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The noncommutative Toda hierarchy is studied with the help of Moyal deformation by a reduction on the non-
commutative two dimensional Toda hierarchy. Further we generalize the noncommutative Toda hierarchy to
the extended noncommutative Toda hierarchy. To survey on its integrability, we construct the bi-Hamiltonian
structure and noncommutative conserved densities of the extended noncommutative Toda hierarchy by means
of the R-matrix formalism. This extended noncommutative Toda hierarchy can be reduced to the extended mul-
ticomponent Toda hierarchy, extended ZN -Toda hierarchy, extended Toda hierarchy respectively by reductions
on Lie algebras.
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1. Introduction

The noncommutative extension of field theories is a fruitful subject in both mathematics and
physics. Noncommutative spaces contain the spatial coordinates xi with the noncommutativity of
[xi,x j] = iθ i j, where the noncommutative parameter θ i j is a anti-symmetric tensor. As in [1], the
noncommutative parameter is a real constant and closely related to the existence of a background
flux. The noncommutative theory gives rise to various new physical objects such as the canonical
commutation relation [q, p] = ih̄ in quantum mechanics.

In the effective theory of D-branes, in the presence of background magnetic fields the noncom-
mutative gauge theories are found to be equivalent to ordinary gauge theories. In the study of D-
brane dynamics, noncommutative solitons play important roles. Such theories with noncommuting
coordinates are known to emerge from limits of M theory and string theory as shown in [2].

In the framework of noncommutative integrable hierarchy, infinite conserved quantities and
exact soliton solutions were given for many noncommutative integrable equations in terms of Stra-
chan’s products and quasi-determinants. These noncommutative integrable equations have a close
relation to an noncommutative anti-self-dual Yang-Mills theory [1]. An infinite number of conserved
laws for the noncommutative Lax hierarchies were presented which include noncommutative ver-
sions of KP, KdV, Boussinesq, coupled KdV, Sawada-Kotera, modified KdV equation and so on
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in [3]. The noncommutative matrix KP hierarchy was studied in [4] from which the soliton solu-
tions could be represented by generalized Wronskian matrices. The noncommutative KP hierarchy
and the noncommutative Toda hierarchy are introduced using the Birkhoff decomposition of groups
over the noncommutative algebra in [5, 6].

Toda equation is an important integrable equation in both physics and mathematics which has
infinite conserved laws [7–9]. Toda hierarchy [10] has many kinds of reduction or extension, for
example extended Toda hierarchy (ETH) [11,12], bigraded Toda hierarchy (BTH) [15]- [19] and so
on. Adding additional logarithm flows to the Toda lattice hierarchy, the Toda hierarchy becomes the
extended Toda hierarchy [11] which was first conjectured and then shown to govern the Gromov-
Witten invariant of CP1 [13], by considering matrix models describing in the large N limit the CP1

topological sigma model [14]. That is why we think the new noncommutative logarithmic hierarchy
in this paper might be useful in noncommutative Gromov-Witten invariants theory.

Noncommutative Sato theory is known to be one of the most beautiful theories of solitons and it
reveals important integrable properties, such as the existence of bihamiltonian structure and hidden
symmetries in noncommutative spaces. So it is reasonable and interesting to extend Sato’s theory
onto noncommutative spaces to clarify various integrable aspects.

Noncommutative integrable theories on the flat space are described by the replacement of ordi-
nary products in the commutative field theory with the Moyal-products [20]. The Moyal-product
can be defined for ordinary fields explicitly by

f (x)∗g(x) := exp
(

i
2

θ
µν

∂xµ

1
∂xν

2

)
f (x1)g(x2)

∣∣∣
x1=x2=x

= f (x)g(x)+
i
2

θ
µν

∂xµ f (x)∂xν g(x)+O(θ 2). (1.1)

Here the same index means the contractive. This Moyal-product has the associativity as f ∗(g∗h) =
( f ∗ g) ∗ h. In the commutative limit as θ µν → 0, it will be reduced to the ordinary product. Then
the product makes the ordinary coordinate noncommutative as [xµ ,xν ]∗ := xµ ∗xν−xν ∗xµ = iθ µν .
Here xµ can be a spatial or time variable. A nontrivial point is that noncommutative field equations
contain infinite number of derivatives. In the case of space-space noncommutativity, it is easy to find
its infinite conserved laws similarly as the commutative case. For space-time noncommutativity, the
integrability of the equations are not so trivial as commutative cases [3].

In this article, we will report some new noncommutative extension of Toda type integrable sys-
tems. Further we give their bi-Hamiltonian structures in the framework of extended noncommutative
Toda hierarchy.

