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Starting from an operator given as a product of q-exponential functions in irreducible representations of the
positive discrete series of the q-deformed algebra suq(1,1), we express the associated matrix elements in terms
of d-orthogonal polynomials. An algebraic setting allows to establish some properties : recurrence relation,
generating function, lowering operator, explicit expression and d-orthogonality relations of the involved poly-
nomials which are reduced to the orthogonal q-Meixner polynomials when d = 1. If q ↑ 1, these polynomials
tend to some d-orthogonal polynomials of Meixner type.
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1. Introduction

Let (Pn)n≥0 be a polynomial sequence with complex coefficients of n-th degree
(i.e degPn = n) and (un)n≥0 the corresponding dual sequence defined by

〈un,Pm〉= δnm, n,m = 0,1, ...

where 〈u, f 〉 is the action of a linear functional u on a polynomial f and δnm the Kronecker delta.
For a positive integer d, the polynomials Pn(x) are called d-orthogonal with respect to the linear

d-dimensional functional vector U = t(u0,u1, . . . ,ud−1) [12,17] if they satisfy the following vector
orthogonality relations {

〈ui,PmPn〉= 0, n≥ md + i+1,

〈ui,PmPn〉 6= 0, n = md + i,
(1.1)

for each integer i ∈ {0,1, . . . ,d−1}.
When d = 1, we return to the well known notion of orthogonality.
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Recall that the polynomials Pn(x) are d-orthogonal if and only if they satisfy a recurrence rela-
tion of order d +1 of the type

xPn(x) =
d+1

∑
i=0

γi,n+1Pn+1−i(x), (1.2)

where γ0,n+1γd+1,n+1 6= 0 and by convention P−n = 0, n≥ 1. The result for d = 1 is reduced to the
so-called Favard Theorem.

During the last three decades, numerous explicit examples of d-orthogonal polynomials and
multiple orthogonal polynomials have been intensively studied and developed by many authors
[1,2,5,11,16,19]. However, only in the past few years, some works dealing with the connection
between d-orthogonal polynomials, multiple orthogonal polynomials and Lie algebras were intro-
duced. Indeed, by means of an algebraic approach, multivariate Charlier and Meixner polynomials,
d-orthogonal Charlier, Al-Salam Carlitz and Krawtchook polynomials appeared as matrix elements
of operators in Lie algebras [6,8,9,18]. In the present paper, we shall identify and study some d-
orthogonal polynomials generalizing the q-Meixner polynomials which are presented as matrix ele-
ments of a suitable operator of the q-deformed algebra suq(1,1). Note that the connection between
the orthogonal q-Meixner polynomials and the q-deformed algebra suq(1,1) has been the subject of
many papers [3,13,15].

The outline of the paper is structured as follows. In section 2, we recall basic facts about
suq(1,1) algebra and its irreducible representations of the positive discrete series. Moreover, we
define a set of q-coherent states and we establish some useful identities in suq(1,1). Section 3 is
devoted to introduce an operator S that shall be studied along with the associated matrix elements
which will be expressed in terms of d-orthogonal polynomials. When d = 1, the obtained results
are reduced to the q-Meixner polynomials. An algebraic approach allows us to derive some prop-
erties: recurrence relation, generating function and lowering operator. In section 4, we focus our
study to a family of d-orthogonal polynomials of q-Meixner type that will be expressed in terms
of q-hypergeometric functions and we determine explicitly a linear d-dimensional functional vec-
tor insuring the d-orthogonality of the involved polynomials. Moreover, we show in section 5 how
these polynomials are reduced to some d-orthogonal polynomials of Meixner type when q ↑ 1.

In the remainder, we assume that q is a real number such that 0 < q < 1.

2. The q-deformed algebra suq(1,1)

In this section, we present a few basic elements of q-calculus that shall be needed throughout the
paper (the interested reader may consult [7]) and we review basic facts about suq(1,1) algebra
concerning its positive series representations and the associated q-coherent states.

2.1. Elements of q-analysis

The basic hypergeometric series is defined by

rφs

(
a1,a2, . . . ,ar

b1,b2, . . . ,bs

∣∣∣∣q;z
)

:=
∞

∑
n=0

(a1,a2, . . . ,ar;q)n

(q,b1,b2, . . . ,bs;q)n

(
(−1)nq(

n
2)
)1+s−r

zn,
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with
(n

2

)
= n(n−1)/2, (a;q)n stands for the q-shifted factorial

(a;q)n =

{
1, n = 0,

(1−a)(1−aq) · · ·(1−aqn−1), n = 1,2, . . . .

and (a1,a2, . . . ,ar)n =
r

∏
i=1

(ai;q)n.

The q-shifted factorials satisfy a number of identities :(q;q)n−k =
(−1)k(q;q)n

(q−n;q)k
q(

k
2)−nk,

(q−n;q)k = 0, if k > n,
(2.1)

(a;q)nr+i = (a;q)i(aqi;q)nr = (a;q)i

r−1

∏
j=0

(aqi+ j;qr)n, (2.2)

where n,k,r and i are non-negative integers.
The q-binomial coefficients are defined by

[
n
k

]
q
=

(q;q)n

(q;q)k(q;q)n−k
.

The little q-exponential, denoted by eq(z), is defined as

eq(z) = 1φ0

(
0
−

∣∣∣∣q;z
)
=

∞

∑
n=0

zn

(q;q)n
=

1
(z;q)∞

,

and the big q-exponential, denoted Eq(z), is given by

Eq(z) = 0φ0

(
−
−

∣∣∣∣q;−z
)
=

∞

∑
n=0

q(
n
2)

(q;q)n
zn = (−z;q)∞ .

