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In this paper, the (2+1)-dimensional extended quantum Zakharov-Kuznetsov equation is further explored. The
equation is shown to be self-adjoint and conserved vector is constructed according to the related theorem.
Then the corresponding optimal system of one-dimensional subgroups is determined. Similarity reductions of
the equation under optimal system of subgroups are performed. As a result, the (2+1)-dimensional extended
quantum Zakharov-Kuznetsov equation is reduced into a linear PDE with two independent variables.
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1. Introduction

Several years ago, Zakharov and Kuznetsov [38] established an equation for nonlinear ion-acoustic
waves (IAWs) in a magnetized plasma composed of cold ions and hot isothermal electrons. The
quantum plasmas and their new features have attracted much attention from both the experimental
and theoretical point of view, due to its important role in the charged carrier behaviour when the
de Broglie wavelength exceeds the Debye wavelength and approaches the Fermi wavelength [14,
20,25,27,28,33–36,38]. The behaviour of the weakly nonlinear ion-acoustic waves in the presence
of an uniform magnetic field is governed by the quantum Zakharov-Kuznetsov (QZK) equation. So
many authors have considered the effect of the magnetic field in different quantum plasma models
[1–5, 7, 9, 12, 13, 15, 17–19, 22, 24, 30, 31, 39].

The (2+1)-dimensional Zakharov-Kuznetsov (ZK) equation was examined by using the sine-
cosine method, the extended tanh method, the homotopy analysis method [1], the simplified form
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of Hirota’s method [33, 34] and the mapping method [15]. The (2+1)-dimensional generalized
Zakharov-Kuznetsov (gZK) equation with nonlinear dispersion and time-dependent coefficients was
studied by the solitary wave ansatz method [4]. The (3+1)-dimensional QZK equation was exam-
ined by using the auxiliary equation method [20] and the extended F-expansion method (EFE) [3].
The authors [20] employed the reductive perturbation method to formally derive an extended quan-
tum Zakharov-Kuznetsov (extended QZK) equation, which was studied by generalized expansion
method [27] and Jacobi elliptic sine and cosine functions [36]. The Lie symmetry approach and
the simplest equation method were used to the Zakharov-Kuznetsov modified equal width equation
with power law nonlinearity [7] and a class of Generalized (2+1)-dimensional Zakharov-Kuznetsov
equation [13].

Wazwaz [35] investigated a new extended (2+1)-dimensional QZK equation, a new (3+1)-
dimensional QZK equation and the (3+1)-dimensional extended QZK equation.

The new extended (2+1)-dimensional QZK equation is as follows:

ut +auux +b(uxxx +uyyy)+ c(uxyy +uxxy) = 0. (1.1)

where a,b and c are real-valued constants while u(x,y, t) represents the electrostatic wave potential
in plasmas that is a function of the spatial variables x,y and the temporal variable t. The first term
in (1.1) is the temporal evolution term, while the coefficient of a is the nonlinear term and the
coefficients of b and c represents the spatial dispersions in multi-dimensions.

The authors applied the simplified form of Hirota’s method to determine multiple soliton solu-
tions and explosive solutions for the new extended equations above [33, 34]. Then Eq. (1.1) was
also studied by Lie symmetry method [32].

In this paper, we will do further research for the extended quantum Zakharov-Kuznetsov equa-
tion (QZK) on the basis of the literature [32].

Conservation laws play an important role in the study of differential equations, because conser-
vation laws describe physical conserved quantities, such as mass, energy, momentum and angular
momentum, as well as charge and other constants of motion [6, 19, 23]. They have been used in
investigating the existence, uniqueness and stability of solutions of nonlinear partial differential
equations [29]; and been applied to numerical methods [8, 16] etc. Thus, it is essential to study the
conservation laws of partial differential equations.

The plan of the paper is as follows. In the section 2, conservation laws for extended QZK equa-
tion are constructed for the first time by using the new conservation theorem of Ibragimov. Then
in section 3, an optimal system of one-dimensional subalgebras is found. In section 4, Similarity
reductions of the equation under optimal system of subgroups are performed. As a result, the (2+1)
dimensional extended quantum Zakharov-Kuznetsov equation is reduced into the linear PDE with
two independent variables. Finally, a conclusion is given.

2. Conservation laws of the extended QZK equation

In this section, we obtain conservation laws for Eq. (1.1) using the new conservation theorem due
to Ibragimov [10, 11].