2. Noncommutative 2D Toda hierarchy

In this section, we will firstly recall the theory of Lie algebra factorization in noncommutative
version which was discussed in detail in [21]. Let (t1, t2, · · ·) be coordinates of noncommutative
plane R2∞ which satisfy [tn, tm]∗= iθnm, and Aθ a set of functions on it. The deformation parameters
θnm ∈ R are assumed to be non-zero constants and a matrix (θnm) is invertible.

Here we introduce the noncommutative Toda hierarchy as [6]. Firstly we need one more series of
coordinates (t̄1, t̄2, · · ·) which satisfy [t̄n, t̄m]∗ = iθ̄nm, [t̄n, tm]∗ = 0 and Aθ ,θ̄ denotes a set of functions
on it. Let S (S̄) be an difference operator whose components take values in Aθ ,θ̄ . The Moyal-product
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for the noncommutative Toda hierarchy can be defined for ordinary fields explicitly by

f (t, t̄)∗g(t, t̄) := exp
(

i
2
(θµν∂xµ

∂yν
+ θ̄µν∂x̄µ

∂ȳν
)

)
f (x, x̄)g(y, ȳ)

∣∣∣
x=y=t,x̄=ȳ=t̄

. (2.1)

In this section, we will denote G as a group which contains invertible elements of complex
noncommutative functions under the moyal product and denote its Lie algebra g as the associative
algebra of complex noncommutative functions. Now we will consider the linear space of functions
g : R→ C with the shift operator Λ acting on any function g(x) as (Λg)(x) := g(x+ ε).

This Lie algebra as a linear space has the following important splitting

g= g+⊕g−, (2.2)

where

g+ =
{

∑
j≥0

X j(x)Λ j, X j(x) ∈ g
}
, g− =

{
∑
j<0

X j(x)Λ j, X j(x) ∈ g
}
.

The splitting (2.2) leads us to consider the following factorization of g ∈ G

g = g−1
− ∗g+, g± ∈ G± (2.3)

where G± have g± as their Lie algebras. Here G+ is the set of invertible linear operators of the form
∑ j≥0 g j(x)Λ j; while G− is the set of invertible linear operators in the form of 1+∑ j<0 g j(x)Λ j.

The Sato-Wilson equations of the noncommutative Toda hierarchy can be defined as

∂S
∂ tn

=−(S∗Λ
n ∗S−1)− ∗S,

∂S
∂ t̄n

=−(S̄∗Λ
−n ∗ S̄−1)− ∗S, (2.4)

∂ S̄
∂ tn

= (S∗Λ
n ∗S−1)+ ∗ S̄,

∂ S̄
∂ t̄n

= (S̄∗Λ
−n ∗ S̄−1)+ ∗ S̄, (2.5)

for n ≥ 1. For a noncommutative function P, (P)+ denotes the nonnegative powers’ projection
of P in terms of the shift operator Λ and (P)− denotes the negative powers’ projection of P in
terms of the shift operator Λ. Note that these Sato equations are equivalent to the Lax equations
and the Zakharov-Shabat equations. If one define b(x),c(x) ∈ Aθ ,θ̄ as B := (SΛS−1)+ = Λ+ b(x)
and C := (SΛ−1S−1)− = c(x)Λ−1. The Zakharov-Shabat equation ∂B

∂ t̄1
− ∂C

∂ t1
+[B,C]∗ = 0 gives the

noncommutative Toda equations [6, 22, 23]

∂b(x)
∂ t̄1

= c(x)− c(x+ ε),
∂c(x)

∂ t1
= b(x)∗ c(x)− c(x)∗b(x− ε). (2.6)

For any function f (x) ∈A (θ , θ̄), its exponential is defined as

e f (x)
∗ = 1+

∞

∑
i=1

1
n!

f (x)∗ f (x)∗ · · · ∗ f (x)︸ ︷︷ ︸
n times

. (2.7)

Let wn(x), w̄n(x),w∗n(x), w̄
∗
n(x) ∈Aθ ,θ̄ be operators which are coefficients of S, S̄,S−1, S̄−1

S = ∑
n≥0

w−n(x)Λ−n, S−1 = ∑
n≥0

Λ
−nw∗−n(x). (2.8)
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S̄ = ∑
n≥0

w̄n(x)Λn, S̄−1 = ∑
n≥0

Λ
nw̄∗n(x). (2.9)

One need to note that the inverses S−1, S̄−1 are under the Moyal deformation, i.e. S ∗ S−1 =