It follows that eq(z)Eq(−z) = 1.
The q-binomial theorem states that

(xz;q)∞

(z;q)∞

=
∞

∑
n=0

(x;q)n

(q;q)n
zn. (2.3)

With the help of (2.1) we show that

Eq(t) 1φ1

(
0

qβ

∣∣∣∣q;−(1−q)2q
β−1

2 zt
)
=

∞

∑
n=0

1φ1

(
q−n

qβ

∣∣∣∣q;(1−q)2q
β+1

2 z
)

q(
n
2)

(q;q)n
tn. (2.4)

The q-difference operator Dq is defined by

Dq f (x) =
f (x)− f (qx)

x
.

Dq satisfies the following useful property
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Dn
1/q f (x) =

1
xn

n

∑
k=0

(−1)kq(
k
2)
[

n
k

]
q

f (q−kx). (2.5)

2.2. suq(1,1) algebra and its positive discrete representation

The q-deformed algebra suq(1,1) is defined as the associative algebra generated by the elements
J−, J+,qJ0 and q−J0 subject to the defining relations

[J−,J+] = [2J0]q,

[J0,J±] =±J±,

qJ0J±q−J0 = q±1J±,

qJ0q−J0 = q−J0qJ0 ,

(2.6)

where

[A,B] := AB−BA, [a]q :=
qa/2−q−a/2

q1/2−q−1/2 ,

and satisfying the involution relations

J∗+ = J−, (qJ0)∗ = qJ0 .

In the remainder of the paper, we are interested in the positive discrete representations of
suq(1,1) labelled by a positive number β and acting on a Hilbert space Hβ in the following manner:
If |n〉 is an orthonormal basis (i.e 〈n|m〉= δnm), we have


J−|n〉= αn|n−1〉,
J+|n〉= αn+1|n+1〉,
q±J0 |n〉= q±(n+

β

2 )|n〉,
(2.7)

where

αn =
q−(n+

β−3
2 )/2

(1−q)

√
(1−qn)(1−qβ+n−1). (2.8)

The action by powers on the basis |n〉 are given by
Ji
−|n〉=

αn!
αn−i!

|n− i〉, i≤ n,

Ji
−|n〉= 0, i > n,

Jn
+|m〉=

αm+n!
αm!

|m+n〉,

(2.9)

where αn! is the sequence defined by

αn! :=
n

∏
k=1

αk =
q−n(β+n−2)/4

(1−q)n

√
(q;q)n(qβ ;q)n , α0! = 1. (2.10)

It is obvious to see that
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Jn
+|0〉
αn!

= |n〉. (2.11)

By induction on n we show according to (2.6) that

q−J0Jn
− = (qJ−)nq−J0 ,

Jn
−J+− J+Jn

− = cq(1−qn)
(
qJ0Jn−1

− − Jn−1
− q−J0

)
,

where

cq =
−√q

(1−q)2 .

It follows that for every formal power series f such that f (J−) exists{
q−J0 f (J−) = f (qJ−)q−J0 ,

J+ f (J−) = f (J−)J+− cqqJ0Dq f (J−)+ cqDq f (J−)q−J0 ,
(2.12)

and by conjugation we get{
f (J+)q−J0 = q−J0 f (qJ+),

f (J+)J− = J− f (J+)− cqDq f (J+)qJ0 + cqq−J0Dq f (J+).
(2.13)

Since Dqeq(−z) =−eq(−z) and eq(−qz) = (1+ z)eq(−z) we get from (2.13),

eq(−J+)q−J0Eq(J+) = q−J0 +q−J0J+, (2.14)

Eq(J+)J−eq(−J+) = J−− cqqJ0 + cqq−J0(1+ J+)−1. (2.15)

2.3. q-coherent states

The concept of coherent states and their applications can be traced to early literature in the field of
quantum optics and was widened for more general applications, primarily in quantum mechanics
[14]. In our work, we introduce the notion of q-coherent states associated with suq(1,1) as an
algebraic tool which will be exploited in order to establish basic properties of some d-orthogonal
polynomials.

Let z be a complex number. By |z〉, we denote the q-coherent state defined as

|z〉 :=
∞

∑
n=0

zn

αn!
|n〉. (2.16)

Its expansion coefficients are 〈n|z〉= zn

αn!
. Using (2.10) and (2.11) we show that

|z〉= 1φ1

(
0

qβ

∣∣∣∣q;−(1−q)2q
β−1

2 zJ+

)
|0〉. (2.17)

The state |z〉 can be looked upon as an eigenstate of the operator J−. Indeed we have

J−|z〉= z|z〉,
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and for a power series f ,

f (J−)|z〉= f (z)|z〉. (2.18)

For q-coherent states |z1〉 and |z2〉, the inner product is

〈z1|z2〉= 1φ1

(
0

qβ

∣∣∣∣q;−(1−q)2q
β−1

2 z1z2

)
.

3. Matrix elements of an operator and d-orthogonal polynomials

Let r,d be two positive integers such that d = 2r− 1 and let a1,a2, . . . ,ar be complex numbers in
C−{0}. The operator S which will be the subject of our study in the remainder of the paper is
defined by

S = Eq(J+)
r

∏
i=1

eq(aiJ−). (3.1)

It is clear that S is invertible and

S−1 =
r

∏
i=1

Eq(−aiJ−)eq(−J+). (3.2)

We define the matrix elements of S by ψn,k = 〈k|S|n〉.
To establish a recurrence relation satisfied by ψn,k we need the following obvious results.

