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Novel classes of dynamical systems are introduced, including many-body problems characterized by nonlinear

equations of motion of Newtonian type (“acceleration equals forces”) which determine the motion of points in

the complex plane. These models are solvable, namely their configuration at any time can be obtained from the

initial data by algebraic operations, amounting to the determination of the zeros of a known time-dependent

polynomial in the independent variable z. Some of these models are multiply periodic, isochronous or asymp-
totically isochronous; others display scattering phenomena.
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1. Introduction

Notation 1.1. Unless otherwise indicated, hereafter N is an arbitrary positive integer, N ≥ 2, indices

such as n, m, �, ... run over the integers from 1 to N, and superimposed arrows denote N-vectors:

for instance the vector �c has the N components cm. We use instead a superimposed tilde to denote

an unordered set of N numbers: for instance the notation z̃ denotes the unordered set of N numbers

zn, say, the N zeros of a polynomial of degree N in z. Upper-case boldface letters denote N ×N
matrices: for instance the matrix M features the N2 elements Mnm. The numbers we use are gener-

ally assumed to be complex; except for those restricted to be positive integers (see above), which

generally play the role of indices; and except for the “time” variable, see below. The imaginary
unit is hereafter denoted as i, implying of course i2 = −1. For quantities depending on the real
independent variable t (“time”), superimposed dots indicate differentiation with respect to it: so, for

instance, żn (t) ≡ dzn (t)/dt, z̈n ≡ d2zn/dt2; but often the t-dependence is not explicitly indicated,

whenever this is unlikely to cause any misunderstanding (as, for instance, in the second formula we

just wrote and below in (1.3)). The Kronecker symbol δnm has the usual meaning: δnm = 1 if n = m,

δnm = 0 if n �= m; and we denote below as I the unit N×N matrix the elements of which are δnm. We

adopt throughout the usual convention according to which a void sum vanishes and a void product
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equals unity: ∑K
j=J f j = 0, ∏K

j=J f j = 1 if J > K. Moreover we introduce the following convenient

notations:

σm (�z) = ∑
1≤s1<s2<...<sm≤N

(zs1
zs2

· · ·zsm) , (1.1a)

σn,m (�z) = δ1m + ∑
1≤s1<s2<...<sm−1≤N ; s j �=n, j=1,...m−1

(
zs1

zs2
· · ·zsm−1

)
, (1.1b)

σn1n2,m (�z) = δ2m + ∑
1≤s1<s2<...<sm−2≤N ;

s j �=n1, s j �=n2, j=1,...m−2

(
zs1

zs2
· · ·zsm−2

)
, (1.1c)

σn1n2n3,m (�z) = δ3m + ∑
1≤s1<s2<...<sm−3≤N ;

s j �=n1, s j �=n2, s j �=n3, j=1,...m−3

(
zs1

zs2
· · ·zsm−3

)
, (1.1d)

where of course the symbol ∑1≤s1<s2<...<sm≤N denotes the sum from 1 to N over the m
integer indices s1,s2, . . . ,sm with the restriction that s1 < s2 < .. . < sm, while the sym-

bol ∑1≤s1<s2<...<sm−1≤N ; s j �=n, j=1,...m−1 denotes the sum from 1 to N over the m − 1 indices

s1,s2, . . . ,sm−1 with the restriction s1 < s2 < .. . < sm−1 and moreover the requirement that all these
indices be different from n; and likewise for the symbols ∑1≤s1<s2<...<sm−2≤N ; s j �=n1, s j �=n2, j=1,...m−2

and ∑1≤s1<s2<...<sm−3≤N ; s j �=n1, s j �=n2, s j �=n3, j=1,...m−3. Note that—according to the convention (see

above) that a sum over an empty set of indices equals zero—these definitions imply σn,1(�z) = 1,

σn1n2,1 (�z) = 0 and σn1n2,2 (�z) = 1, and σn1n2n3,m (�z) = 0 for m ≤ 2 while σn1n2n3,3 (�z) = 1. Finally,

the prime appended to a sum (see for instance below (1.3) and also note the simplification it would

imply for (1.1b)) indicates that the sum runs—over the indicated indices, in the identified range—

with the additional restrictions that these indices be all different among themselves and moreover

all different from the “outside” index (which is for instance n in (1.3)); note that this sum becomes

void hence vanishes identically if N is small enough, so for instance the last sum in the left-hand

side of (1.3d) vanishes for N ≤ 3, and more generally the “primed” sum from 1 to N over k indices

�1, �2,..., �k vanishes identically if N ≤ k. �

Remark 1.1. Note that the notation σm (z̃) (instead of σm (�z)) is equally meaningful, since this quan-

tity, see (1.1a), only depends on symmetrical sums of the N components zm of the N-vector�z, hence

it is independent of the ordering of the N elements zn of the unordered set z̃. The notations σn,m (z̃),
σn1n2,m (z̃), σn1n2n3,m (z̃) , see (1.1), are instead ill-defined and cannot therefore be used; except in

the context of expressions which remain valid for any ordering of the N numbers zn, i. e., for any

assignments of the N different integer labels n (in the range 1 ≤ n ≤ N) to the N elements of the

unordered set z̃; provided of course that assignment is maintained throughout that expression (in

which case the relevant expression amounts in fact to N! different formulas; assuming, as we gener-

ally do, that the N numbers zn are all different among themselves). This remark is of course equally

valid for any function f (z̃). �
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The main protagonists of this paper are formulas relating the time-evolution of the N zeros zn (t)
of a time-dependent monic polynomial of degree N in the independent variable z,

pN (z; �c(t) , z̃(t)) =
N

∏
n=1

[z− zn (t)] , (1.2a)

to the time-evolution of its N coefficients cm (t) ,

pN (z; �c(t) , z̃(t)) = zN +
N

∑
m=1

[
cm (t) zN−m] . (1.2b)

The first two of these formulas read as follows [1]:

żn =−
[

N

∏
�=1, � �=n

(zn − z�)
−1

]
N

∑
m=1

[
ċm (zn)