S̄∗ S̄−1 = 1. We introduce the operator valued Baker-Akhiezer functions as [6]

w(x,λ ) =

(
∑
n≥0

w−n(x)λ−n+s

)
eξ̂−
∗ , w̄(x,λ ) =

(
∑
n≥0

w̄nλ
n+s

)
eξ̂+
∗ ,

w∗(x,λ ) = e−ξ̂−
∗

(
∑
n≥0

w∗−n(x)λ
−n−s

)
, w̄∗(x,λ ) = e−ξ̂+

∗

(
∑
n≥0

w̄∗nλ
n−s

)
, (2.10)

where ξ̂− := ∑n≥1 tnλ n and ξ̂+ := ∑n≥1 t̄nλ−n. In this commutative case, the BA functions satisfy
the following bilinear equation as [6]∮ dλ

2πi
w(x′,λ )∗w∗(x,λ ) =

∮ dλ

2πi
w̄(x′,λ )∗ w̄∗(x,λ ). (2.11)

The BA functions w̄ and w satisfy the following linear differential equations of tn and t̄n,

∂w
∂ tn

= (S∗Λ
n ∗S−1)+ ∗w,

∂w
∂ t̄n

= (S̄∗Λ
−n ∗ S̄−1)− ∗w, (2.12)

∂ w̄
∂ tn

= (S∗Λ
n ∗S−1)+ ∗ w̄,

∂ w̄
∂ t̄n

= (S̄∗Λ
−n ∗ S̄−1)− ∗ w̄. (2.13)

When θmn = 0, the noncommutative two dimensional Toda hierarchy will be exactly the ordinary
well-known two dimensional Toda hierarchy in [10].

Basing on the above defined noncommutative two dimensional Toda hierarchy, a further reduc-
tion and extension will lead to the extended noncommutative Toda hierarchy which will be talked
about in the next section.

3. Extended noncommutative Toda hierarchy

In this section, we also use two series of coordinates (t0, t1, t2, · · ·),(s0,s1,s2, · · ·) which satisfy
[tn, tm]∗ = iθnm, [sn,sm]∗ = iΩnm, [sn, tm]∗ = 0 and Aθ ,Ω denotes a set of functions on it. Here
(s0,s1,s2, · · ·) will denote another extended logarithmic time variables with the first variable s0

equivalent to the spatial variable x. The Moyal-product for the extended noncommutative Toda hier-
archy can be defined for ordinary fields explicitly by

f (t,s)∗g(t,s) := exp
(

i
2
(θµν∂xµ

∂yν
+ Ω̄µν∂x̄µ

∂ȳν
)

)
f (x, x̄)g(y, ȳ)

∣∣∣
x=y=t,x̄=ȳ=s

, (3.1)

where the spatial variable x hides inside the variable sequence s as s0. Let S (S̄) be an difference
operator whose components take values in Aθ ,Ω. To define the extended Toda flows in the noncom-
mutative space, we define the following constrained Lax operator

L = S∗Λ∗S−1 = S̄∗Λ
−1 ∗ S̄−1 = Λ+u+ vΛ

−1. (3.2)
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To define the extended flows, we need to define the following noncommutative logarithmic operators

log+L = S∗ ε∂ ∗S−1, (3.3)

log−L =−S̄∗ ε∂ ∗ S̄−1, (3.4)

where ∂ is the derivative about spatial variable x.
Combining these above logarithm operators together can derive the following important non-

commutative logarithm

logL : =
1
2
(log+L + log−L ) =

1
2
(S∗ ε∂ ∗S−1− S̄∗ ε∂ ∗ S̄−1) :=

+∞

∑
i=−∞

WiΛ
i ∈ G, (3.5)

which will generate a series of flow equations which contain the spatial flow in later defined Lax
equations. Let us first introduce some convenient noncommutative notations.

Definition 3.1. The noncommutative operators B j,D j are defined as follows

B j :=
L j+1

( j+1)!
, D j :=

2L j

j!
∗ (logL − c j), c j =

j

∑
i=1

1
i
, j ≥ 0. (3.6)

Now we give the definition of the extended noncommutative Toda hierarchy(ENTH).

Definition 3.2. The extended noncommutative Toda hierarchy is a hierarchy in which the noncom-
mutative dressing operators S, S̄ satisfy following noncommutative Sato equations

ε∂t j S =−(B j)− ∗S, ε∂t j S̄ = (B j)+ ∗ S̄, (3.7)

ε∂s j S =−(D j)− ∗S, ε∂s j S̄ = (D j)+ ∗ S̄. (3.8)

Similarly as the proof in [3], we can prove the above flows of the ENTH can commute with each
other. From the previous definition we derive the following Lax equations for the Lax operators.