2.1. Preliminaries

The notation and pertinent results are consistent with the literature. For details, the reader is referred
to [10, 11, 21, 37].
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We denote a rth order (r ≥ 1) system of m PDEs of n independent variables x = (x1,x2, · · · ,xn)

with components xi and m dependent variables u = (u1,u2, · · · ,un) with components uβ by

Fα(x,u,u(1), · · · ,u(r)) = 0, α = 1,2, · · · ,m. (2.1)

The system (2.1) admits a Lie point symmetry with generator

X = ξ
i(x,u)

∂

∂xi +η
β (x,u)

∂

∂uβ
, (2.2)

if XFα = 0 on the solution space of (2.1).
The vector C = (C1,C2, · · · ,Cn) is a conserved vector of (2.1) if

divC ≡ Di(Ci) = 0, (2.3)

on the solution space of (2.1). The expression (2.3) is a conservation law of (2.1). Here Di is the
total derivative with respect to xi.

Theorem 2.1. [10, 11] Lie point symmetry operator (2.2) of a system of Eq. (2.1) leads to a con-
served vector C = (C1,C2, · · · ,Cn), constructed by the formula

Ci = Lξ
i +W α

[
∂L

∂uα
i
−D j(

∂L
∂uα

i j
)+D jDk(

∂L
∂uα

i jk
)−·· ·

]
+D j(W α)

[
∂L

∂uα
i j
−Dk(

∂L
∂uα

i jk
)+ · · ·

]
+D jDk(W α)

[
∂L

∂uα
i jk

]
+ · · · ,

where W α = ηα−ξ juα
j , L = vαFα(x,u,v,u(1),v(1), · · · ,u(r),v(r)), (v = (v1,v2, · · · ,vm) is the adjoint

variable, α = 1,2, · · · ,m) are Lie characteristic function and formal Lagrangian, respectively.

2.2. Conservation laws of the extended QZK equation

Theorem 2.2. Eq. (1.1) is self-adjoint.

Proof. We write the Lagrangian equation for Eq. (1.1) in the following form:

L = v[ut +auux +b(uxxx +uyyy)+ c(uxyy +uxxy)], (2.4)

where v is the adjoint variable. According to Eq. (2.4), we obtain

∂L
∂u

= auxv,
∂L
∂ut

= v,
∂L
∂ux

= auv,
∂L

∂uxxx
=

∂L
∂uyyy

= bv,
∂L

∂uxyy
=

∂L
∂uxxy

= cv.

Adjoint equation of Eq. (1.1) is written as

F∗ =
δ

δu
[vF ] = 0;

F∗ =
∂L
∂u
−Dx

∂L
∂ux
−Dt

∂L
∂ut
− (Dx)

3 ∂L
∂uxxx

− (Dy)
3 ∂L

∂uyyy
−DxDyDy

∂L
∂uxyy

−DxDxDy
∂L

∂uxxy
= 0,
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namely

F∗ =−[vt +auvx +b(vxxx + vyyy)+ c(vxyy + vxxy)] = 0. (2.5)

Setting v = u in Eq. (2.5), then we yield extended QZK equation

ut +auux +b(uxxx +uyyy)+ c(uxyy +uxxy) = 0.

Therefore, the extended quantum Zakharov-Kuznetsov equation is self-adjoint.

Then, we construct new conservation laws for Eq. (1.1) in the light of the new conservation
theorem by Ibragimov [10,11]. According to Lie symmetry group method, the Lie point symmetries
of Eq. (1.1) are given in [32] as following

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂ t
, X4 = x

∂

∂x
+3t

∂

∂ t
+ y

∂

∂y
−2u

∂

∂u
, X5 = t

∂

∂x
+

1
a

∂

∂u
.

(1) We first consider the Lie point symmetry X1 =
∂

∂x of Eq. (1.1). The components of the conserved
vector are given by:

cx = uut − cuxuyy + cuyuxx+ cuyuxy;

cy =−buxuyy+ cuxxuy +buyuxy− cuyuxxx− cuyuxxy−buuxyy;

ct =−uux.

(2) Likewise, the components of the conserved vector associated with the Lie point symmetry X2 =
∂

∂y are given by:

cx =−a2uy−buyuxx +buxuxy + cuxuyy−buuxxy− cuuxyy− cuuyyy;

cy = uut +au2ux +buxxx− cuyuxx + cuxuxy + cuxuyy;

ct =−uuy.