N−m
]
, (1.3a)

z̈n −
N

∑
�=1

′
(

2 żn ż�
zn − z�

)
=−

[
N

∏
�=1, � �=n

(zn − z�)
−1

]
N

∑
m=1

[
c̈m (zn)

N−m
]
. (1.3b)

In the present paper we report two additional formulas of this kind:

...z n −3
N

∑
�=1

′
(

z̈n ż�+ z̈� żn

zn − z�

)
+3

N

∑
�1,�2=1

′
[

żn ż�1
ż�2

(zn − z�1
) (zn − z�2

)

]

= −
[

N

∏
�=1, � �=n

(zn − z�)
−1

]
N

∑
m=1

[
...c m (zn)

N−m
]
, (1.3c)

....z n −
N

∑
�=1

′
(

4
...z n ż�+4

...z � żn +6 z̈n z̈�
zn − z�

)

+6
N

∑
�1,�2=1

′
[

z̈n ż�1
ż�2

+2 z̈�1
ż�2

żn

(zn − z�1
) (zn − z�2

)

]

−4
N

∑
�1,�2, �3=1

′
[

żn ż�1
ż�2

ż�3

(zn − z�1
) (zn − z�2

) (zn − z�3
)

]

= −
[

N

∏
�=1, � �=n

(zn − z�)
−1

]
N

∑
m=1

[
....c m (zn)

N−m
]
. (1.3d)

A terse outline of the proof of these identities is reported in Appendix A.

The first two of the formulas (1.3) have recently allowed the identification of (endless sequences

of) new solvable many-body problems characterized by nonlinear equations of motion of Newtonian

type (“acceleration equals forces”) determining the motion of N points in the complex z-plane [1–4].

In the present paper we show how the last two of the formulas (1.3) allow the identification of

additional endless sequences of new solvable dynamical systems determining the motion of points

in the complex z-plane—also including many-body problems characterized by nonlinear equations

of motion of Newtonian type (“acceleration equals forces”).
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Note that the notation (1.2), which we employ for polynomials, is somewhat redundant, since

they are equally well defined by the (time-dependent) N-vector �c(t) the N components of which

are the N coefficients cm (t) of the polynomial (see (1.2b)), as by the (time-dependent) unordered

set z̃(t) the N elements of which are the N zeros zn (t) of the polynomial (see (1.2a)). Indeed the N
coefficients cm (t) can be explicitly expressed in terms of the N zeros zn (t) as follows:

cm = (−1)m σm (�z)≡ (−1)m σm (z̃) (1.4)

(see Notation 1.1 and Remark 1.1). While the N zeros zn (t) are likewise uniquely determined (up

to permutations) by the N coefficients cm (t), but of course explicit expressions to this effect are

generally available only for N ≤ 4.

There holds moreover the following identity:

(zn)
N +

N

∑
m=1

[
cm (zn)

N−m
]
= 0 , (1.5a)

which is an obvious consequence of (1.2), and via (1.4) it implies

(zn)
N +

N

∑
m=1

[
(−1)m σm (z̃) (zn)

N−m
]
= 0 . (1.5b)

Note that, while the formula (1.5a) is an identity valid for the N coefficients cm and the N zeros zn

of any polynomial, see (1.2), the identity (1.5b) is clearly valid for any arbitrary assignment of the

N elements zn of the unordered set z̃.

Likewise, there holds the following formula that is also clearly valid for any assignment of the

N elements zn of the unordered set z̃ (see Notation 1.1 and Remark 1.1):

−
[

N

∏
�=1, � �=n

(zn − z�)
−1

]
N

∑
j=1

[
(−1) j (zn)

N− j σm, j (z̃)
]
= δnm ; (1.6a)

and note that this formula can also be rewritten in the following (N ×N)-matrix version:

[R(z̃)]nm ≡ Rnm (z̃) =−
[

N

∏
�=1, � �=n

(zn − z�)
−1

]
(zn)

N−m , (1.6b)

[
R−1 (z̃)

]
nm ≡ [

R−1 (z̃)
]

nm = (−1)n σn,m (z̃) , (1.6c)

implying of course (see Notation 1.1 and Remark 1.1)

R(z̃) R−1 (z̃) = R−1 (z̃) R(z̃) = I . (1.6d)

Finally let us report 3 additional identities which are obvious consequences of the definitions

(1.4) and (1.1) (see Notation 1.1 and Remark 1.1):

ċm = (−1)m σ̇m (�z)≡ (−1)m
N

∑
n=1

[σn,m (z̃) żn] , (1.7a)

c̈m = (−1)m σ̈m (�z)

≡ (−1)m

{
N

∑
n=1

[σn,m (z̃) z̈n]+
N

∑
n1,n2=1,n1 �=n2

[σn1n2,m (z̃) żn1
żn2

]

}
, (1.7b)
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...c m = (−1)m ...σ m (�z)≡ (−1)m

{
N

∑
n=1

[σn,m (z̃)
...z n]

+3
N

∑
n1,n2=1,n1 �=n2

[σn1n2,m (z̃) z̈n1
żn2

]

+
N

∑
n1,n2,n3=1,n1 �=n2 �=n3

[σn1n2n3,m (z̃) żn1
żn2

żn3
]

}
, (1.7c)

with the indices n1,n2,n3 in the last sum all different among themselves.

In Section 3 it is indicated how these polynomial properties are instrumental to identify end-

less classes of solvable dynamical systems including many-body problems of Newtonian type, one

of which is immediately reported in the following Section 2, while some of its solutions are dis-

played in Appendix B. The paper is then concluded by a section entitled “Outlook”, where further

investigations are tersely outlined.

