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We show that the generalized Yang–Mills system with Hamiltonian H = (p2
1 + p2

2)/2+V (q1,q2) where V =
1/2(aq2

1 +bq2
2)+(cq4

1 +2eq2
1q2

2 +dq4
2)/4 is not completely integrable with Darboux first integrals.
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1. Introduction and statement of the main results

We consider R4 as a symplectic linear space with canonical variables q = (q1,q2) and p = (p1, p2),
with qi called the coordinates and pi called the momenta. We want to study the Hamiltonian systems
with Hamilton’s function of the form

H =
1
2

2

∑
i=1

p2
i +V (q1,q2)

where

V (q1,q2) =
1
2

2

∑
i=1

p2
i +

1
2
(aq2

1 +bq2
2)+

c
4

q4
1 +

d
2

q2
1q2

2 +
e
4

q4
2 (1.1)

being a,b,c,d,e constants. We will study the Hamiltonian systems

q̇i = pi, ṗi =−
∂V
∂qi

, i = 1,2. (1.2)

These systems are the generalized form of the classical Yang–Mills Hamiltonian systems and
can be reduced from them in scalar field theory [25]. They appear in a variety of problems in scalar
field theory [10, 25], celestial mechanics, cosmological models [2, 5, 14] and quantum mechanics
[1, 20].
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We start by recalling some definitions. Let A = A(p,q) and B = B(p,q) be two functions. Their
Poisson bracket {A,B} is defined as

{A,B}=
2

∑
i=1

(
∂A
∂qi

∂B
∂ pi
− ∂A

∂ pi

∂B
∂qi

)
.

We say that two functions A and B are in involution if {A,B}= 0, and that a non-constant function
F = F(q, p) is a first integral for the Hamiltonian system (1.2) if it commutes with the Hamiltonian
function H, i.e., {H,F}= 0. Moreover, we say that the Hamiltonian system (1.2) is completely inte-
grable if it has 2 functionally independent first integrals which are in involution. One first integral
will always be the Hamiltonian H. We say that two functions H and F are functionally independent
if their gradients are independent at all points of R4 except perhaps in a zero Lebesgue measure set.

Many papers have been published regarding the integrability and non-integrability of the Yang–
Mills Hamiltonian systems (1.2) by using different methods such as the Painlevé method, direct
calculations, algebraic geometry tools,..., see for instance [1, 2, 9, 13, 22, 24] and the references
therein.

During the last century Hamiltonian systems with potential V (q1,q2) of degree at most 5 have
been intensively studied in the view point of integrability looking for a second independent first
integral (see for instance [3, 11, 12, 21] and the references therein).

A relevant result providing a method that gives a necessary condition for the existence of an
additional meromorphic first integral for Hamiltonian systems with homogeneous potential was
given by Morales and Ramis (see page 100 of [18] and the references therein). However system (1.2)
has no a homogeneous polynomial V . Nevertheless in [23] the authors were able to use Morales–
Ramis theory [17,18] and its generalization to higher order variational equations [19] to characterize
the meromorphic integrability of the Yang–Mills system (1.2). More precisely, due to the symmetry
of the parameters c and d in (1.1) and that if c 6= 0 with the transformation qi = xi/

√
c, pi = yi/

√
c

for i = 1,2 and setting a1 = a, a2 = b, a3 = d/c, a4 = e/c, the Hamiltonian with potential given in
(1.1) is equivalent to the Hamiltonian

H =
1
2
(p2

1 + p2
2)+

1
2
(a1q2

1 +a2q2
2)+

1
4

q4
1 +

1
2

a4q2
1q2

2 +
1
4

a3q4
2,

the authors in [23] prove the following result.

Theorem 1.1. System (1.2) is meromorphically integrable if and only if one of the following condi-
tions hold:

(i) d = 0. In this case the additional first integral is G = 1
2 p2

1 +
1
2 aq2

1 + cq4
1/4;

(ii) c = d = e. In this case the additional first integral is q1 p1−q2 p2;
(iii) a = b, d = 3c = 3e. In this case the additional first integral first integral is G = aq1q2 +

cq1q2(q2
1 +q2

2)+ p1 p2;
(iv) b= 4a, d = 3c, e= 8c, or b= 4a, d = 3e, c= 8e. In these cases the additional first integral is