Proposition 3.1. The Lax equations of the ENTH are as follows

ε∂t jL = [(B j)+,L ]∗, ε∂s jL = [(D j)+,L ]∗, ε∂t j logL = [(B j)+, logL ]∗, (3.9)

ε(logL )s j = [−(D j)−,
1
2

log+L ]∗+[(D j)+,
1
2

log−L ]∗. (3.10)

The extended flow can be equivalently written as

D̃ j =
L j

j!
ε∂ +[

L j

j!
∗ (2

−1

∑
i=−∞

WiΛ
i− c j)]+− [

L j

j!
∗ (2

∞

∑
i=0

WiΛ
i− c j)]−. (3.11)

To see the extended noncommutative Toda equations clearly, we will give several simple equa-
tions as following
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ε∂s0L = [(D0)+,L ]∗ = ε∂xL , (3.12)

ε∂s1L = [(D1)+,L ]∗ = [
Λ

1−Λ
ux−2v∗W0Λ

−1 +2L ε∂ −2L+,L ]∗. (3.13)

One can find that the first variable s0 is equivalent to the spatial variable x, therefore we can treat
them being the same thing. In other words, every function related to the ENTH should depend on
s0 + x as a linear combination . By considering the relation among coefficients as

W0 =−w̃0x ∗ w̃−1
0 , v∗ w̃0(x− ε) = w̃0, v∗W0 =−v∗ w̃0x ∗ w̃−1

0 , (3.14)

we can get the noncommutative equations as

ε∂s1u = [
Λ

1−Λ
ux,u]∗−2∂t1u (3.15)

ε∂s1v = (
Λ

1−Λ
ux)∗ v− v∗ ( 1

1−Λ
ux)−2∂t1v. (3.16)

Remark 3.1. The spatial variable x which is equivalent to the s0 can commute with the ti flow of
the ENTH. Whether x, i.e. s0 can commute with other extended logarithmic variables sν depends
on whether Ω0ν is zero for every ν .

To prove the integrability, we will construct the bi-Hamiltonian structure of the extended non-
commutative Toda hierarchy in the next section.

4. Bi-Hamiltonian structure of the ENTH

As we know, bi-Hamiltonian structures are important properties of integrable systems [5]. For a
noncommutative sequence A = Λ+a+bΛ−1, the vector field ∂A over ENTH is defined by

∂A = ∑
k∈Z

a(x+ kε)∗ ∂

∂u(x+ kε)
+b(x+ kε)∗ ∂

∂v(x+ kε)
. (4.1)

For two functionals f̄ =
∫

f (u,v)dDx, ḡ =
∫

g(u,v)dDx, we have

∂A f̄ =
∫

∑
k∈Z

a(x+ kε)∗ ∂ f
∂u(x+ kε)

+b(x+ kε)∗ ∂ f
∂v(x+ kε)

dDx. (4.2)

Remark 4.1. The integral directions dDx are chosen in x and all directions which are noncommu-
tative with x = s0. That means that the directions dDx in the integration depend on the choice of
time/spatial variables and the matrix θ and Ω. In physics, one always choose some variables as spa-
tial variables and someone as the time variable. If you only study on the ti flows as time flows, i.e.
the case of space-space noncommutativity(if you only consider x = s0 as a sole spatial variable, then
it is commutative), the integration will take only in the spatial direction dx as the commutative case.
If you only study on the si flows as time flows, i.e. the case of space-time noncommutativity(Ω0 j 6= 0
for some index j), the integration will take only in the directions x and s j.
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To show why we make the above remark, it is convenient to define the following Strachan
product as [3],

f (x, t,s)�g(x, t,s) := f (x, t,s)
∞

∑
s=0

(−1)s

(2s+1)!
[(
←−
∂ti θ

i j−→
∂t j)

2s +(
←−
∂siΩ

i j−→
∂s j)

2s]g(x, t,s), (4.3)

where
←−
∂i means taking derivative backward and

−→
∂ j means taking derivative forward. Then a com-

mutator can be straightforwardly calculated as follows

[ f (x, t,s),g(x, t,s)]∗ =−θ
i j

∂ti
(

f (x, t,s)�∂t j g(x, t,s)
)
−Ω

i j
∂si

(
f (x, t,s)�∂s j g(x, t,s)

)
. (4.4)

For any difference operator A = ∑k AkΛk, define residue ResA = A0.