2. Display and discussion of a novel solvable many-body problem

In this section we provide and discuss an instance of the novel solvable many-body problems of

Newtonian type identified in this paper. Its equations of motion, characterizing the time-evolution

of the 2N complex dependent variables zn ≡ zn (t) and wn ≡ wn (t) , read as follows:

z̈n = wn , (2.8a)

ẅn =
N

∑
�=1

′
(

4 ẇn ż�+4 ẇ� żn +6 wn w�

zn − z�

)

−6
N

∑
�1,�2=1

′
[

wn ż�1
ż�2

+2 w�1
żn ż�2

(zn − z�1
) (zn − z�2

)

]

+4
N

∑
�1,�2, �3=1

′
[

żn ż�1
ż�2

ż�3

(zn − z�1
) (zn − z�2

) (zn − z�3
)

]
−
[

N

∏
�=1, � �=n

(zn − z�)
−1

]
·

·
N

∑
m=1

[
(αm

...c m +βm c̈m + γm ċm +δm cm) (zn)
N−m

]
, (2.8b)

with cm, ċm expressed in terms of zn and żn by (1.7a) and (1.4) and c̈m,
...c m expressed in terms of

the dependent variables zn, wn and their time derivatives żn, ẇn as follows (see Notation 1.1 and

Remark 1.1),

c̈m = (−1)m

{
N

∑
n=1

[σn,m (z̃) wn]+
N

∑
n1,n2=1

′ [σn1n2,m (z̃) żn1
żn2

]

}
, (2.8c)

...c m = (−1)m

{
N

∑
n=1

[σn,m (z̃) ẇn]+3
N

∑
n1,n2=1

′ [σn1n2,m (z̃) wn1
żn2

]

+
N

∑
n1,n2,n3=1

′ [σn1n2n3,m (z̃) żn1
żn2

żn3
]

}
. (2.8d)
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In (2.8b) the parameters αm, βm, γm, δm are 4N arbitrary complex numbers, which may be conve-

niently related to the 8N real parameters a(1)m , a(2)m , a(3)m , a(4)m , ω(1)
m , ω(2)

m , ω(3)
m , ω(4)

m (for their role see

below eq. (2.10), (3.2) and (3.3b)) by the following formulas

αm =−a(1)m −a(2)m −a(3)m −a(4)m + i
[
ω(1)

m +ω(2)
m +ω(3)

m +ω(4)
m

]
, (2.9a)

βm =−a(1)m a(2)m −a(1)m a(3)m −a(2)m a(3)m −a(1)m a(4)m −a(2)m a(4)m −a(3)m a(4)m

+ω(1)
m ω(2)

m +ω(1)
m ω(3)

m +ω(2)
m ω(3)

m +ω(1)
m ω(4)

m +ω(2)
m ω(4)

m + ω(3)
m ω(4)

m

+i
[
a(2)m ω(1)

m +a(3)m ω(1)
m +a(4)m ω(1)

m +a(1)m ω(2)
m +a(3)m ω(2)

m +a(4)m ω(2)
m

+a(1)m ω(3)
m +a(2)m ω(3)

m +a(4)m ω(3)
m +a(1)m ω(4)

m +a(2)m ω(4)
m +a(3)m ω(4)

m

]
, (2.9b)

γm =−a(1)m a(2)m a(3)m −a(1)m a(2)m a(4)m −a(1)m a(3)m a(4)m −a(2)m a(3)m a(4)m

+a(1)m ω(2)
m ω(3)

m +a(1)m ω(2)
m ω(4)

m +a(1)m ω(3)
m ω(4)

m +a(2)m ω(1)
m ω(3)

m

+a(2)m ω(1)
m ω(4)

m +a(2)m ω(3)
m ω(4)

m +a(3)m ω(1)
m ω(2)

m +a(3)m ω(1)
m ω(4)

m

+a(3)m ω(2)
m ω(4)

m +a(4)m ω(1)
m ω(2)

m +a(4)m ω(1)
m ω(3)

m +a(4)m ω(2)
m ω(3)

m

+i
[
a(2)m a(3)m ω(1)

m +a(2)m a(4)m ω(1)
m +a(3)m a(4)m ω(1)

m +a(1)m a(3)m ω(2)
m

+a(1)m a(4)m ω(2)
m +a(3)m a(4)m ω(2)

m +a(1)m a(2)m ω(3)
m +a(1)m a(4)m ω(3)

m

+a(2)m a(4)m ω(3)
m +a(1)m a(2)m ω(4)

m +a(1)m a(3)m ω(4)
m +a(2)m a(3)m ω(4)

m

−ω(1)
m ω(2)

m ω(3)
m −ω(1)

m ω(2)
m ω(4)

m −ω(1)
m ω(3)

m ω(4)
m −ω(2)

m ω(3)
m ω(4)

m

]
, (2.9c)

δm =−a(1)m a(2)m a(3)m a(4)m +a(3)m a(4)m ω(1)
m ω(2)

m +a(2)m a(4)m ω(1)
m ω(3)

m +a(2)m a(3)m ω(1)
m ω(4)

m

+a(1)m a(4)m ω(2)
m ω(3)

m +a(1)m a(3)m ω(2)
m ω(4)

m +a(1)m a(2)m ω(3)
m ω(4)

m −ω(1)
m ω(2)

m ω(3)
m ω(4)

m

+i
[
a(2)m a(3)m a(4)m ω(1)

m +a(1)m a(3)m a(4)m ω(2)
m +a(1)m a(2)m a(4)m ω(3)

m

+a(1)m a(2)m a(3)m ω(4)
m −a(4)m ω(1)

m ω(2)
m ω(3)

m −a(3)m ω(1)
m ω(2)

m ω(4)
m

−a(2)m ω(1)
m ω(3)

m ω(4)
m −a(1)m ω(2)

m ω(3)
m ω(4)

m

]
. (2.9d)

As explained in the following Section 3, it is also possible to invert these equations, i. e. to write

formulas expressing the 8N real parameters a(1)m , a(2)m , a(3)m , a(4)m , ω(1)
m , ω(2)

m , ω(3)
m , ω(4)

m in terms

of the 4N complex parameters αm, βm, γm, δm, but in view of the complicated nature of these

expressions—essentially based on the solution of algebraic equations of fourth degree—this does

not seem useful (see below Remark 3.2).