G = p4
1+a2q4

1+c(q4
1+6q2

1q2
2+2aq2

1)p2
1−4cq3

1q2 p1 p2+cq4
1 p2

2+ca2q4
1+caq6

1+2acq4
1q2

2+
1
4 c2q8

1 + c2q6
1q2

2 + c2q4
1q4

2, or G = p4
1 + a2q4

1 + 8c(q4
1 + 6q2

1q2
2 + 2aq2

1)p2
1− 36cq3

1q2 p1 p2 +

8cq4
1 p2

2 +8ca2q4
1 +8caq6

1 +16acq4
1q2

2 +16c2q8
1 +64c2q6

1q2
2 +64c2q4

1q4
2;

(v) b = 4a, d = 6c, e = 16c, or b = 4a, d = 6e, c = 16e. In these cases the additional first inte-
gral is G = aq2

1q2−q2 p2
1 +q1 p1 p2 +

√
ca4

1q2 +2
√

cq2
1q3

2, or G = aq2
1q2−q2 p2

1 +q1 p1 p2 +

4
√

ca4
1q2 +8

√
cq2

1q3
2.
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Note that Theorem 1.1 can be reformulated as follows:

Corollary 1.1. System (1.2) is meromorphically integrable if and only if it is polynomially inte-
grable and one of the conditions (i)–(v) in Theorem 1.1 hold.

Our main objective is to study when system (1.2) is completely integrable with Darboux func-
tions (see below for a definition). We recall that, as it will be clear below from its definition, not
all meromorphic functions are Darboux functions, and that not all Darboux functions are meromor-
phic functions. This shows that our results given in Theorem 1.2 and the results in [23] given in
Theorem 1.1 are independent.

To study the existence of Darboux first integrals we will use the well-known Darboux theory
of integrability. The Darboux theory of integrability in dimension 4 is based on the existence of
invariant algebraic hypersurfaces (or Darboux polynomials). For more details see [6, 7] and [15].
This theory is one of the best theories for studying the existence of first integrals for polynomial
differential systems.

A Darboux polynomial of system (1.2) is a polynomial f ∈ C[p1, p2,q1,q2]\C such that

2

∑
i=1

(
pi

∂ f
∂qi
− ∂V

∂qi

∂ f
∂ pi

)
= K f

for some polynomial K called the cofactor of f and with degree at most two.
Since on the points of the algebraic hypersurface f = 0, the vector field of system (1.2) is

tangent to it, it is thus formed by orbits of the vector field and so the hypersurface f = 0 is invariant
under the flow of system (1.2). It is called an invariant algebraic hypersurface. On the other hand, a
polynomial first integral (a first integral which is a polynomial) is a Darboux polynomial with zero
cofactor. We recall that if f 6∈R[p1, p2,q1,q2]\R is a Darboux polynomial then there exists another
Darboux polynomial f̄ (the conjugate of f ) with cofactor K̄ (the conjugate of K).

An exponential factor F = F(p1, p2,q1,q2) of system (1.2) is a function of the form F =

exp(g0/g1) 6∈ C with g0,g1 ∈ C[p1, p2,q1,q2] coprime satisfying that

2

∑
i=1

(
pi

∂F
∂qi
− ∂V

∂qi

∂F
∂ pi

)
= LF,

for some polynomial L = L(p1, p2,q1,q2) called the cofactor of F and with degree at most two.
We recall that if F ∈ C[p1, p2,q1,q2] \C is an exponential factor that is not real, then there exists
another exponential factor F̄ (the conjugate of F) with cofactor L̄ (the conjugate of L).

A Darboux first integral G of system (1.2) is a first integral of the form

G= f λ1
1 · · · f

λp
p Fµ1

1 · · ·F
µq

q , (1.3)

where f1, . . . , fp are Darboux polynomials and F1, . . . ,Fq are exponential factors and λ j,µk ∈ C for
j = 1, . . . , p and k = 1, . . . ,q. Note that a Darboux first integral is always a real function due to
the fact that if there are complex Darboux polynomials or complex exponential factors always also
appear their conjugates.

Our main result is the following one.

Theorem 1.2. The Hamiltonian system (1.2) is completely integrable with Darboux first integrals
if and only if it is polynomially integrable and one of the conditions (i)–(v) in Theorem 1.1 hold.
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As explained above, Theorems 1.1 and 1.2 are independent.

The proof of Theorem 1.2 is given in section 3. For this, we will restrict to the potentials that
do not satisfy any of the conditions (i)–(v) in Theorem 1.1, otherwise they are polynomially inte-
grable. First we will prove the non–existence of Darboux polynomial with non–zero cofactor for
the potentials not satisfying any of the conditions (i)–(v) in Theorem 1.1.