Fq(qz) = P(z)Fq(z) and DqFq(z) = Q(z)Fq(z), (3.3)

where Fq,P,Q are given by

Fq(z) =
r

∏
i=1

eq(aiz), P(z) =
r

∏
i=1

(1−aiz), Q(z) =
1−P(z)

z
. (3.4)

3.1. Recurrence relation

Starting from the matrix element 〈k|q−J0S|n〉, we have from (2.7)

〈k|q−J0S|n〉= q−(k+
β

2 )ψn,k. (3.5)

On the other hand

〈k|q−J0S|n〉= 〈k|S(S−1q−J0S)|n〉. (3.6)

According to (2.12),(2.13),(2.14),(3.2) and (3.3), we have

S−1q−J0S = Fq(J−)−1
(

eq(−J+)q−J0Eq(J+)
)

Fq(J−)

= Fq(J−)−1q−J0Fq(J−)+Fq(J−)−1q−J0
(

J+Fq(J−)
)

= Fq(J−)−1Fq(qJ−)q−J0 +Fq(J−)−1q−J0Fq(J−)J+

− cqFq(J−)−1DqFq(J−)+ cqFq(J−)−1q−J0DqFq(J−)q−J0

= P(J−)q−J0 +P(J−)q−J0J+− cqQ(J−)+ cqQ(qJ−)P(J−)q−2J0 .
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Therefore (3.6) becomes

〈k|q−J0S|n〉= 〈k|SP(J−)q−J0 |n〉+ 〈k|SP(J−)q−J0J+|n〉
− cq〈k|SQ(J−)|n〉+ cq〈k|SQ(qJ−)P(J−)q−2J0 |n〉. (3.7)

After writing the polynomials P(z), Q(z), Q(qz)P(z) under the form,

P(z) =
d

∑
i=0

ξizi, Q(z) =
d

∑
i=0

ηizi, Q(qz)P(z) =
d

∑
i=0

µizi,

with µd 6= 0, ηi = ξi = 0, i > r, we obtain successively according to (2.9)

P(J−)q−J0 |n〉= q−(n+
β

2 )
d

∑
i=0

ξi
αn!

αn−i!
|n− i〉,

P(J−)q−J0J+|n〉= q−(n+1+ β

2 )αn+1

d

∑
i=0

ξi
αn+1!

αn+1−i!
|n+1− i〉,

Q(J−)|n〉=
d

∑
i=0

ηi
αn!

αn−i!
|n− i〉,

Q(qJ−)P(J−)q−2J0 = q−(2n+β )
d

∑
i=0

µi
αn!

αn−i!
|n− i〉.

Hence we get from (3.7)

〈k|q−J0S|n〉= q−(n+
β

2 )
d

∑
i=0

ξi
αn!

αn−i!
ψn−i,k +q−(n+1+ β

2 )αn+1

d

∑
i=0

ξi
αn+1!

αn+1−i!
ψn+1−i,k

− cq

d

∑
i=0

ηi
αn!

αn−i!
ψn−i,k + cqq−(2n+β )

d

∑
i=0

µi
αn!

αn−i!
ψn−i,k. (3.8)

Comparing (3.5) and (3.8), we obtain

Proposition 3.1. The matrix elements ψn,k satisfy the following recurrence relation of order d+1=
2r.

q−k
ψn,k = q−(n+1)

αn+1ψn+1,k +
d

∑
i=0

βn,iψn−i,k, (3.9)

where βn,i are complex numbers, with βn,d 6= 0.

From this relation one can express ψn,k recursively, starting from ψ0,k. Indeed, putting n = 0
(respectively n = 1) in (3.9), we get

ψ1,k =
q

α1
(q−k−β0,0)ψ0,k.

ψ2,k =
q3

α1α2
((q−k−β1,0)(q−k−β0,0)−β1,1)ψ0,k.

Repeating this process we arrive at the following:
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Corollary 3.2. The matrix elements ψn,k are expressed under the form

ψn,k = ψ0,kPn(q−k), (3.10)

where Pn(q−k) is a polynomial of degree n in the argument q−k and satisfying the recurrence relation
of order d +1 given by

q−kPn(q−k) = q−(n+1)
αn+1Pn+1(q−k)+

d

∑
i=0

βn,iPn−i(q−k),

with the initial conditions P0(q−k) = 1, Pn(q−k) = 0, n < 0.

According to (1.2), the polynomials Pn(q−k) are d-orthogonal.

3.2. Generating function

In order to calculate the (formal) generating function F(z,k) of the d-orthogonal polynomials
Pn(q−k) defined by

F(z,k) :=
∞

∑
n=0

Pn(q−k)

αn!
zn,

we consider the expression of 〈k|S|z〉. On the one hand, we have from (2.16)

〈k|S|z〉= 〈k|S|
∞

∑
n=0

zn

αn!
|n〉〉=

∞

∑
n=0

ψn,k

αn!
zn. (3.11)

On the other hand, taking into account of (2.4),(2.10),(2.17) and (2.18), we get successively

〈k|S|z〉= 〈k|Eq(J+)
r

∏
i=1

eq(aiJ−)|z〉

=
r

∏
i=1

eq(aiz)〈k|Eq(J+) 1φ1

(
0

qβ

∣∣∣∣q;−(1−q)2q
β−1

2 zJ+

)
|0〉

=
r

∏
i=1

eq(aiz)
∞

∑
m=0

q(
m
2)