As shown in the following Section 3, the general solution of this (2N)-body problem is provided

by the following prescription: the values of the coordinates wn (t) are of course provided by (2.8a),

while the values of the N coordinates zn (t) are the N zeros of the monic polynomial (1.2b) where

the N coefficients cm (t)—being the solutions of the solvable dynamical system (3.1)—are provided
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by the following formulas:

cm (t) =
4

∑
k=1

{
b(k)m exp

[(
−a(k)m + i ω(k)

m

)
t
]}

. (2.10)

Here the coefficients b(k)m are 4N a priori arbitrary complex parameters. And the solution of the initial
value problem for this (2N)-body problem, (2.8), is obtained by determining the 4N coefficients b(k)m

as solutions, for every value of the parameter m, of the system of 4 linear algebraic equations

4

∑
k=1

[
b(k)m

(
−a(k)m + i ω(k)

m

)s]
=

dscm (t)
dts

∣∣∣∣
t=0

, s = 0,1,2,3 , (2.11)

with, in the right-hand side, cm (0), ċm (0) expressed in terms of the initial data zn (0), żn (0) by

(1.4) and (1.7a) (at t = 0), and c̈m (0) ,
...c m (0) expressed in terms of the initial data zn (0), żn (0) and

wn (0), ẇn (0) by (2.8c) and (2.8d) (at t = 0).

Remark 2.1. Above and hereafter we assume for simplicity that the 4N complex numbers λm,k =

−a(k)m + i ω(k)
m (see (2.10)) are all different among themselves; otherwise some appropriate limit

should be taken in (2.10) and some of the statements made in the following Remark 2.2 would

require additional restrictions. �

Remark 2.2. The following properties of various subcases of the many-body problem characterized

by the Newtonian equations of motion (2.8) are obviously implied by its general solution, as detailed

above.

(i) If the 4N real parameters a(k)m are all nonnegative, a(k)m ≥ 0, then all solutions of this many-

body problem are, for all future time, confined to a finite region—the dimensions of which depend

on the initial data—of the complex z and w planes; and in particular if the 4N real parameters a(k)m

are all positive, a(k)m > 0, all solutions of this many-body problem converge to the origin,

lim
t→∞

[zn (t)] = 0 , lim
t→∞

[wn (t)] = 0 ; (2.12)

while if only some of the 4N real parameters a(k)m are positive and all others vanish, then this many-

body problem is asymptotically multiply periodic; and if in addition the real parameters ω(k)
m , such

that the corresponding parameter a(k)m vanishes, are all integer multiples of a common (nonvanishing)

real factor ω �= 0, i. e. if for some values of the indices m and k the parameters a(k)m are positive,

a(k)m > 0, while for all other values of the indices m and k

a(k)m = 0 , ω(k)
m = pmk ω (2.13)

with these parameters pmk being all integers (positive, negative or vanishing, but all different among

themselves), then this many-body system is asymptotically isochronous. [5]

(ii) If the 4N real parameters a(k)m all vanish, a(k)m = 0, and the 4N real parameters ω(k)
m are all

integer multiples of a common (nonvanishing) real factor ω �= 0, ω(k)
m = pmk ω with the 4N parame-

ters pmk all integers (positive, negative or vanishing, and of course all different among themselves),

then this many-body system is isochronous [6].

(iii) If some or even all of the 4N real parameters a(k)m are negative, then the solutions of this

many-body problem need not be confined to a bounded region of the complex plane, indeed they
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generally describe scattering phenomena: for a detailed analysis of such behaviors see Appendix G

(“Asymptotic behavior of the zeros of a polynomial whose coefficients diverge exponentially”) of

the book [7]. �

Example 1. If N = 2, system (2.8) reduces to

z̈1 = w1, z̈2 = w2,

ẅ1 = G(�z,�̇z,�w, �̇w)+
1

z1 − z2

[
z1F1(�z,�̇z,�w, �̇w)−F2(�z,�̇z,�w, �̇w)

]
,

ẅ2 =−G(�z,�̇z,�w, �̇w)+
1

z1 − z2

[−z2F1(�z,�̇z,�w, �̇w)+F2(�z,�̇z,�w, �̇w)
]
, (2.14a)

where

G(�z,�̇z,�w, �̇w) =
4ẇ1ż2 +4ẇ2ż1 +6w1w2

z1 − z2
, (2.14b)

F1(�z,�̇z,�w, �̇w) = α1(ẇ1 + ẇ2)+β1(w1 +w2)

+γ1(ż1 + ż2)+δ1(z1 + z2), (2.14c)

F2(�z,�̇z,�w, �̇w) = α2(ẇ1z2 +3w1ż2 +3ż1w2 + z1ẇ2)

+β2(w1z2 +2ż1ż2 + z1w2)+ γ2(ż1z2 + z1ż2)+δ2z1z2. (2.14d)

In Appendix B we provide plots of the solutions of this system (2.14) with the following values

of the parameters αm,βm,γm,δm, m = 1,2,

αm = 5i,βm = 5,γm = 5i,δm = 6, for m = 1,2, (2.15a)

and the initial conditions

z1(0) = 1+ i, ż1(0) = 1,z2(0) = 5+ i, ż2(0) = 1,

w1(0) = 1, ẇ1(0) = i,w2(0) =−i, ẇ2(0) = 1. (2.15b)

For system (2.14), (2.15a), each characteristic equation (3.2) has the four roots −i, i,2i,3i. There-

fore, by (ii) of Remark 2.2, system (2.14), (2.15a) is isochronous, see Figures 3, 4, 5, 6, 7, 8, 9, 10

in Appendix B.

