assume that M is a regular element of Lie
algebra g in a point P0.

Then the covariant constant tensor field Kαβ defined by

Kαβ = f ([Sα ,M], [Sβ ,M]), (2.8)

where f is a Killing form on g, does not vanish at point P0.
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Proof. One can obtain the proof taking into account the linear independence of Sα , the compactness
of g, and reasons of the dimensionality.

Remark 2.2. It is well known that the Euler-Lagrange system for Lagrangian

L = gαβ (U
γ)Uα

x Uβ
y +Q(U γ),

where g[αβ ] = 0,det||gαβ || 6= 0, admits the integrals gαβUα
x Uβ

x dx, gαβUα
y Uβ

y dy. Thus, if tensor
field f ([Sα ,M], [Sβ ,M],M,M, ...,M︸ ︷︷ ︸

p−2

) is up to a constant proportional to the metric gαβ determined

by Lagrangian L, then the set f ([Sα ,M], [Sβ ,M],M,M, ...,M︸ ︷︷ ︸
p−2

)Uα
x is the characteristic of conservation

law. Note that no examples of such systems admitting the Lax representation with dim g > 3 are
known to the author.

Remark 2.3. Corollary 2.1 could not be generalized to the case of the chiral-type systems (1.1)
with non vanishing Qα . This illustrates the following example.

Example 2.1. Consider the 3-component variational system

∆
1 =U1

xy−aU2e2U1
+bU3e−2U1

= 0,

∆
2 =U2

xy−bψ
−1e−2U1−ψU3U2

x U2
y = 0,

∆
3 =U3

xy−aψ
−1e2U1−ψU2U3

x U3
y = 0,

where ψ = (U2U3 + c)−1 and a,b,c are arbitrary constants, and a2 +b2 6= 0.
This system is the Euler system for Lagrangian

L = 2U1
x U1

y +ψ(U2
x U3

y +U3
x U2

y )+2aU2e2U1
+2bU3e−2U1

(2.9)

and admits the Lax representation which takes values in sl(3), where [4]:

Ã =


− U2

x U3

3(U2U3+c) −bc−1U3e−2U1
0

λaU2e2U1 − U2
x U3

3(U2U3+c) λae2U1

0 bc−1e−2U1
(U2U3 + c) 2U2

x U3

3(U2U3+c)

 ,

B̃ =


−1

3(2U1
y +

U2U3
y

U2U3+c) λ−1 − U3
y

U2U3+c

−c 1
3(4U1

y −
U2U3

y
U2U3+c) 0

−U2
y 0 −1

3(2U1
y −

2U2U3
y

U2U3+c)

 .
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This Lax representation is not of the form (1.3). In order to construct tensor Kαβ using Eq. (2.8),
we rewrite this Lax representation in the gauge equivalent form:

Ã =


− U2

x U3

3(U2U3+c) −bc−1U3e−2U1
λ 0

λaU2e2U1 − U2
x U3

3(U2U3+c) λae2U1

0 bc−1e−2U1
(U2U3 + c)λ 2U2

x U3

3(U2U3+c)

 ,

B̃ =


−1

3(2U1
y +

U2U3
y

U2U3+c) λ−1 − U3
y

U2U3+c

−cλ−1 1
3(4U1

y −
U2U3

y
U2U3+c) 0

−U2
y 0 −1

3(2U1
y −

2U2U3
y

U2U3+c)

 .

Choosing f (x,y) as Killing form tr(xy), one can find by direct calculation

K =−ab

8 0 0
0 0 1

U2U3+c
0 1

U2U3+c 0

 .

Analogously one can obtain by direct calculations:

K̃ = f ([Sα ,N], [Sβ ,N]) = c

4 0 0
0 0 1

U2U3+c
0 1

U2U3+c 0


Consider the case a = b = 0. Then, one can easily see that K̃αβUα

y is the characteristic of the

conservation law c[4(U1
y )

2 +
U2

y U3
y

U2U3+c ]dy, in accordance with Corollary 2.1.
In a general case a 6= 0 or b 6= 0 matrices K, K̃ are not proportional up to a constant to the metric

defined by Lagrangian (2.9), and one can verify that the sets K̃αβUβ
x , KαβUβ

x are not characteristics
of the conservation laws.

It is interesting to note that the linear combination cK +3abK̃ is proportional to the metric and
defines the characteristic of the conservation law.