Definition 4.1. Let M = M(u,v) be a suitable manifold possessing a manifold variable (u,v). For
any f̄ =

∫
f (u,v)dDx with f (u,v)∈C∞(M), its variational derivatives d f̄ := δ f̄

δu +Λ◦ δ f̄
δv are defined

by

∂A f̄ = 〈A,d f̄ 〉 := Res A∗d f̄ , (4.5)

where

〈A,d f̄ 〉=
∫

a(x)∗ δ f̄
δu(x)

+b(x)∗ δ f̄
δv(x)

dDx. (4.6)

One can easily derive the formula of the variational derivatives ( δ f̄
δw , w = u or v) as

δ f̄
δw(x)

= ∑
k∈Z

Λ
−k
(

∂ f
∂w(x+ kε)

)
, w = u or v. (4.7)

Then we can define the Hamiltonian bracket of the ENTH as

{ f̄ , ḡ}=
∫

∑
w,w′

δ f̄
δw
∗{w,w′}∗ δ ḡ

δw′
dDx =< d f̄ ,J(dḡ)>, w,w′ = u or v, (4.8)

where d f̄ , dḡ are two difference operators that represent the differentials of the functions f̄ , ḡ
and the Hamiltonian operator J maps 1-forms to vectors.

The bi-Hamiltonian structure for the ENTH can be given by the following two compatible Pois-
son structures which is a noncommutative generalization of the extended Toda hierarchy in [11]

Proposition 4.1. The following formulas

J1(X) =
1
ε
[X+,L ]∗≤0−

1
ε
[X−,L ]∗>0 (4.9)

J2(X) =
1

2ε
[L ,(L ∗X +X ∗L )−]∗−

1
2ε

L ∗ [L ,X ]∗≤0−
1

2ε
[L ,X ]∗≤0 ∗L (4.10)

+
1

2ε
[L ,((Λ+1)(Λ−1)−1Res[L,X ]∗)]∗
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define two compatible Hamiltonian operators. That means that the brackets {,}1 and {,}2 defined
by

{ f ,g}i =< d f ,Jidg > (4.11)

are two compatible Poisson brackets as following

{u(x),u(y)}1 =
1
ε
[Ru−Lu]δ (x− y), (4.12)

{u(x),v(y)}1 =
1
ε
[ΛRv−Lv]δ (x− y), (4.13)

{v(x),v(y)}1 = 0, (4.14)

{u(x),u(y)}2 =
1
ε

[
ΛRv− v∗Λ

−1 +Ru ∗ (
Λ

Λ−1
Ru)

− Λ

Λ−1
∗u∗Ru−u∗ (Λ−1)−1Ru +u∗ (Λ−1)−1u

]
δ (x− y), (4.15)

{u(x),v(y)}2 =
1
ε

[
Ru ∗

Λ

Λ−1
∗Rv(x+ε)−Ru

Λ

Λ−1
∗ v∗Λ

−1

−u∗ (Λ−1)−1 ∗Rv(x+ε)+u∗ (Λ−1)−1 ∗ vΛ
−1]

δ (x− y), (4.16)

{v(x),v(y)}2 =
1
ε

[
Rv ∗Λ

2(Λ−1)−1 ∗Rv−Rv ∗
Λ

Λ−1
∗ v

−v∗ (Λ−1)−1 ∗Rv + v∗Λ
−1(Λ−1)−1 ∗ v

]
δ (x− y). (4.17)

Here Lu,Lv means the multiplication by u,v respectively from the left side and Ru,Rv means the
multiplication by u,v respectively from the right side.

Proof. The fact that {,}1 and {,}2 are two compatible Poisson brackets follows from the R-matrix
theory in [27] with the following basic steps. We consider the associative algebra g of difference
operators with arbitrary upper-bounded order

g= {X = ∑
k<∞

ukΛ
k} (4.18)

and identify with its dual g∗ using the non-degenerate invariant inner product (4.5). The map R : g→
g by R(X) = X+−X− and its skew-symmetric part A = 1

2(R−R∗) satisfy the modified Yang-Baxter
equation similarly as the proof in [15]

[R(X),R(Y )]∗−R([R(X),Y ]∗+[X ,R(Y )]∗) =−[X ,Y ]∗ for any X ,Y ∈ g. (4.19)

Then we can derive

J1du(y) =
1
ε
[δ (x− y),L (x)]∗≤0 (4.20)

=
1
ε

δ (x− y)∗u(x)− 1
ε

u(x)∗δ (x− y)+
1
ε

δ (x− y)∗ v(x)Λ−1− 1
ε

v(x)∗δ (x− ε− y)Λ−1,

J1dv(y) =
1
ε
[δ (x+ ε− y)Λ,L (x)]∗≤0 =

1
ε

δ (x+ ε− y)∗ v(x+ ε)− 1
ε

v(x)∗δ (x− y), (4.21)
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which further leads to