Next,we provide plots of the solutions of system (2.14) with the following values of the param-

eters αm,βm,γm,δm, m = 1,2,

αm =−3,βm =−3,γm =−3,δm =−2,m = 1,2, (2.16a)

and the initial conditions

z1(0) =−2− i, ż1(0) = 1,z2(0) = 2+ i, ż2(0) = 1,

w1(0) = 1, ẇ1(0) = i,w2(0) =−i, ẇ2(0) = 1. (2.16b)

For the initial value problem (2.14), (2.16a), each characteristic equation (3.2) has the four roots

−i, i,−1,−2. Therefore, by (i) of Remark 2.2, system (2.14), (2.16a) is asymptotically isochronous,

see Figures 11, 12, 13, 14, 15, 16, 17, 18 in Appendix B.
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Next,we provide plots of the solutions of system (2.14) with the following values of the param-

eters αm,βm,γm,δm, m = 1,2,

αm =−3+(π −1)i,βm =−(π +2)+3(π −1)i,
γm =−3π +2(π −1)i,δm =−2π,m = 1,2, (2.17a)

and the initial conditions

z1(0) =−2− i, ż1(0) = 1,z2(0) = 2+ i, ż2(0) =−1,

w1(0) = i, ẇ1(0) = 1,w2(0) =−i, ẇ2(0) =−1. (2.17b)

For system (2.14), (2.17a), each characteristic equation (3.2) has the four roots −i,πi,−1,−2.

Therefore, by (i) of Remark 2.2, system (2.14), (2.17a) is asymptotically multiply periodic, see

Figures 19, 20, 21, 22, 23, 24, 25, 26 in Appendix B.

Next,we provide plots of the solutions of system (2.14) with the following values of the param-

eters αm,βm,γm,δm, m = 1,2,

α1 = 0.222+1.4i,β1 = 0.41208−0.2208i,
γ1 =−0.038436−0.018968i,δ1 = 0.000866464+0.0010224i,

α2 = 0.172+1.1i,β2 = 0.06952−0.1512i,
γ2 =−0.006696+0.026376i,δ2 = 0.000104896−0.00047584i, (2.18a)

and the initial conditions

z1(0) =−2+3i, ż1(0) = 7,z2(0) = 3+2i, ż2(0) =−5,

w1(0) = 2+4.2i, ẇ1(0) = 4.5,w2(0) = 3.1i, ẇ2(0) = 2.4. (2.18b)

For system (2.14), (2.18a), the characteristic equation (3.2) for m = 1 has the four roots

0.04,0.062+ i,0.08+ 0.3i,0.04+ 0.1i and the characteristic equation (3.2) for m = 2 has the four

roots 0.02,0.032+ i,0.06−0.1i,0.06+0.2i. In agreement with (iii) of Remark 2.2, the components

z1 and w1 of the solution of system (2.14), (2.18a) exhibit scattering phenomena, see Figures 27, 28,

29, 30, 31, 32, 33, 34 in Appendix B. From these figures, it is clear that z1(t) diverges exponentially

as t → ∞ (and of course w1(t) features the same behavior), while z2(t) and w2(t) converge to zero as

t → ∞, which is consistent with the behavior of the zeros of polynomials whose coefficients depend

on t exponentially, as reported in Appendix G of [7].
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Example 2. If N = 3, system (2.8) reduces to

z̈1 = w1, z̈2 = w2, z̈3 = w3,

ẅ1 =
4ẇ1ż2 +4ẇ2ż1 +6w1w2

z1 − z2
+

4ẇ1ż3 +4ẇ3ż1 +6w1w3

z1 − z3

− 1

(z1 − z2)(z1 − z3)

{
12 [w1ż2ż3 + ż1(w2ż3 +w3ż2)]+ z2

1K1(�z,�̇z,�w, �̇w)

+z1K2(�z,�̇z,�w, �̇w)+K3(�z,�̇z,�w, �̇w)

}
,

ẅ2 =
4ẇ2ż1 +4ẇ1ż2 +6w1w2

z2 − z1
+

4ẇ2ż3 +4ẇ3ż2 +6w2w3

z2 − z3

− 1

(z2 − z1)(z2 − z3)

{
12 [w2ż1ż3 + ż2(w1ż3 +w3ż1)]+ z2

2K1(�z,�̇z,�w, �̇w)

+z2K2(�z,�̇z,�w, �̇w)+K3(�z,�̇z,�w, �̇w)

}
,

ẅ3 =
4ẇ3ż1 +4ẇ1ż3 +6w1w3

z3 − z1
+

4ẇ3ż2 +4ẇ2ż3 +6w2w3

z3 − z2

− 1

(z3 − z1)(z3 − z2)

{
12 [w3ż1ż2 + ż3(w1ż2 +w2ż1)]+ z2

3K1(�z,�̇z,�w, �̇w)

+z3K2(�z,�̇z,�w, �̇w)+K3(�z,�̇z,�w, �̇w)

}
,

(2.19a)

where

K1(�z,�̇z,�w, �̇w) =−
[
α1(ẇ1 + ẇ2 + ẇ3)+β1(w1 +w2 +w3)

+γ1(ż1 + ż2 + ż3)+δ1(z1 + z2 + z3)
]
, (2.19b)

K2(�z,�̇z,�w, �̇w) = α2

[
ẇ1(z2 + z3)+ ẇ2(z1 + z3)+ ẇ3(z1 + z2)+2w1(ż2 + ż3)

+2w2(ż1 + ż3)+2w3(ż1 + ż2)+ ż1(w2 +w3)+ ż2(w1 +w3)+ ż3(w1 +w2)
]

+β2

[
w1(z2 + z3)+w2(z1 + z3)+w3(z1 + z2)+ ż1(ż2 + ż3)+ ż2(ż1 + ż3)

+ż3(ż1 + ż2)
]
+ γ2

[
ż1(z2 + z3)+ ż2(z1 + z3)+ ż3(z1 + z2)

]
+δ2(z1z2 + z1z3 + z2z3), (2.19c)
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K3(�z,�̇z,�w, �̇w) =−
{

α3

[
ẇ1z2z3 + ẇ2z1z3 + ẇ3z1z2 +2w1(ż2z3 + z2ż3)

+2w2(ż1z3 + z1ż3)+2w3(ż1z2 + z1ż2)+ ż1(w2z3 +2ż2ż3 + z2w3)

+ż2(w1z3 +2ż1ż3 + z1w3)+ ż3(w1z2 +2ż1ż2 + z1w2)
]