(3) Corresponding to the Lie point symmetry X3 =
∂

∂ t , we get the following conserved vectors

cx =−au2ut −buxxut − cuxyut − cuyyut +buxtux + cutxuy + cutyux + cutyuy

−buuxxt − cuutxy− cuutyy;

cy =−cutuxx− cuxtut −buyyut + cuxutx + cuyutx + cuxuty +buyuty− cuutxx

− cuutxy−buutyy;

ct = au2ux +buuxxx +buuyyy + cuuxyy + cuuxxy.
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(4) For the Lie point symmetry X4 = x ∂

∂x + 3t ∂

∂ t + y ∂

∂y − 2u ∂

∂u , the components of the conserved
vector are given by:

cx = xu(ut +auux +buyyy)− (2u+ xux + yuy +3tut)(au2 +buxx + cuxy + cuyy)

+(3ux + xuxx + yuxy +3tutx)(bux + cuy)+(3uy + xuxy + yuyy +3tuty)(cux + cuy)

− (4uxx + yuxxy+3tutxx)bu− (4uxy + yuxyy+3tutxy)cu

− (4uyy + yuyyy+3tutyy)cu;

cy = yu(ut +auux +buxxx)− (2u+ xux + yuy +3tut)(cuxx + cuxy +buyy)

+(3ux + xuxx + yuxy +3tutx)(cux + cuy)+(3uy + xuxy + yuyy +3tuty)(cux +buy)

− (4uxx + xuxxx +3tutxx)cu− (4uxy + xuxxy +3tutxy)cu

− (4uyy + xuxyy +3tutyy)bu;

ct = 3btuutuxxx +3(b+ c)tuuyyy +3ctuuxyy−3atu2uux−2xuux− yuy−2u2.

(5) Finally, we consider the Lie point symmetry X5 = t ∂

∂x +
1
a

∂

∂u , and obtain the conserved vector
whose components are

cx = btuuyyy + ctuuxyy− ctuxuxx− ctuxuyy + ctuyuxx +
b
a

uxx +
c
a

uxy

+
c
a

uyy + tuut +u2;

cy =
c
a

uxx +
c
a

uxy +
b
a

uyy− ctuxuxy−btuxuyy + ctuyuxx− ctuuxxx− ctuuxxy;

ct =
1
a

u− tuxu.

3. Optimal system of one-dimensional subalgebras for extended QZK equation

In this section we present the optimal system of one-dimensional subalgebras for Eq. (1.1). The
method which we use for obtaining optimal system of one-dimensional subalgebras is given in [26].
The adjoint transformations are given by

Ad(exp(εXi))X j = X j− ε[Xi,X j]+
ε2

2
[Xi, [Xi,X j]]−·· · ,

where [Xi,X j] = XiX j−X jXi is the commutator for the Lie algebra and ε is a parameter.
Then we construct the optimal system of one-dimensional subalgebras of Eq. (1.1). The adjoint

representation table of Lie algebra is constructed in the following Table 1.

Table 1. Adjoint representation of infinitesimal generators.

Ad(exp(ε∗))(∗) X1 X2 X3 X4 X5

X1 X1 X2 X3 X4− εX1 X5

X2 X1 X2 X3 X4− εX2 X5

X3 X1 X2 X3 X4−3εX3 X5−aεX1

X4 eεX1 eεX2 e3εX3 X4 e−2εX5

X5 X1 X2 X3 +aεX1 X4 +2εX5 X5
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Theorem 3.1. An optimal system of one-dimensional Lie subalgebras for Eq. (1.1) is provided by

mX3 +nX4 +X5, X4,X3, X3−X2, X3 +X2, lX1 +X2, X1,

where m,n, l ∈ R are arbitrary nonzero constants.

Proof. Given a nonzero vector

X = β1X1 +β2X2 +β3X3 +β4X4 +β5X5.

And then simplify as many of the coefficients βi as possible by utilizing suitable adjoint maps.
Case 1:
First suppose that β5 6= 0. Scaling X if necessary, we assume that β5 = 1. Applying

Ad(exp(β2
β4

X2)) and Ad(exp(β1
β4

X1)) to it yields

X̃ = Ad(exp(
β2

β4
X2))◦Ad(exp(

β1

β4
X1))X = β3X3 +β4X4 +X5.