{u(x),u(y)}1 = 〈du(x),J1du(y)〉 (4.22)

= 〈1,J1du(y)〉= 1
ε

δ (x− y)∗u(x)− 1
ε

u(x)∗δ (x− y), (4.23)

{u(x),v(y)}1 = 〈du(x),J1dv(y)〉= 1
ε
[ΛRv−Lv]δ (x− y), (4.24)

{v(x),v(y)}1 = 〈dv(x),J1dv(y)〉 (4.25)

= 〈Λ,J1dv(y)〉= 0. (4.26)

Because of the non-commutativity, one can see the difference between the ENTH and the extended
Toda hierarchy [11]. For the extended Toda hierarchy, the bracket {u(x),u(y)}1 becomes trivial (see
in [11]).

Similarly, we can derive the equations (4.15)-(4.17) by a tedious calculation from (4.10).
Finally the compatibility of {,}1 and {,}2 after a Dirac reduction follows from the simple obser-

vation that

{,}2→{,}2 +λ{,}1, (4.27)

under u→ u+λ .

As another important part of the Sato theory, the Bihamiltonian equation of the ENTH will be
constructed in the next section similar as [11].

Theorem 4.1. The flows of the ENTH are Hamiltonian systems of the form

∂u
∂ tk, j

= {u,Hk, j}1,
∂v

∂ tk, j
= {v,Hk, j}1, k = 0,1; j ≥ 0, (4.28)

with t0, j = t j, t1, j = s j. They satisfy the following bi-Hamiltonian recursion relation

{·,H1,n−1}2 = n{·,H1,n}1 +2{·,H0,n−1}1, {·,H0,n−1}2 = (n+1){·,H0,n}1.

Here the Hamiltonians have the form

Hk, j =
∫

hk, j(u,v;ux,vx; . . . ;ε)dDx, k = 0,1; j ≥ 0, (4.29)

with

h0, j =
1

( j+1)!
ResL j+1, h1, j =

2
j!

Res
[
L j(logL − c j)

]
. (4.30)

Proof. Here we will firstly prove that the flows ∂

∂ t1,n
are Hamiltonian systems with respect to the

first Poisson bracket. Similar as in [11] and by considering eq.(4.4), we can prove the following
identity
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Res
(
L n d log+L

)
∼ Res

(
L n−1dL

)
, (4.31)

and

Res
(
L n d log−L

)
∼ Res

(
L n−1dL

)
. (4.32)

Here the equivalent relation ∼ is up to derivatives for all directions corresponding to non-vanishing
θi j.

Combining (4.31) with (4.32) together can lead to

Res(L n d logL )∼ Res
(
L n−1dL

)
. (4.33)

Then from

∂L

∂ tk,n
= [(Bk,n)+,L ]∗ = [−(Bk,n)−,L ]∗, B0,n = Bn,B1,n = Dn, (4.34)

and supposing

B1,n = ∑
k

a1,n;k Λ
k, (4.35)

we can derive the equation

ε
∂u

∂ t1,n
= a1,n;1(x)∗ v(x+ ε)− v(x)∗a1,n;1(x− ε)+ [a1,n;0(x),u(x)]∗, (4.36)

ε
∂v

∂ t1,n
= a1,n;0(x)∗ v(x)− v(x)∗a1,n;0(x− ε). (4.37)

The equivalence relation (4.33) now follows from the above two equations. By using (4.31) we
obtain

dh1,n =
2
n!

d Res [L n (logL − cn)]

∼ 2
(n−1)!

Res
[
L n−1 (logL − cn)dL

]
+

2
n!

Res
[
L n−1dL

]
=

2
(n−1)!

Res
[
L n−1 (logL − cn−1)dL

]
(4.38)

= a1,n;0(x)∗du+a1,n;1(x− ε)∗dv. (4.39)

It yields the following identities

δH1,n

δu
= a1,n;0(x),

δH1,n

δv
= a1,n;1(x− ε). (4.40)

This agrees with Lax equation
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∂u
∂ t1,n

= {u,H1,n}1 =
1
ε
[Ru−Lu]

δH1,n

δu
+

1
ε
[ΛRv−Lv]

δH1,n

δv

=
1
ε
[Ru−Lu]a1,n;0(x)+

1
ε
[ΛRv−Lv]a1,n;1(x− ε)

= a1,n;1(x)∗ v(x+ ε)− v(x)∗a1,n;1(x− ε)+ [a1,n;0(x),u(x)]∗,
∂v

∂ t1,n
= {v,H1,n}1 =

1
ε

[
Rv−LvΛ

−1] δH1,n

δu
=

1
ε
[a1,n;0(x)∗ v(x)− v(x)∗a1,n;0(x− ε)] .