+β3

[
w1z2z3 +w2z1z3 +w3z1z2 + ż1(ż2z3 + z2ż3)+ ż2(ż1z3 + z1ż3)

+ż3(ż1z2 + z1ż2)
]
+ γ3

[
ż1z2z3 + z1ż2z3 + z1z2ż3

]
+δ3z1z2z3

}
. (2.19d)

In Appendix B we provide plots of the solutions of system (2.19) with the following values of

the parameters αm,βm,γm,δm, m = 1,2,3,

α1 = 5i,β1 = 5,γ1 = 5i,δ1 = 6,

α2 = 4i,β2 =−1,γ2 = 16i,δ2 = 12,

α3 = 0,β3 =−5,γ3 = 0,δ3 =−4,

(2.20a)

and the initial conditions

z1(0) =−1.45+1.1i, ż1(0) = 0.9,

z2(0) = 5.1+0.8i, ż2(0) = 1.2,

z3(0) = 2.5−0.2i, ż3(0) =−1.04,

w1(0) = 1.23, ẇ1(0) = 0.84i,
w2(0) =−2.26i, ẇ2(0) = 2.16,

w3(0) = 1.32i, ẇ3(0) =−1.12. (2.20b)

For system (2.19), (2.20a), the characteristic equation (3.2) for m = 1 has the four roots −i, i,2i,3i,
the characteristic equation (3.2) for m = 2 has the four roots −2i, i,2i,3i and the characteristic equa-

tion (3.2) for m= 3 has the four roots −2i,−i, i,2i,. Therefore, by (ii) of Remark 2.2, system (2.19),

(2.20a) is isochronous, see Figures 35, 36, 37, 38, 39, 40, 41, 42, 43, 44 in Appendix B.

3. New solvable dynamical systems and their solutions

In this section we indicate how to identify new solvable dynamical systems describing the motion in

the complex z-plane of point-particles interacting among themselves with certain forces depending

on their positions and velocities. Let us reiterate that a many-body model is considered solvable
if the configuration of the system at any arbitrary time t can be obtained—from any given initial
data: the initial positions and velocities of the N particles in the complex z-plane—by algebraic
operations, such as finding the zeros of an explicitly known time-dependent polynomial.

Remark 3.1. Note however that knowledge of the configuration of the many-body system at time

t, with the (generally complex) values of its coordinates given as the unordered set of the zeros

of a known polynomial, does not allow to identify the specific coordinate that has evolved over
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time from the assignment of its specific initial position and velocity; this additional information can

only be gained by following over time the evolution of the system, either by integrating numeri-

cally the equations of motion, or by identifying the configurations of the system at a sequence of

time intervals sufficiently close to each other so as to guarantee the identification by contiguity of

the trajectory of each particle (or at least of the specific particle under consideration). But these

additional operations need not be performed with great accuracy, even when one wishes the final

configuration—including the identity of each particle—to be known with much greater accuracy.

Likewise—in the case of systems which have been identified as isochronous because their solu-

tion is provided by the zeros of a time-dependent polynomial which is itself periodic in time with

period, say, T —an analogous procedure must be followed to ascertain whether the period of the

time evolution of a specific particle is T , or pT (with p a positive integer), due to the possibility of

a T -periodic exchange of the correspondence between the zeros of the polynomial and the particle

identities (for a general discussion of this possibility in a specific context see [8]). �

The key formulas for the following developments are the identities (1.3), relating the time evo-

lution of the zeros zn (t) of a time-dependent (monic) polynomial to that of the coefficients cm (t)
of the same polynomial, as well as the relations (1.4) respectively (1.7) expressing the coefficients

cm (t) of a monic polynomial respectively their time derivatives in terms of the zeros of the same

polynomial and their time derivatives.

In this paper we restrict for simplicity attention to the case of a linear decoupled evolution of the

coefficients cm (t), namely we assume that these N coefficients of the time-dependent polynomial

(1.2) evolve in time according to the following system of ODEs,

....c m = αm
...c m +βm c̈m + γm ċm +δm , (3.1)

where the parameters αm, βm, γm, δm are 4N generic complex numbers such that for each m, the

characteristic equation

(λm)
4 = αm (λm)

3 +βm (λm)
2 + γm λm +δm , (3.2)

has four distinct roots λm,k,k = 1,2,3,4 (see below). It is then plain that the general solution of this

system reads as follows :

cm (t) =
4

∑
k=1

[
b(k)m exp(λm,k t)

]
. (3.3a)

The 4N numbers λm,k, labeled by the 4 values of the index k, are denoted as follows:

λm,k =−a(k)m + i ω(k)
m , k = 1,2,3,4 , (3.3b)

introducing thereby the 8N real parameters a(1)m , a(2)m , a(3)m , a(4)m , ω(1)
m , ω(2)

m , ω(3)
m , ω(4)

m , implying that

the general solution (3.3a) can be equivalently written as (2.10).

Remark 3.2. The fourth-degree algebraic equations (3.2) could be explicitly solved, but the formulas

expressing, for every value of the index m, the 4 exponents λm,k in terms of the 4 parameters αm, βm,

γm, δm are too complicated to be of much use. The converse formulas, expressing, for every value

of the index m, the 4 parameters αm, βm, γm, δm in terms of the 4 exponents λm,k, or rather their real

and imaginary parts, see (3.3b), are instead rather neat, see (2.9). �
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As for the 4N numbers b(k)m in (3.3a), they are a priori arbitrary; but can of course be determined

in terms of the initial data (thereby solving the initial value problem of the dynamical system (3.1))

by solving, for each of the N values of the index m, the following system of 4 linear algebraic
equations,

4

∑
k=1

[
b(k)m (λm,k)

s
]
=

dscm (t)
dts

∣∣∣∣
t=0

, s = 0,1,2,3 . (3.3c)

Remark 3.3. It is plain that one could have considered, instead of the system of N linear decoupled
ODEs (3.1), the more general system of N linear coupled ODEs