(q;q)m
1φ1

(
q−m

qβ

∣∣∣∣q;(1−q)2q
β+1

2 z
)
〈k|Jm

+|0〉

=
r

∏
i=1

eq(aiz)
∞

∑
m=0

αm!q(
m
2)

(q;q)m
1φ1

(
q−m

qβ

∣∣∣∣q;(1−q)2q
β+1

2 z
)
〈k|m〉

=
r

∏
i=1

eq(aiz)
αk!q(

k
2)

(q;q)k
1φ1

(
q−k

qβ

∣∣∣∣q;(1−q)2q
β+1

2 z
)

=
r

∏
i=1

eq(aiz)
qk(k−β )/4

(1−q)k

√
(qβ ;q)k

(q;q)k
1φ1

(
q−k

qβ

∣∣∣∣q;(1−q)2q
β+1

2 z
)
.

It follows by virtue of (3.11) that the matrix elements ψn,k are generated by

∞

∑
n=0

ψn,k

αn!
zn =

qk(k−β )/4

(1−q)k

√
(qβ ;q)k

(q;q)k

r

∏
i=1

eq(aiz) 1φ1

(
q−k

qβ

∣∣∣∣q;(1−q)2q
β+1

2 z
)
.
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From the previous calculus we get

ψ0,k =
αk!q(

k
2)

(q;q)k
=

qk(k−β )/4

(1−q)k

√
(qβ ;q)k

(q;q)k
. (3.12)

Using the relation (3.10) we arrive at the following:

Proposition 3.3. The d-orthogonal polynomials Pn(q−k) are generated by

∞

∑
n=0

Pn(q−k)

αn!
zn =

r

∏
i=1

eq(aiz) 1φ1

(
q−k

qβ

∣∣∣∣q;(1−q)2q
β+1

2 z
)
. (3.13)

3.3. Lowering operator

We have obviously from (2.7)

〈k|SJ−|n〉= αnψn−1,k. (3.14)

On the other hand, we have

〈k|SJ−|n〉= 〈k|(SJ−S−1)S|n〉. (3.15)

According to (2.15)

SJ−S−1 = Eq(J+)J−eq(−J+)

= J−− cqqJ0 + cqq−J0(1+ J+)−1

= J−− cqqJ0 + cqq−J0
∞

∑
m=0

(−1)mJm
+.

Hence (3.15) becomes

〈k|SJ−|n〉= 〈k|J−S|n〉− cq〈k|qJ0S|n〉+ cq〈k|q−J0(1+ J+)−1S|n〉.

= αk+1ψn,k+1− cqqk+ β

2 ψn,k + cqq−(k+
β

2 )
k

∑
m=0

(−1)m αk!
αk−m!

ψn,k−m. (3.16)

Dividing by ψ0,k and combining (3.14) with (3.16), we obtain

αnPn−1(q−k) = αk+1
ψ0,k+1

ψ0,k
Pn(q−(k+1))− cqqk+ β

2 Pn(q−k)

+ cqq−(k+
β

2 )
k

∑
m=0

(−1)m αk!
αk−m!

ψ0,k−m

ψ0,k
Pn(q−(k−m)). (3.17)

By virtue of (2.1),(2.8) and (3.12), we have

αk+1
ψ0,k+1

ψ0,k
=

q
1−β

2

(1−q)2 (1−qβ+k)

=−cqq−
β

2 (1−qβ+k),

and
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αk!
αk−m!

ψ0,k−m

ψ0,k
=

(q;q)kq(
k−m

2 )

(q;q)k−mq(
k
2)

= (−1)mqm(q−k;q)m.

Thus we get from (3.17)

αnPn−1(q−k) = cqqk+ β

2
(
Pn(q−(k+1))−Pn(q−k)

)
− cqq−

β

2 Pn(q−(k+1))

+ cqq−(k+
β

2 )
∞

∑
m=0

qm(q−k;q)mPn(qm−k). (3.18)

Using now the notation T (m)
q f (x) = f (qmx), for any integer m, we announce according to (3.18) that

Proposition 3.4. The operator σ defined by

σ = T (−1)
q −qβ D1/q−q−k

∞

∑
m=0

qm(q−k;q)mT (m)
q ,

satisfies the following equality

σPn(q−k) = (1−q)q(−2n+β+1)/4
√

(1−qn)(1−qβ+n−1)Pn−1(q−k).

Hence σ is a lowering operator of Pn(q−k).

4. d-orthogonal polynomials of q-Meixner type

After replacing z by
−q

1−β

2

c(1−q)2 z and ai by a′i =
−q

1−β

2

c(1−q)2 ai in (3.13) with c > 0, we assume in this

section that a′j = e
2i jπ

r , 1≤ j ≤ r. Then we get

P(z) =
r

∏
j=1

(1−a′jz) = 1− zr and
r

∏
j=1

eq(a′jz) = eqr(zr) =
1

(zr;qr)∞

.