From the above identities we see that the flows ∂

∂ t1,n
are Hamiltonian systems of the first bi-

Hamiltonian structure. For the case of logarithmic flows the recursion relation follows from the
following trivial identities

n
2
n!

L n (logL − cn) = L
2

(n−1)!
L n−1 (logL − cn−1)−2

1
n!

L n

=
2

(n−1)!
L n−1 (logL − cn−1) L −2

1
n!

L n.

Then we get,

na1,n+1;1(x) = a1,n;0(x+ ε)+u∗a1,n;1(x)+ v∗a1,n;2(x− ε)−2a0,n;1(x)

= a1,n;0(x)+a1,n;1(x)∗u(x+ ε)+a1,n;2(x)∗ v(x+2ε)−2a0,n;1(x).

Then we also get

na1,n;0(x) = a1,n−1;−1(x+ ε)+u(x)∗a1,n−1;0(x)+ v(x)∗a1,n−1;1(x− ε)− 2
n!

a0,n;0(x)

= a1,n−1;−1(x)+a1,n−1;0(x)∗u(x)+a1,n−1;1(x)∗ v(x+ ε)− 2
n!

a0,n;0(x), (4.41)

na1,n;1(x) = a1,n−1;0(x+ ε)+u(x)∗a1,n−1;1(x)+ v(x)∗a1,n−1;2(x− ε)− 2
n!

a0,n;1(x)

= a1,n−1;0(x)+a1,n−1;1(x)∗u(x+ ε)+a1,n−1;2(x)∗ v(x+2ε)− 2
n!

a0,n;1(x). (4.42)

From the eq.(4.41), we can derive the following equation by which one can represent a1,n−1;−1

in terms of other functions

(Λ−1)a1,n−1;−1(x) = a1,n−1;1(x)∗ v(x+ ε)− v(x)∗a1,n−1;1(x− ε)+ [a1,n−1;0(x),u(x)]∗.

We need to notice that there is one more term than the commutative system, i.e. the term
[a1,n−1;0(x),u(x)]∗. This further leads to the following recursion relation between two Poisson brack-
ets
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{u,H1,n}2

=
1
ε

[
ΛRv− v∗Λ

−1 +Ru ∗ (
Λ

Λ−1
Ru)

−( Λ

Λ−1
u∗Ru−u∗ (Λ−1)−1Ru +u∗ (Λ−1)−1u

]
a1,n−1;0(x)

+
1
ε

[
Ru

Λ

Λ−1
Rv(x+ε)−Ru[

Λ

Λ−1
v∗Λ

−1]

−u(Λ−1)−1Rv(x+ε)+u(Λ−1)−1vΛ
−1]a1,n−1;1(x)

=
1
ε
{a1,n−1;0(x+ ε)∗ v(x+ ε)− v(x)∗a1,n−1;0(x− ε)+u(x)∗a1,n−1;1(x)∗ v(x+ ε)

−v(x)∗a1,n−1;1(x− ε)∗u(x)+a1,n−1;−1(x+ ε)∗u(x)−u(x)∗a1,n−1;−1(x)

+v(x)∗a1,n−1;1(x− ε)∗u(x)−u(x)∗a1,n−1;1(x)∗ v(x+ ε)}

=
n
ε
{a1,n;1(x)∗ v(x+ ε)− v(x)∗a1,n;1(x− ε)+ [a1,n;0(x),u(x)]∗}

+
2

εn!
{a0,n;1(x)∗ v(x+ ε)− v(x)∗a0,n;1(x− ε)+ [a0,n;0(x),u(x)]∗}

= n{u,H1,n}1 +
2
n!
{u,H0,n}1.

The similar recursion flow on the noncommutative function v can be similarly derived by the
following calculation,

{v,H1,n}2

=
1
ε

[
RvΛ

2(Λ−1)−1Rv−Rv
Λ

Λ−1
v− v(Λ−1)−1Rv + vΛ

−1(Λ−1)−1v
]

a1,n−1;1(x− ε)

+
1
ε

[
u(x)Rv− v(x)Λ−1Ru +Rv

Λ

Λ−1
Ru

−Rv
Λ

Λ−1
u− vΛ

−1(Λ−1)−1Ru + vΛ
−1(Λ−1)−1u

]
a1,n−1;0(x)

=
1
ε
{u(x)∗a1,n−1;0(x)∗ v(x)− v(x)∗a1,n−1;0(x− ε)∗u(x− ε)