2. The Darboux polynomials with nonzero cofactor

It follows from Theorem 1.1 that the unique polynomial first integrals are the ones satisfying any of
the conditions (i)–(v) in Theorem 1.1. Therefore, we will only study the Hamiltonian system (1.2)
with potential (1.1) that do not satisfy any of the conditions (i)–(v) in Theorem 1.1. In particular,
we consider that d 6= 0.

Our main result in this section is the following.

Theorem 2.1. The Hamiltonian system (1.2) with potential (1.1) satisfying d 6= 0 has no irreducible
Darboux polynomials with non–zero cofactor.

To prove Theorem 2.1 we recall the following auxiliary result that was proved in [4].

Lemma 2.1. Let f be a polynomial and f =
s

∏
j=1

f α j
j its decomposition into irreducible factors

in C[x,y,z]. Then f is a Darboux polynomial if and only if all the f j are Darboux polynomials.

Moreover, if K and K j are the cofactors of f and f j, then K =
s

∑
j=1

α jK j.

Now we recall some properties of our Hamiltonian system (1.2) with homogenous potential
(1.1).

Let τ : C[p1, p2,q1,q2]→ C[p1, p2,q1,q2] be the automorphism

τ(p1, p2,q1,q2) = (−p1,−p2,−q1,−q2).

Proposition 2.1. If g is an irreducible Darboux polynomial for system (1.2) with cofactor

K = α0 +α1q1 +α2q2 +α3 p1 +α4 p2 +α5q2
1 +α6q1q2 +α7q1 p1 +α8q1 p2

+α9q2
2 +α10q2 p1 +α11q2 p2 +α12 p2

1 +α13 p1 p2 +α14 p2
2,

(2.1)

then f = g · τg is a Darboux polynomial invariant by τ with a cofactor of the form

Kτ = 2α0 +2α5q2
1 +2α6q1q2 +2α7q1 p1 +2α8q1 p2 +2α9q2

2 +2α10q2 p1

+2α11q2 p2 +2α12 p2
1 +2α13 p1 p2 +2α14 p2

2.
(2.2)

Proof. Since system (1.2) with V as in (1.1) is invariant under τ , τg is a Darboux polynomial of
system (1.2) with V as in (1.1) and with cofactor τ(K). Moreover, by Lemma 2.1, g · τg is also
a Darboux polynomial oof system (1.2) with V as in (1.1) and with cofactor K + τ(K). Therefore
again by Lemma 2.1, the cofactor of f is the Kτ which is given in (2.2).

We first study the Darboux polynomials of the Hamiltonian system (1.2) with potential (1.1) not
satisfying any of the conditions (i)–(v) in Theorem 1.1 and that are invariant by τ .
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Proposition 2.2. The Hamiltonian system (1.2) with potential (1.1) not satisfying any of the condi-
tions (i)–(v) in Theorem 1.1 and that are invariant by τ have no Darboux polynomials with non-zero
cofactor Kτ as in (2.2).

Proof. Let f be a Darboux polynomial of the Hamiltonian system (1.2) with potential (1.1) not
satisfying any of the conditions (i)–(v) in Theorem 1.1, that is invariant by τ and has non-zero
cofactor Kτ . We write it as f = ∑

n
j=0 f j(p1, p2,q1,q2) where each f j is a homogeneous polynomial

of degree j in the variables p1, p2,q1,q2 and is invariant by τ . Without loss of generality we can
assume that fn 6= 0 with n > 0. We have

p1
∂ f
∂q1

+ p2
∂ f
∂q2
− (aq1 + cq3

1 +dq1q2
2)

∂ f
∂ p1
−
(

bq2 +dq2
1q2 + eq3

2

)
∂ f
∂ p2

= Kτ f , (2.3)

where Kτ is as in (2.2) with αi ∈ C not all zero.

The terms of degree n+1 in (2.3) satisfy

− (cq3
1 +dq1q2

2)
∂ fn

∂ p1
−
(

dq2
1q2 + eq3

2

)
∂ fn

∂ p2
=
(
2α5q2

1 +2α6q1q2 +2α7q1 p1

+2α8q1 p2 +2α9q2
2 +2α10q2 p1 +2α11q2 p2 +2α12 p2

1 +2α13 p1 p2

+2α14 p2
2
)

fn.