No further simplifications are possible. Then every one-dimensional subalgebra generated by X
with β5 6= 0 is equivalent to the subalgebra spanned by

β3X3 +β4X4 +X5,

where β3,β4 ∈ R are arbitrary nonzero constants.
Case 2:
The remaining one-dimensional subalgebras are spanned by vectors of the above form with

β5 = 0, β4 6= 0. We can take β4 = 1. So, the nonzero vector X = β1X1 + β2X2 + β3X3 + X4 is
equivalent to X̃ under adjoint map:

X̃ = Ad(exp(
β3

3
X3))◦Ad(exp(β2X2))◦Ad(exp(β1X1))X = X4.

So every one-dimensional subalgebra generated by X with β5 = 0, β4 6= 0 is equivalent to the
subalgebra spanned by X4.

Case 3:
If β5 = 0, β4 = 0, and β3 6= 0, we scale to make β3 = 1. Thus, X is equivalent to X̃ under adjoint

representation.

X̃ = Ad(exp(εX4))◦Ad(exp(
−β1

a
X1))X

= eε
β2X2 + e3εX3.

This is a scalar multiple of X̃ = e−2εβ2X2 +X3. So, depending on the sign of β2, we can make the
coefficient of X2 either +1, −1 or 0. Thus every one-dimensional subalgebra generated by X with
β5 = 0, β4 = 0, is equivalent to the subalgebra spanned by

X3, X3−X2, X3 +X2.

Case 4:
The remaining one-dimensional subalgebras are spanned by vectors of the above form with

β5 = β4 = β3 = 0. We can take β2 = 1, then X̃ = β1X1 +X2. If we act on X̃ by Ad(exp(εX4)),
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X̃ = Ad(exp(εX1))X = β1X1 +X2.

Then every one-dimensional subalgebra generated by X with β5 = β4 = β3 = 0 is equivalent to
the subalgebra spanned by

β1X1 +X2,

where β1 ∈ R is arbitrary nonzero constant.
Case 5:
The remaining case, β2 = β3 = β4 = β5 = 0, is similarly seen to be equivalent to X1.

So the optimal system of one-dimensional Lie subalgebras for Eq. (1.1) is provided by

mX3 +nX4 +X5, X4, X3, X3−X2, X3 +X2, lX1 +X2, X1,

where m,n, l ∈ R are arbitrary nonzero constants.

4. Reduction of the extended QZK equation

In this section we use the obtained optimal symmetries to reduce Eq. (1.1).

(1) X3−X2 =
∂

∂ t −
∂

∂y .

Integration of the invariant surface condition

dx
0

=
dy
−1

=
dt
1

=
du
0
,

gives similarity transformation u = φ( f ,g), where the similarity variables are f = x, g =

t + y. Substitute similarity transformation u = φ( f ,g) into Eq. (1.1), and reduced equation
is obtained as follows

φg +aφφ f +b(φ f f f +φggg)+ c(φ f gg +φ f f g) = 0.

(2) X3 +X2 =
∂

∂ t +
∂

∂y .

Solving the invariant surface condition

dx
0

=
dy
1

=
dt
1

=
du
0
,

yields the similarity transformation u = φ( f ,g), with the similarity variables f = x, g =

t− y. Substituting similarity transformation u = φ( f ,g) into Eq. (1.1), leads to the reduced
equation

φg +aφφ f +b(φ f f f −φggg)+ c(φ f gg−φ f f g) = 0.

(3) β1X1 +X2 = β1
∂

∂x +
∂

∂y .

Considering the invariant surface condition

dx
β1

=
dy
1

=
dt
0

=
du
0
,

we obtain similarity transformation u = φ( f ,g) with the similarity variables f = y−
β1x, g = t. Substituting similarity transformation u = φ( f ,g) into Eq. (1.1), yields the
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reduced equation

φg−aβ1φφ f +(b−bβ
3
1 − cβ1 + cβ

2
1 )φ f f f = 0.

5. Conclusion

In this paper, the composite variational principle has been applied to the extended quantum
Zakharov-Kuznetsov equation of (2+1)-dimension. Using these symmetries, we prove that the
extended QZK equation of (2+1)-dimension is self-adjoint and the conservation laws for the
extended QZK equation of (2+1)-dimension are constructed. Then the optimal system of one-
dimensional subalgebras is determined. Under some corresponding similarity transformation with
similarity invariants, the extended quantum Zakharov-Kuznetsov equation of (2+1)-dimension is
reduced into linear PDE with two independent variables. The conservation laws of some more com-
plex equations should be studied.
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