+[
Λ

Λ−1
(a1,n−1;1(x)∗ v(x+ ε)− v(x)∗a1,n−1;1(x− ε)+ [a1,n−1;0(x),u(x)]∗)]v(x)

−v(x)Λ−1(Λ−1)−1(a1,n−1;1(x)∗ v(x+ ε)− v(x)∗a1,n−1;1(x− ε)+ [a1,n−1;0(x),u(x)]∗)}

=
1
ε
{u(x)∗a1,n−1;0(x)∗ v(x)− v(x)∗a1,n−1;0(x− ε)∗u(x− ε)

+a1,n−1;−1(x+ ε)∗ v(x)− v(x)∗a1,n−1;−1(x− ε)}

=
n
ε
[a1,n;0(x)∗ v(x)− v(x)∗a1,n;0(x− ε)]+

2
εn!

[a0,n;0(x)∗ v(x)− v(x)∗a0,n;0(x− ε)]

= n{v,H1,n}1 +{v,H0,n}1.

The theorem is proved till now.
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Now similarly as [3], sometimes the above mentioned conserved quantities are not real con-
served quantities. To find the real conserved density σ which satisfies

∂tσ = ∂xJ, (4.43)

where J is called the conserved flux, we can do the following calculation

∂hk, j

∂ tm,i
= ∑

p
[am,i,pΛ

p,ak, j,−pΛ
−p]∗ (4.44)

= ∑
p

am,i,p(x)∗ak, j,−p(x+ pε)−ak, j,−p(x)∗am,i,p(x− pε)

= ∑
p
(1−Λ

−p)[am,i,p(x)∗ak, j,−p(x+ pε)]−∑
p
[ak, j,−p(x),am,i,p(x− pε)]∗.

Because

∑
p
[ak, j,−p(x),am,i,p(x− pε)]∗ (4.45)

= −∑
p

θ
i j

∂ti
(
ak, j,−p(x)�∂t j am,i,p(x− pε)

)
−∑

p
Ω

i j
∂si

(
ak, j,−p(x)�∂s j am,i,p(x− pε)

)
= −θ

i j
∂tiRes

(
Bk, j �∂t j Bm,i

)
−Ω

i j
∂siRes

(
Bk, j �∂s j Bm,i

)
,

therefore if we identify the coordinate t0,i = ti with time t, we get the real conserved density as
follows

σ = hk, j−θ
i j

∂tiRes
(
Bk, j �∂t j B0,i

)
, (4.46)

where the suffices j must run in the space-time directions only. If we identify the coordinate t1,i = si

with time t, we get the real conserved density as follows

σ = hk, j−Ω
i j

∂siRes
(
Bk, j �∂s j B1,i

)
, (4.47)

where the suffices j must run in the space-time directions only. For the ENTH, we identify the
spatial coordinate s0 = x, the coordinate t1,i = si with time t, and so we can get the real conserved
density as follows

σ = hk, j−Ω
i0

∂siRes(Bk,0 �∂s0B1,i) . (4.48)

We can easily see in the case of space-space noncommutativity, the conserved density is given by
the hk, j as the commutative case. The deformation terms will appear in the second term of Eq. (4.46)
in the case of space-time noncommutativity.

Remark 4.2. In the case of space-space noncommutativity, the conserved density is given by the
residue of powers of the Lax operator and the integration will take only in spatial directions without
time directions as the commutative case.

By doing the reductions on Lie algebras, we can derive the following remark.

Remark 4.3. The Lax equation and bi-hamiltonian structure of extended noncommutative Toda
hierarchy will be reduced the ones of the extended Toda hierarchy in [11] when θ =Ω= 0, extended
multicomponent Toda hierarchy in [24] when θ = Ω = 0 and g = glN(C), extended ZN-Toda hier-
archy in [25] when θ = Ω = 0 and the algebra takes values in a maximum commutative subalgebra

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

380



Chuanzhong Li and Tao Song / The extended noncommutative Toda hierarchy

of glN(C), extended q-Toda hierarchy in [26] when θ = Ω = 0 and the algebra takes values in a
q-shift algebra respectively.

5. Conclusions and Discussions

In this paper, we constructed a new hierarchy called extended noncommutative Toda hierar-
chy(ENTH) and extended Sato theory to this hierarchy including Sato equations, matrix wave oper-
ators and bi-Hamiltonian. Similarly as the extended Toda hierarchy and extended bigraded Toda
hierarchy in Gromov-Witten theory of CP1 and orbiford respectively, this noncommutative hierar-
chy deserves further studying and exploring because of its potential applications in noncommutative
quantum fields and Gromov-Witten theory.
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