According to (3.13), it is natural to consider the d-orthogonal polynomials
Mn(q−k;qβ−1,c,d;q) generated by

∞

∑
n=0

Mn(q−k;qβ−1,c,d;q)
zn

(q;q)n
=

1
(zr;qr)∞

1φ1

(
q−k

qβ

∣∣∣∣q;
−qz

c

)
, (4.1)

which are reduced when d = 1 to the q-Meixner polynomials Mn(q−k;b,c;q), where
0 < b < q−1, c > 0 and b = qβ−1 [10].
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Recall that Mn(q−k;b,c;q) are defined and generated by

Mn(q−k;b,c;q) = 2φ1

(
q−n,q−k

bq

∣∣∣∣q;−qn+1

c

)
, (4.2)

∞

∑
n=0

Mn(q−k;b,c;q)
zn

(q;q)n
=

1
(z;q)∞

1φ1

(
q−k

bq

∣∣∣∣q;−qz
c

)
(4.3)

and they satisfy the orthogonality relations

∞

∑
k=0

(bq;q)kckq(
k
2)

(−bcq;q)k(q;q)k
Mm(q−k,b,c;q)Mn(q−k,b,c;q) = 0, if m 6= n. (4.4)

Mn(q−k;qβ−1,c,d;q) are called d-orthogonal polynomials of q-Meixner type.

4.1. Explicit expression

To obtain the explicit expression of the polynomials Mn(q−k;qβ−1,c,d;q), we can proceed directly
by expanding the generating function (4.1). Indeed, we have

∞

∑
n=0

Mn(q−k;qβ−1,c,d;q)
zn

(q;q)n
=

∞

∑
s=0

k

∑
i=0

q(
i+1

2 )(q−k;q)i

ci(q;q)i(qβ ;q)i(qr;qr)s
zi+rs.

Then we get

Mn(q−k;qβ−1,c,d;q) = (q;q)n

k

∑
i=0

q(
i+1

2 )(q−k;q)i

ci(q;q)i(qβ ;q)i(qr;qr) n−i
r

. (4.5)

In (4.5) the discrete variable i can take the values such that

(n− i)/r = s = 0,1, ...

For any non-negative integer we can put n = mr+ j, m = 0,1, ... and j = 0,1, ...,r−1. Then i can
take the values i = rl + j, l = 0,1, ..

Therefore (4.5) can be written in the form

Mn(q−k;qβ−1,c,d;q) = (q;q)n

m

∑
l=0

q(
rl+ j+1

2 )(q−k;q)rl+ j

crl+ j(q;q)rl+ j(qβ ;q)rl+ j(qr;qr)m−l
, (4.6)

which becomes after an easy calculation according to (2.1) and (2.2)

Mn(q−k;qβ−1,c,d;q) =
q(

j+1
2 )(q;q)n(q−k;q) j

c j(qr;qr)m(q;q) j(qβ ;q) j

×
∞

∑
l=0

(q−mr;qr)l

r−1

∏
s=0

(q−k+ j+s;qr)l

(
(−1)lqr( l

2)
)r−1

ql(r+1
2 )+rl(m+ j)

(−c)rl
r−1

∏
s=0

(q j+s+1,qβ+ j+s;qr)l

.
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Therefore if we denote by ∆(a;r,q) and ∆(a,b;r,q) the arrays defined by{
∆(a;r,q) = (qa/r,q(a+1)/r, ...,q(a+r−1)/r)),

∆(a,b;r,q) =
(
∆(a;r,q),∆(b;r,q)

)
,

we get

Mn(q−k;qβ−1,c,d;q) =
q(

j+1
2 )(q;q)n(q−k;q) j

c j(qr;qr)m(q;q) j(qβ ;q) j

× r+2φ2r

(
qr,q−mr,∆(−k+ j;r,qr)

∆( j+1,β + j;r,qr)

∣∣∣∣qr;
q(

r+1
2 )+r(m+ j)

(−c)r

)
. (4.7)

In the particular case when d = r = 1 (then m = n and j = 0), we get from (4.7)

Mn(q−k,qβ−1,c;q) = 3φ2

(
q,q−k,q−n

q,qβ

∣∣∣∣q;
−qn+1

c

)
= 2φ1

(
q−k,q−n

qβ

∣∣∣∣q;
−qn+1

c

)
.

Hence we meet again the q-hypergeometric representation of Mn(q−k;qβ−1,c;q) given in (4.2).

4.2. d-orthogonality relations

Let us now express explicitly in terms of q-hypergeometric functions the linear d-dimensional
functional vector U = t(u0,u1, . . . ,ud−1) insuring the d-orthogonality of the polynomials
Mn(q−k;qβ−1,c,d;q). The adopted approach is based on the notion of obtaining dual sequence
of a polynomial set via inversion coefficients [4].

The main result of this section is the following theorem.

Theorem 4.1. The polynomials Mn(q−k;qβ−1,c,d;q) generated by (4.1) are d-orthogonal with
respect to the linear d-dimensional functional vector U = t(u0,u1, . . . ,ud−1) given for every
0≤ i≤ d−1 by

〈ui, f 〉= ciq−(
i
2)(qβ ;q)i

r−1

∑
s=0

∞

∑
k=0

q(
rk+s

2 )

(q;q)rk+s
ωi,rk+s f (q−(rk+s)) , (4.8)

where f is a polynomial and ωi,rk+s is given by

(1) for rk+ s≤ i−1

ωi,rk+s =
(−1)rk+s

(q;q)i−rk−s
2rφr

(
∆(i+1,β + i;r,qr)

∆(i− rk− s+1;r,qr)

∣∣∣∣qr;(−c)rq−ir−(r
2)
)
,

(2) for rk+ s≥ i and 1− r ≤ s− i≤ 0
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ωi,rk+s =
(−1)(r+1)k+scrkq−k2(r

2)−irk(qi+1;q)rk(qβ+i;q)rk

(q;q)i−s(qr;qr)k

× 2r+1φr+1

(
qr,∆(rk+ i+1,β + rk+ i;r,qr)

qr(k+1),∆(i− s+1;r,qr)