Theorem 2.2. Let the system (1.1) admit the Lax representation of the form (1.3) valued in a 3-
dimensional Lie algebra g. Then for every symmetric ad-invariant p-form f on Lie algebra g the
set

Yα = f ([Sα ,M], [Sβ ,M],M,M, ...,M︸ ︷︷ ︸
p−2

)Uβ
x , (2.10)

is the characteristic of the conservation law

θ =
1
2

f ([Sα ,M], [Sβ ,M],M,M, ...,M︸ ︷︷ ︸
p−2

)Uβ
x Uα

x dx+
(M,M)

p−1
Hdy,

where H = f (N,M,M, ...,M︸ ︷︷ ︸
p−1

) and the round brackets (M,M) denote the scalar product w.r.t. the

Killing metric on g.
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Proof. The proof for the two cases of so(3) and sl(2) is the same due to the well known isomor-
phism over C of these Lie algebras. The only statement we need to prove is the condition (2.7).
Denote Zβ = QαKαβ . Then, using Eq. (1.6), we have the following equalities

Zβ = f ([QαSα ,M], [Sβ ,M],M,M, ...,M︸ ︷︷ ︸
p−2

) = f ([[M,N],M], [Sβ ,M],M,M, ...,M︸ ︷︷ ︸
p−2

)

=− f (M(M,N), [Sβ ,M],M,M, ...,M︸ ︷︷ ︸
p−2

)+ f (N(M,M), [Sβ ,M],M,M, ...,M︸ ︷︷ ︸
p−2

).

Now, one can see that the first summand vanish due to Ad-invariance of the form f . Thus, we obtain

Zβ = (M,M) f (N, [Sβ ,M],M,M, ...,M︸ ︷︷ ︸
p−2

) =−(M,M) f ([N,M],Sβ ,M,M, ...,M︸ ︷︷ ︸
p−2

).

It turns out that the last equation can be integrated. At first, note that from condition (1.4) it fol-
lows that (M,M) = const. Now, one can verify, using Eq.(1.4) and (1.5), the following identity:
H,α = ∂H

∂Uα = (p− 1) f ([N,M],Sα ,M,M, ...,M︸ ︷︷ ︸
p−2

). Then, we arrive at Zβ = − 1
p−1(M,M)H,β . Now,

one can verify that form θ is the conservation law of the system under consideration, and the proof
is finished.

Example 2.2. Pohlmeier-Lund-Regge system [5],

∆
1 =U1

xy +
1

sinU2 (U
1
x U2

y +U1
y U2

x ) = 0,

∆
2 =U2

xy−
sinU2

(1+ cosU2)2U1
x U1

y − psinU2 = 0,

where p is an arbitrary constant. It will be convenient to write the Lax representation of PLR system
in the form (1.3), where

Ã =


0 −(λ p− cosU2U1

x

2cos2 U2
2

) −tgU2

2 U1
x

pλ − cosU2U1
x

2cos2 U2
2

0 U2
x

tgU2

2 U1
x −U2

x 0

 ,

B̃ =


0 cosU2

λ
+

U1
y

2cos2 U2
2

− sinU2

λ

−( cosU2

λ
+

U1
y

2cos2 U2
2

) 0 0

sinU2

λ
0 0

 .

Choose the following basis B of the Lie algebra so(3)

−→e 1 =

0 0 0
0 0 1
0 −1 0

 ,−→e 2 =

0 0 −1
0 0 0
1 0 0

 ,−→e 3 =

0 −1 0
1 0 0
0 0 0

 ;

then we have
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DyÃ−DxB̃+[Ã, B̃] = Sα∆
α =

 0 tg2 U2

2 −tgU2

2
−tg2 U2

2 0 0
tgU2

2 0 0

∆
1

+

0 0 0
0 0 1
0 −1 0

∆
2.

Thus, w. r. t. the basis B,

S1 = (0, tg
U2

2
,−tg2U2

2
), S2 = (1,0,0),

M = (0,0, p), N = (0,sinU2,−cosU2).

Assume that the 2-form f is the Killing metric of the Lie algebra so(3) which, w. r. t. the basis
B, is δi j up to a constant factor.

Construct a characteristic of the first order, using expressions (2.10). Assuming that f is the
Killing form, we obtain

K = f ([Sα ,M], [Sβ ,M]) = p2

(
tan2 U2

2 0
0 1

)
,

K̃αβ
= f ([Sα ,N], [Sβ ,N]) =

(
tan2 U2

2 0
0 1

)
,

and

Y1 = p2U1
x tan2 U2

2
, Y2 = p2U2

x , Ỹ1 =U1
y tan2 U2

2
, Ỹ2 =U2

y .

One can verify that Y and Ỹ are the characteristics of the following conservation laws:
1
2 p2[(U1

x )
2 tan2 U2

2 +(U2
x )

2]dx− p3 cosU2dy and 1
2 [(U

1
x )

2 tan2 U2

2 +(U2
y )

2]dy− pcosU2dx, respec-
tively.