(2.4)

Solving the differential equation in (2.4) we have

fn = Fn

(
q1,q2, p2−

p1(3dq2
1q2 +3eq3

2)

3q1(cq2
1 +dq2

2)

)
exp

(
p1T1

27q3
1(cq2

1 +dq2
2)

3

)
(2.5)

where Kn is an arbitrary function and

T1 =−9c2q6
1(2α12 p2

1 +3α13 p1 p2 +6α14 p2
2 +3α7 p1q1 +6α8 p2q1 +6α5q2

1)

−3q5
1q2

(
9c2q1(α10 p1 +2α11 p2 +2α6q1)−3cd p1(α13 p1 +6α14 p2

+3α8q1)
)
−3q4

1q2
2(−4a2d p1(α13 p1 +6α14 p2)+6d

(
(2cα12 +dα14)p2

1

+3cα13 p1 p2 +6cα14 p2
2)−9cd(α11 p1−2α7 p1−4α8 p2)q1

+18c(2dα5 + cα9)q2
1)−3q3

1q3
2
(
18cdq1(α10 p1 +2α11 p2 +2α6q1)

−3d2 p1(α13 p1 +6α14 p2 +3α8q1)−3cep1(α13 p1 +6α14 p2 +3α8q1)
)

+9q2
1q4

2
(
−3ceα11 p1q1 +d2(2α12 p2

1 +3α13 p1 p2 +6α14 p2
2−3α11 p1q1

+3α7 p1q1 +6α8 p2q1 +6α5q2
1)+2d(2eα14 p2

1 +6cα9q2
1)
)

+9q1q5
2
(
−3d2q1(α10 p1 +2α11 p2 +2α6q1)+dep1(α13 p1 +6α14 p2

+3α8q1)
)
−9q6

2(2e2
α14 p2

1−3deα11 p1q1 +6d2
α9q2

1).

(2.6)

Let

Y = p2−
p1(3dq2

1q2 +3eq3
2)

3q1(cq2
1 +dq2

2)
then p2 = Y +

p1(3dq2
1q2 +3eq3

2)

3q1(cq2
1 +dq2

2)
.

Then we can rewrite (2.5) and (2.6) as

fn = Kn(q1,q2,Y )exp
(

p1T̃1

27q3
1(cq2

1 +dq2
2)

3

)
,
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where T̃1 = T̃1(q1,q2, p1,Y ) = T1(q1,q2, p1, p2). Since fn must be a polynomial and the function
Kn in the variables q1,q2, p1 and Y does not depend on p1, we must have T̃1 = T1 = 0. Computing
the coefficient in T1 of q2

1q6
2 we get 54d2α9 = 0. Since d 6= 0 (otherwise the potential V in (1.1)

would satisfy condition (i) in Theorem 1.1) we get α9 = 0. Then the coefficients in T1 of p2
2q4

1q3
2,

q4
1q4

2, q4
1 p2

1q2
2 and q2

1q4
2 p2

2 are, respectively, −54d2α11, −54d2α9, −18d2α12 and 36d2α14. Setting
them equal to zero we obtain α9 = α11 = α12 = α14 = 0. Now computing in T1 the coefficients of
q5

1q2
2, q5

1q3
2 and p2

1q5
1q2 we get−54d2α8,−54d2α6 and 3d2α13. Setting them equal to zero we obtain

α6 = α8 = α13 = 0. Finally, the coefficients of p1q5
1q2

2, q6
1q2

2 and p1q4
1q3

2 are, respectively,−27d2α7,
−54d2α5 and −27d2α10. Setting them equal to zero we get α6 = α7 = α10 = 0. In short, we have
proved that Kτ = 2α0.

Now we show that α0 = 0. If α0 6= 0, from the terms of degree 0 in (2.3) we have α0 f0 = 0, and
so f0 = 0. We consider four different cases: assume first that a = b = 0. In this case the terms of
degree 1 in (2.3) become

p1
∂ f1

∂q1
+ p2

∂ f1

∂q2
= 2α0 f1.

Solving it we get

f1 =C1

(
p1, p2,

p1q2− p2q1

p1

)
exp

(
2α0q1

p1

)
.

Since f1 must be a polynomial and α0 6= 0 we must have C1 = 0 and thus f1 = 0. Proceeding
inductively we get that f j = 0 for j = 2,3, . . . ,n in contradiction with the fact that fn 6= 0. This
implies that α0 = 0, i.e., Kτ = 0 and concludes the proof of the proposition in this case.

Assume now a = 0 and b 6= 0. Then the terms of degree 1 in (2.3) become

p1
∂ f1

∂q1
+ p2

∂ f1

∂q2
−aq1

∂ f1

∂ p1
= 2α0 f1.

Solving it we get

f1 =C1

(
p1, p2,

q1

p1
−

arctan
(√

bq2
p2

)
√

b

)
exp

(
2α0q1

p1

)
.