∣∣∣∣qr;(−c)rq−ir−(2k+1)(r
2)
)
,

(3) for rk+ s≥ i and 1≤ s− i≤ r−1

ωi,rk+s =
(−1)(r+1)k+s+1cr(k+1)q−(k+1)2(r

2)−ir(k+1)(qi+1;q)r(k+1)(qβ+i;q)r(k+1)

(q;q)r+i−s(qr;qr)k+1

× 2r+1φr+1

(
qr,∆(r(k+1)+ i+1,β + r(k+1)+ i;r,qr)

qr(k+2),∆(r+ i− s+1;r,qr)

∣∣∣∣qr;(−c)rq−ir−(2k+3)(r
2)
)
,

(4) for rk+ s≥ i and 2(1− r)≤ s− i≤−r

ωi,rk+s =
(−1)(r+1)k+s−1cr(k−1)q−(k−1)2(r

2)−ir(k−1)(qi+1;q)r(k−1)(qβ+i;q)r(k−1)

(q;q)−r+i−s(qr;qr)k−1

× 2r+1φr+1

(
qr,∆(r(k−1)+ i+1,β + r(k−1)+ i;r,qr)

qrk,∆(−r+ i− s+1;r,qr)

∣∣∣∣qr;(−c)rq−ir−(2k−1)(r
2)
)
.

Example. If d = r = 1 (then i = s = 0). We get from Theorem 4.1 (case (2)) and with the help of
(2.3)

ω0,k = ck(qβ ;q)k 3φ2

(
q,qk+1,qβ+k

qk+1,q

∣∣∣∣q;−c

)

= ck(qβ ;q)k 1φ0

(
qβ+k

−

∣∣∣∣q;−c

)

=
ck(qβ ;q)k(−cqβ+k;q)∞

(−c;q)∞

=
ck(qβ ;q)k(−cqβ ;q)∞

(−cqβ ;q)k(−c;q)∞

.

Then we obtain

〈u0, f 〉= (−cqβ ;q)∞

(−c;q)∞

∞

∑
k=0

ckq(
k
2)(qβ ;q)k

(q;q)k(−cqβ ;q)k
f (q−k).

Hence we recognise the orthogonality of q-Meixner polynomials Mn(x;qβ−1,c;q) given in (4.4).

In order to prove Theorem 4.1, we need the following lemma.
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Lemma 4.2. For every polynomial f , we have

f (x) =
∞

∑
n=0

qn

(q;q)n

[
Dn

1/q f (x)
]

x=1
(x;q)n. (4.9)

Proof. Writing f under the form

f (x) =
∞

∑
m=0

αm(x;q)m, (4.10)

then applying the operator Dn
1/q to each side of (4.10) and using the fact that


Dn

1/q(x;q)m =
q−n(q;q)m

(q;q)m−n
(x;q)m−n, if m≥ n,

Dn
1/q(x;q)m = 0, if m < n,

[(x;q)n]x=1 = δn,0,

we get [
Dn

1/q f (x)
]

x=1
= q−n

αn(q;q)n,

which finishes the proof.

Proof of Theorem 4.1. We have from (4.1)

1φ1

(
x

qβ

∣∣∣∣q;
−qz

c

)
= (zr;qr)∞

∞

∑
n=0

Mn(x;qβ−1,c,d;q)
zn

(q;q)n
.

Then by equalizing the coefficients of zn, we get

(x;q)n =
cn(q;q)n(qβ ;q)n

q(
n+1

2 )

[n/r]

∑
m=0

(−1)mqr(m
2)

(qr;qr)m(q;q)n−mr
Mn−mr(x;qβ−1,c,d;q). (4.11)

(where [a] is the integer part of a).
Applying the dual sequence (ui)i≥0 of Mn(x;qβ−1,c,d;q) to each member of (4.11) we obtain

 〈ui,(x;q)n〉=
(−1)mqr(m

2)cn(q;q)n(qβ ;q)n

q(
n+1

2 )(qr;qr)m(q;q)i

if n = mr+ i,

〈ui,(x;q)n〉= 0, otherwise.

(4.12)
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With the help of (2.5),(4.9) and (4.12), we get successively for every polynomial f

〈ui, f 〉=
∞

∑
n=0

qn

(q;q)n

[
Dn

1/q f (x)
]

x=1
〈ui,(x;q)n〉

=
∞

∑
m=0

qmr+i

(q;q)mr+i

[
Dmr+i

1/q f (x)
]

x=1
〈ui,(x;q)mr+i〉

=
∞

∑
m=0

mr+i

∑
k=0

(−1)m+kq(
k
2)+r(m

2)(q;q)mr+i(qβ ;q)mr+icmr+i

(q;q)i(q;q)k(q;q)mr+i−k(qr;qr)mq(
mr+i

2 )
f (q−k)

=
∞

∑
m=0

i−1

∑
k=0

(−1)m+kq(
k
2)+r(m

2)(q;q)mr+i(qβ ;q)mr+icmr+i

(q;q)i(q;q)k(q;q)mr+i−k(qr;qr)mq(
mr+i

2 )
f (q−k)︸ ︷︷ ︸

Ai( f )

+
∞

∑
m=0

mr+i

∑
k=i

(−1)m+kq(
k
2)+r(m

2)(q;q)mr+i(qβ ;q)mr+icmr+i

(q;q)i(q;q)k(q;q)mr+i−k(qr;qr)mq(
mr+i

2 )
f (q−k),︸ ︷︷ ︸

Bi( f )

with A0( f ) = 0. Using the identity (2.2), we obtain

Ai( f ) = ciq−(
i
2)(qβ ;q)i

i−1

∑
k=0

q(
k
2)