Example 2.3. Consider the 3-component system

U1
xy +U3

x U1
y ctgU3− 1

sinU3U3
y U2

x += 0,

U2
xy +U3

y U2
x ctgU3− 1

sinU3U3
x U1

y = 0,

U3
xy +U1

y U2
x sinU3− psinU3 = 0,

where p is an arbitrary constant. This system admits the Lax representation of the form (1.3), where
[3], [2]:
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Ã =

 0 iλM3 −iλM2

−λM3 0 iλM1

iλM2 −iλM1 0

 ,

B̃ =

 0 i
λ
− (cosU3U1

y +U2
y ) −b31

− i
λ
+(cosU3U1

y +U2
y ) 0 b23

b31 −b23 0

 ,

M1 = psinU3 sinU2, M2 =−psinU3 cosU2, M3 = pcosU3,

b31 = sinU3 cosU2U1
y − sinU2U3

y , b23 =−cosU2U3
y − sinU2 sinU3U1

y .

Consider the same basis B and the same 2-form f as in example 1. Then, we find S1 =

(sinU2 sinU3,−cosU2 sinU3,cosU3), S2 = (0,0,1), S3 = (cosU2,sinU2,0).
Again, using (2.10) and assuming f to be the Killing form, one can find

Kαβ = f ([Sα ,M], [Sβ ,M]) = p2

0 0 0
0 sin2U3 0
0 0 1

 ,

K̃αβ = f ([Sα ,N], [Sβ ,N]) =−

 sin2U3 0 0
0 0 0
0 0 1

 .

Thus, according to the Theorem 2, the set Yα = p2(0,sin2U3U2
x ,U

3
x ) is a characteristic of the

conservation law. Indeed, the corresponding conservation law is

θ =−p3 cosU3dy+
p2

2
dx[(U3

x )
2 +(U2

x sinU3)2].

Analogously, one can see that Ỹα =−(sin2U3U1
y ,0,U

3
y ) and corresponding conservation law is

of the form

θ̃ = pcosU3dx− dy
2
[(U3

y )
2 +(U1

y sinU3)2].

3. Conclusions

In this paper, the geometric meaning of some tensor fields constructed by the Lax representation of
chiral-type systems is shown. The formula for characteristics of the first order of the conservation
laws for the chiral-type systems admitting g-valued Lax representation (dim g= 3) has been proved.
It seems interesting to find similar formulas for characteristics of higher orders. Such fields may turn
out to be useful to obtain a criterion of existence of a Lax pair.
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Appendix

Here, we prove theorem 1.
According to Eq. (1.4),(2.1) rewrite ∇γKα1α2...αk by the following way

∇γKα1α2...αk = f ([∇γSα1 ,M], [Sα2 ,M], ..., [Sαk ,M],M, ...,M︸ ︷︷ ︸
p−k

)

+ f ([Sα1 ,M,γ ], [∇γSα2 ,M], ..., [Sαk ,M],M, ...,M︸ ︷︷ ︸
p−k

)+ ...

+ f ([Sα1 ,M], [Sα2 ,M], ..., [Sαk ,M,γ ],M, ...,M︸ ︷︷ ︸
p−k

)

+(p− k) f ([Sα1 ,M], [Sα2 ,M], ..., [Sαk ,M],M,γ ,M,M, ...,M︸ ︷︷ ︸
p−k−1

)

= f ([[Bγ ,Sα1 ],M], [Sα2 ,M], ..., [Sαk ,M],M, ...,M︸ ︷︷ ︸
p−k

)

+ f ([Dα1γ ,M], [Sα2 ,M], ..., [Sαk ,M],M, ...,M︸ ︷︷ ︸
p−k

)

+ f ([Sα1 , [Bγ ,M]], [Sα2 ,M], ..., [Sαk ,M],M, ...,M︸ ︷︷ ︸
p−k

)
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+ f ([Sα1 ,M], [[Bγ ,Sα2 ],M], ..., [Sαk ,M],M, ...,M︸ ︷︷ ︸
p−k

)

+ f ([Sα1 ,M], [Dα2γ ,M], ..., [Sαk ,M],M, ...,M︸ ︷︷ ︸
p−k

)

+ f ([Sα1 ,M], [Sα2 , [Bγ ,M]], ..., [Sαk ,M],M, ...,M︸ ︷︷ ︸
p−k

)

+...+(p− k) f ([Sα1 ,M], [Sα2 ,M], ..., [Sαk ,M], [B,γ ,M]M, ...,M︸ ︷︷ ︸
p−k−1

).

Now, one can see that the underlined terms vanish due to Ad-invariancy of the form f .
Next, one can obtain from Eq. (1.4) the following identity

[2B[α,γ],M] =−[[Bα ,Bγ ],M].

Taking into account Eq. (2.2), one can find that [Dαβ ,M] = 0. The proof is complete.
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