....c m =
N

∑
n=1

(Amn
...c n +Bmn c̈n +Cmn ċn +Dmn cn) , (3.4)

which is of course also solvable by algebraic operations, while featuring more arbitrary constants

(4N2 instead than 4N). �

The solvable character of the dynamical system characterized by the following N coupled non-
linear ODEs to be satisfied by the N dependent variables zn ≡ zn (t) is then clearly implied by the

formula (1.3d):

....z n =
N

∑
�=1

′
(

4
...z n ż�+4

...z � żn +6 z̈n z̈�
zn − z�

)

−6
N

∑
�1,�2=1

′
[

z̈n ż�1
ż�2

+2 z̈�1
żn ż�2

(zn − z�1
) (zn − z�2

)

]

+4
N

∑
�1,�2, �3=1

′
[

żn ż�1
ż�2

ż�3

(zn − z�1
) (zn − z�2

) (zn − z�3
)

]
−
[

N

∏
�=1, � �=n

(zn − z�)
−1

]
·

·
N

∑
m=1

[
(αm

...c m +βm c̈m + γm ċm +δm cm) (zn)
N−m

]
. (3.5)

In the last term the 4 quantities
...c m, c̈m, ċm and cm must of course be expressed in terms of the depen-

dent variables zn and their time-derivatives by the formulas (1.7) and (1.4) (of course with (1.1)).

Indeed the solution of this dynamical system—(3.5) with (1.7) and (1.4)—is clearly provided by

the N zeros of the monic polynomial (1.2b) where the coefficients cm (t) are given by the formulas

(2.10)—with the coefficients b(k)m appearing there expressed, as indicated above before eq. (3.3c), in

terms of the initial data cm (0) , ċm (0) , c̈m (0) ,
...c m (0) , themselves expressed in terms of the initial

data zn (0) , żn (0) , z̈n (0) ,
...z n (0) via the formulas (1.4) and (1.7) at t = 0.

Remark 3.4. If in the (last term in the) right-hand side of (3.5) any one of the parameters

αm, βm, γm, δm is independent of the index m, say βm = β , then the corresponding term can be
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replaced by a simpler expression via the appropriate identity (1.3), implying, say,[
N

∏
�=1, � �=n

(zn − z�)
−1

]
N

∑
m=1

[
β c̈m (zn)

N−m
]
= β

[
z̈n −

N

∑
�=1

′
(

2 żn ż�
zn − z�

)]
, (3.6)

see (1.3b). �

4. Outlook

The findings reported in this paper suggest further developments, which ourselves or others might

pursue and report in future publications.

One direction of future research is the exploration of the solvable dynamical systems and many-

body problems of Newtonian type that are obtained by iterating the type of approach described

above, along the lines discussed in [4].

It would also be of interest to obtain generalizations of the identities (1.3) to derivatives of order

higher than 4, indeed hopefully of arbitrary order. [Note added in proof: this problem has now

been solved [9].]

And of course further explorations are appealing of the detailed behaviors of the solutions of

the dynamical systems obtained via this approach, as well as—in the case of solvable many-body

problems of Newtonian type allowing a Hamiltonian formulation—the exploration of their quantal

versions.

Appendix A. Relations among the time derivatives of the zeros and the coefficients of a
time-dependent polynomial

In this Appendix A we tersely outline for the convenience of the reader the proof of the 4 identities

(1.3) relating the time evolution of the N zeros zn (t) of a time-dependent monic polynomial of

degree N in the independent variable z to the time-evolution of its N coefficients cm (t) , see (1.2).

A proof of the first 2 of these 4 identities was already provided in [1], hence the first part of the

following treatment reports almost verbatim that presentation.

The starting point to prove the relation (1.3a) are the two relations

ψt (z; t) =
N

∑
m=1

[
ċm zN−m] , (A.1a)

ψt (z; t) =−
N

∑
m=1

[
żm

N

∏
�=1, � �=m

(z− z�)

]
, (A.1b)

which are obtained by time-differentiating (1.2b) respectively (1.2a). They imply the relation

N

∑
m=1

[
żm

N

∏
�=1, � �=m

(z− z�)

]
=−

N

∑
m=1

[
ċm zN−m] , (A.1c)

and it is plain that, for z = zn, this formula yields (1.3a).
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Likewise, an additional time-differentiation of (A.1a) yields

ψtt (z; t) =
N

∑
m=1

(
c̈m zN−m) , (A.2a)

while an additional time-differentiation of (A.1b) yields

ψtt (z; t) =−
N

∑
m=1

{
z̈m

[
N

∏
�=1, � �=m

(z− z�)

]}

+
N

∑
�1,�2=1, �1 �=�2

{
ż�1

ż�2

[
N

∏
�′=1, �′ �=�1,�2

(z− z�′)

]}

=
N

∑
m=1

(
c̈m zN−m) , (A.2b)

where the second equality is implied by (A.2a). It is then again plain that, for z = zn, one obtains

(1.3b).

To obtain (1.3c) and (1.3d) we proceeded in an analogous manner: the calculations involved

in the additional time-differentiations of (1.2b) are clearly trivial, while the successive time-

differentiations of (1.2a) become progressively more complicated; but the two yielding (1.3c) and

(1.3d) are still quite manageable by hand, so that their detailed treatment can be left to the diligent

reader.