(q;q)k
ω

(1)
i,k f (q−k),

where

ω
(1)
i,k =

(−1)k

(q;q)i−k

∞

∑
m=0

r−1

∏
j=0

(qi+ j+1,qβ+i+ j;qr)m

(
(−1)mqr(m

2)
)1−r(

(−c)rq−(
r
2)−ir

)m

(qr;qr)m

r−1

∏
j=0

(qi−k+ j+1;qr)m

=
(−1)k

(q;q)i−k
2rφr

(
∆(i+1,β + i;r,qr)

∆(i− k+1;r,qr)

∣∣∣∣qr;(−c)rq−(
r
2)−ir

)
By virtue of the following transformation:

∞

∑
m=0

mr+i

∑
k=i

H(m,k) =
∞

∑
k=i

∞

∑
m=0

H(m+ηi,k,k), ηi,k = 1+
[

k− i−1
r

]

and (2.2) we get

Bi( f ) = ciq−(
i
2)(qβ ;q)i

∞

∑
k=i

q(
k
2)

(q;q)k
ω

(2)
i,k f (q−k),
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where

ω
(2)
i,k =

(−1)ηi,k+kqνi,k crηi,k(qi+1;q)rηi,k(q
β+i;q)rηi,k

(qr;qr)ηi,k(q;q)rηi,k+i−k

×
∞

∑
m=0

r−1

∏
j=0

(qrηi,k+i+ j+1,qβ+rηi,k+i+ j;qr)m

(
(−1)mqr(m

2)
)1−r(

(−c)rqµi,k

)m

(qr(1+ηi,k);qr)m

r−1

∏
j=0

(qrηi,k+i−k+ j+1;qr)m

=
(−1)ηi,k+kqνi,k crηi,k(qi+1;q)rηi,k(q

β+i;q)rηi,k

(qr;qr)ηi,k(q;q)rηi,k+i−k

× 2r+1φr+1

(
qr, ∆(rηi,k + i+1,β + rηi,k + i;r,qr)

qr(1+ηi,k),∆(rηi,k + i− k+1;r,qr)

∣∣∣∣qr;(−c)rqµi,k

)
,

with

µi,k =−(1+2ηi,k)

(
r
2

)
− ir,

νi,k =−irηi,k−
(

r
2

)
(ηi,k)

2.

Hence we get

〈ui, f 〉= ciq−(
i
2)(qβ ;q)i

∞

∑
k=0

q(
k
2)

(q;q)k
ωi,k f (q−k),

with {
ωi,k = ω

(1)
i,k , if 0≤ k ≤ i−1,

ωi,k = ω
(2)
i,k , if i≤ k.

Since 0≤ i≤ 2r−2 and 0≤ s≤ r−1, then the result follows from the following three cases.

ηi,rk+s =


k, if 1− r ≤ s− i≤ 0,

k+1, if 1≤ s− i≤ r−1,

k−1, if 2(1− r)≤ s− i≤−r.

5. Link with a d-orthogonal polynomials of Meixner type

Mention that in a paper which is under review, we have considered a family of d-orthogonal poly-
nomials Mn(k;β ,c,d) generated by

∞

∑
n=0

Mn(k;β ,c,d)
zn

n!
= ezr

1F1

(
−k
β

∣∣∣∣1− c
c

z
)
, (5.1)

where rFs is the hypergeometric function defined by

rFs

(
a1, . . . ,ar

b1, . . . ,bs

∣∣∣∣z)=
∞

∑
n=0

(a1)n...(ar)n

(b1)n...(bs)nn!
zn.
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(a)n is the pochhammer symbol given by

(a)n = a(a+1) · · ·(a+n−1), (a)0 = 1.

Mn(k;β ,c,d) reduced to the Meixner polynomials Mn(k;β ,c) [10] when d = r = 1 are called
d-orthogonal polynomials of Meixner type. Moreover they are related to the polynomials
Mn(q−k;qβ−1,c,d;q) in the following manner:

Replacing z by r
1
r (1− q)

1
r z and c by c′ =

cr
1
r (1−q)−1+ 1

r

(1− c)
in (4.1), then the polynomials

Mn(q−k;qβ−1,c′,d;q) are generated by

∞

∑
n=0

r
n
r (1−q)

n
r Mn(q−k;qβ−1,c′,d;q)

zn

(q;q)n
=

1
(r(1−q)zr;qr)∞

× 1φ1

(
q−k

qβ

∣∣∣∣q;
−q(1− c)(1−q)

c
z
)
. (5.2)

On the other hand, we have

lim
q→1

(qa;q)mr+s

(1−q)mr+s = (a)mr+s , lim
q→1

(q;q)mr+s

(1−q)mr+s = (mr+ s)! (5.3)

and

lim
q→1

rφs

(
qa1 , . . . ,qar

qb1 , . . . ,qbs

∣∣∣∣q;(1−q)s+1−rz
)
= rFs

(
a1, . . . ,ar

b1, . . . ,bs

∣∣∣∣(−1)s+1−rz
)
. (5.4)

Since lim
q→1

1
(r(1−q)zr;qr)∞

= ezr
, then we get from (5.1),(5.2) and (5.4)

lim
q→1

r
n
r (1−q)n( 1

r−1)Mn(q−k;qβ−1,c′,d;q) = Mn(k;β ,c,d). (5.5)

When d = r = 1, we obtain the classical limit relation

lim
q→1

Mn(q−k;qβ−1,
c

1− c
;q) = Mn(k;β ,c).