Appendix B. Plots of the Solutions of the Initial Value Problems
in Examples 1 and 2 of Section 2

The Mathematica code used to obtain the plots in this section is included in the arXiv version of

this paper available at http://arxiv.org/pdf/1601.04793v1.pdf.
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Fig. 1. Initial value problem (2.14), (2.15). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate z1(t); period 2π .
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Fig. 2. Initial value problem (2.14), (2.15). Trajectory,

in the complex z-plane, of z1(t); period 2π . The square

indicates the initial condition z1(0) = 1+ i.
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Fig. 3. Initial value problem (2.14), (2.15). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate z2(t); period 2π .
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Fig. 4. Initial value problem (2.14), (2.15). Trajectory,

in the complex z-plane, of z2(t); period 2π . The square

indicates the initial condition z2(0) = 5+ i.
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Fig. 5. Initial value problem (2.14), (2.15). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate w1(t); period 2π .
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Fig. 6. Initial value problem (2.14), (2.15). Trajectory,

in the complex z-plane, of w1(t); period 2π . The square

indicates the initial condition w1(0) = 1.
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Fig. 7. Initial value problem (2.14), (2.15). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate w2(t); period 2π .
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Fig. 8. Initial value problem (2.14), (2.15). Trajectory,

in the complex z-plane, of w2(t); period 2π . The square

indicates the initial condition w2(0) =−i.
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Fig. 9. Initial value problem (2.14), (2.16). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate z1(t).
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Fig. 10. Initial value problem (2.14), (2.16). Trajectory,

in the complex z-plane, of z1(t). The square indicates

the initial condition z1(0) =−2− i.
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Fig. 11. Initial value problem (2.14), (2.16). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate z2(t).
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Fig. 12. Initial value problem (2.14), (2.16). Trajectory,

in the complex z-plane, of z2(t). The square indicates

the initial condition z2(0) = 2+ i.
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Fig. 13. Initial value problem (2.14), (2.16). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate w1(t).
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Fig. 14. Initial value problem (2.14), (2.16). Trajectory,

in the complex z-plane, of w1(t). The square indicates

the initial condition w1(0) = 1.
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Fig. 15. Initial value problem (2.14), (2.16). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate w2(t).
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Fig. 16. Initial value problem (2.14), (2.16). Trajectory,

in the complex z-plane, of w2(t). The square indicates

the initial condition w2(0) =−i.
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Fig. 17. Initial value problem (2.14), (2.17). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate z1(t).
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Fig. 18. Initial value problem (2.14), (2.17). Trajectory,

in the complex z-plane, of z1(t). The square indicates

the initial condition z1(0) =−2− i.
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Fig. 19. Initial value problem (2.14), (2.17). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate z2(t).
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Fig. 20. Initial value problem (2.14), (2.17). Trajectory,

in the complex z-plane, of z2(t). The square indicates

the initial condition z2(0) = 2+ i.
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Fig. 21. Initial value problem (2.14), (2.17). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate w1(t).
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Fig. 22. Initial value problem (2.14), (2.17). Trajectory,

in the complex z-plane, of w1(t). The square indicates

the initial condition w1(0) = i.
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Fig. 23. Initial value problem (2.14), (2.17). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate w2(t).
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Fig. 24. Initial value problem (2.14), (2.17). Trajectory,

in the complex z-plane, of w2(t). The square indicates

the initial condition w2(0) =−i.
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Fig. 25. Initial value problem (2.14), (2.18). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate z1(t).
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Fig. 26. Initial value problem (2.14), (2.18). Trajectory,

in the complex z-plane, of z1(t). The square indicates

the initial condition z1(0) =−2+3i.

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

208



O. Bihun and F. Calogero / Novel solvable many-body problems

0 50 100 150

-30

-20

-10

0

Fig. 27. Initial value problem (2.14), (2.18). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate z2(t).
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Fig. 28. Initial value problem (2.14), (2.18). Trajectory,

in the complex z-plane, of z2(t). The square indicates

the initial condition z2(0) = 3+2i.
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Fig. 29. Initial value problem (2.14), (2.18). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate w1(t).
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Fig. 30. Initial value problem (2.14), (2.18). Trajectory,

in the complex z-plane, of w1(t). The square indicates

the initial condition w1(0) = 2+4.2i.
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Fig. 31. Initial value problem (2.14), (2.18). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate w2(t).
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Fig. 32. Initial value problem (2.14), (2.18). Trajectory,

in the complex z-plane, of w2(t). The square indicates

the initial condition w2(0) = 3.1i.
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Fig. 33. Initial value problem (2.19), (2.20). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate z1(t); period 2π .
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Fig. 34. Initial value problem (2.19), (2.20). Trajectory,

in the complex z-plane, of z1(t); period 2π . The square

indicates the initial condition z1(0) =−1.45+1.1i.
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Fig. 35. Initial value problem (2.19), (2.20). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate z2(t); period 4π .
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Fig. 36. Initial value problem (2.19), (2.20). Trajectory,

in the complex z-plane, of z2(t); period 4π . The square

indicates the initial condition z2(0) = 5.1+0.8i.
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Fig. 37. Initial value problem (2.19), (2.20). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate z3(t); period 4π .
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Fig. 38. Initial value problem (2.19), (2.20). Trajectory,

in the complex z-plane, of z3(t); period 4π . The square

indicates the initial condition z3(0) = 2.5−0.2i.
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Fig. 39. Initial value problem (2.19), (2.20). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate w1(t); period 2π .
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Fig. 40. Initial value problem (2.19), (2.20). Trajectory,

in the complex z-plane, of w1(t); period 2π . . The square

indicates the initial condition w1(0) = 1.23.
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Fig. 41. Initial value problem (2.19), (2.20). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate w2(t); period 4π .
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Fig. 42. Initial value problem (2.19), (2.20). Trajectory,

in the complex z-plane, of w2(t); period 4π . The square

indicates the initial condition w2(0) =−2.26i.
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Fig. 43. Initial value problem (2.19), (2.20). Graphs of

the real (bold curve) and imaginary (dashed curve) parts

of the coordinate w3(t); period 4π .
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Fig. 44. Initial value problem (2.19), (2.20). Trajectory,

in the complex z-plane, of w3(t); period 4π . The square

indicates the initial condition w3(0) = 1.32i.
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[8] D. Gómez-Ullate and M. Sommacal, “Periods of the goldfish many-body problem”, J. Nonlinear Math.

Phys. 12, Suppl. 1, 351–362 (2005).

[9] M. Bruschi and F. Calogero, “A convenient expression of the time-derivative z(k)n (t), of arbitrary order k,

of the zero zn(t) of a time-dependent poly- nomial pN(z; t) of arbitrary order in z”, to be published.

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

212