Using the identities (4.7), (5.3), (5.4) and (5.5), therefore the hypergeometric representation of the
polynomials Mn(k;β ,c,d) are given by

Mn(k;β ,c,d) =
n!(−k) j(1− c) j

m! j!(β ) jc j r+2F2r

(
1,−m,∆(−k+ j;r)

∆( j+1;r),∆(β + j;r)

∣∣∣∣−(1− c
cr

)r)
, (5.6)

where ∆(a,r) =
(a

r
,
a+1

r
, . . . ,

a+ r−1
r

)
and n = mr+ j.

In the particular case d = r = 1 (then m = n and j = 0), we get

Mn(k;β ,c) = 3F2

(
1,−n,−k

1,β

∣∣∣∣c−1
c

)
= 2F1

(
−n,−k

β

∣∣∣∣c−1
c

)
.
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Hence we meet again the hypergeometric representation of the Meixner polynomials
Mn(k;β ,c) [10].

In order to determine the d-orthogonality relations of the polynomials Mn(x;β ,c,d), we start
from (1.1). Indeed we have

〈ui,MnMm〉= 0, if n≥ md + i+1.

Then we immediately obtain according to (4.8)

r−1

∑
s=0

∞

∑
k=0

q(
rk+s

2 )

(q;q)rk+s
ωi,rk+sMn

(
q−(rk+s))Mm

(
q−(rk+s))= 0 , (5.7)

with Mn(q−k) = Mn(q−k;qβ−1,c,d;q).
Thus, by means of (5.3),(5.4),(5.5),(5.7) and Theorem 4.1, the d-orthogonality relations satisfied

by Mn(k;β ,c,d) are expressed under the form

r−1

∑
s=0

∞

∑
k=0

θi,rk+s

(rk+ s)!
Mn(rk+ s)Mm(rk+ s) = 0, if n≥ md + i+1, (5.8)

where θi,rk+s is given by

(1) for rk+ s≤ i−1

θi,rk+s =
(−1)rk+s

(i− rk− s)! 2rFr

(
∆(i+1;r),∆(β +1;r)

∆(i− rk− s+1;r)

∣∣∣∣−( cr
1− c

)r)
,

(2) for rk+ s≥ i and 1− r ≤ s− i≤ 0

θi,rk+s =
(−1)(r+1)k+s(rk+ i)!(β + i)rkcrk

i!k!(i− s)!(1− c)rk

× 2r+1Fr+1

(
1,∆(rk+ i+1;r),∆(β + rk+ i;r)

k+1,∆(i− s+1;r)

∣∣∣∣−( cr
1− c

)r)
,

(3) for rk+ s≥ i and 1≤ s− i≤ r−1

θi,rk+s =
(−1)(r+1)k+s+1(r(k+1)+ i)!(β + i)r(k+1)cr(k+1)

i!(r+ i− s)!(1− c)r(k+1)

× 2r+1Fr+1

(
1,∆(r(k+1)+ i+1;r),∆(β + r(k+1)+ i;r))

k+2,∆(r+ i− s+1;r)

∣∣∣∣−( cr
1− c

)r)
,
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(4) for rk+ s≥ i and 2(1− r)≤ d− i≤−r

θi,rk+s =
(−1)(r+1)k+s−1(r(k−1)+ i)!(β + i)r(k−1)cr(k−1)

i!(−r+ i− s)!(1− c)r(k−1)

× 2r+1Fr+1

(
1,∆(r(k−1)+ i+1;r),∆(β + r(k−1)+ i;r))

k,∆(−r+ i− s+1;r)

∣∣∣∣−( cr
1− c

)r)
.

Example. If d = r = 1 (then i = s = 0), we get from case(2) and with the help of the binomial
theorem

θ0,k =
ck(β )k

k!(1− c)k 3F2

(
1,k+1,β + k

k+1,1

∣∣∣∣− c
1− c

)
=

ck(β )k

k!(1− c)k 1F0

(
β + k
−

∣∣∣∣− c
1− c

)
=

(1− c)β ck(β )k

k!
.

Then we obtain according to (5.8)

∞

∑
k=0

ck(β )k

k!
Mn(k;β ,c)Mm(k;β ,c) = 0, if n 6= m.

Hence we recognise the orthogonality of the Meixner polynomials Mn(k;β ,c) [10].

Remark 5.1. For n = md + i, I don’t succeed to determine the d-orthogonality relations satisfied
by the polynomials Mn(k;β ,c) and I will try to solve this problem in a future work.

6. Concluding remarks

In this paper, we have considered a suitable operator defined in the q-deformed algebra suq(1,1)
and showed that the associated matrix elements can be expressed in terms of new d-orthogonal
polynomials that generalize the q-Meixner polynomials. Furthermore, it was shown that the basic
properties of the polynomials were derived from an algebraic approach.
In the limit q ↑ 1 where suq(1,1) contracts to su(1,1), the polynomials tend to some d-orthogonal
polynomials of Meixner type; this has been the subject of another work.
Note that in [11] another sequence of d-orthogonal polynomials generalizing the q-Meixner poly-
nomials was introduced in the context of solving a d-Geronimus problem type.
In a subsequent paper, we will try to investigate under which operator we obtain matrix elements
expressible in terms of d-orthogonal polynomials.
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