Proceeding as above, since f1 must be a polynomial and α0 6= 0 we must have that C1 = 0 and thus
f1 = 0. Proceeding inductively we get that f j = 0 for j = 2,3, . . . ,n in contradiction with the fact
that fn 6= 0. This implies that α0 = 0, i.e., Kτ = 0 and concludes the proof of the proposition in this
case.

Now consider the case a 6= 0 and b = 0. Then the terms of degree 1 in (2.3) become

p1
∂ f1

∂q1
+ p2

∂ f1

∂q2
−bq2

∂ f1

∂ p2
= 2α0 f1.

Solving it we get

f1 =C1

(
p1, p2,

q2

p2
−

arctan
(√

aq1
p1

)
√

a

)
exp

(
2α0q2

p2

)
.

Proceeding as above, since f1 must be a polynomial and α0 6= 0 we must have that C1 = 0 and thus
f1 = 0. Proceeding inductively we get that f j = 0 for j = 2,3, . . . ,n in contradiction with the fact
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that fn 6= 0. This implies that α0 = 0, i.e., Kτ = 0 and concludes the proof of the proposition in this
case.

Finally, assume ab 6= 0. Then the terms of degree 1 in (2.3) become

p1
∂ f1

∂q1
+ p2

∂ f1

∂q2
−aq1

∂ f1

∂ p1
−bq2

∂ f1

∂ p2
= 2α0 f1.

Solving it we get

f1 =C1

(
p1, p2,

arctan
(√

aq1
p1

)
√

a
+

arctan
(√

bq2
p2

)
√

b

)
exp

(
2α0√

a
arctan

(√aq1

p1

)))
.

Proceeding as above, since f1 must be a polynomial and α0 6= 0 we must have that C1 = 0 and thus
f1 = 0. Proceeding inductively we get that f j = 0 for j = 2,3, . . . ,n in contradiction with the fact
that fn 6= 0. This implies that α0 = 0, i.e., Kτ = 0 and concludes the proof of the proposition.

Proof of Theorem 2.1. Let g be an irreducible Darboux polynomial of the Hamiltonian system
(1.2) with potential (1.1) not satisfying any of the conditions (i)–(v) in Theorem 1.1 and with non-
zero cofactor K of the form in (2.1). Then, from Proposition 2.1, we can assume that f = g · τg is
a Darboux polynomial of the Hamiltonian system (1.2) with potential (1.1) not satisfying any of
the conditions (i)–(v) in Theorem 1.1 and invariant by τ , with degree 2n and non–zero cofactor Kτ

of the form in (2.2). From Proposition 2.2, we get that Kτ = 0, otherwise we get a contradiction.
Hence, f must be a polynomial first integral of the Hamiltonian system (1.2)with potential (1.1)
not satisfying any of the conditions (i)–(v) in Theorem 1.1. Hence, f is of the form f = H2n Then,
from the definition of f and since H and g are irreducible, invariant by τ , and g, τg have the same
dimension, it follows that g=Hn, in contradiction with the fact that the cofactor of g is not zero.

3. Proof of Theorem 1.2

In order to proof Theorem 1.2 we will introduce some well-known results. The first one whose
whose proof and geometrical meaning is given in [4, 16] is the following.

Proposition 3.1. The following statements hold.

(a) If E = exp(g0/g) is an exponential factor for the polynomial system (1.2) and g is not a
constant polynomial, then g = 0 is an invariant algebraic hypersurface.

(b) Eventually eg0 can be an exponential factor, coming from the multiplicity of the infinite
invariant hyperplane.

The proof of the following results is given in [8].

Theorem 3.1. If system (1.2) has a rational first integral then either it has a polynomial first integral
or two Darboux polynomials with the same nonzero cofactor.

Theorem 3.2. Suppose that system (1.2) admits p Darboux polynomials and with cofactors Ki and
q exponential factors Fj with cofactors L j. Then there exists λ j,µ j ∈ C not all zero such that

q

∑
i=1

λkKi +
q

∑
i=1

µiLi = 0

if and only if the function G given in (1.3) (called of Darboux type) is a first integral of system (1.2).
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In view of Theorems 2.1 and 3.2 if G is a Darboux first integral then it must be of the form
G = Fµ1

1 · · ·F
µq

q with ∑
q
i=1 µiLi = 0 and such that Fi = exp(gi/H j) with j ∈ N, cofactor µiLi being

gi a polynomial. Take

h =
q

∑
i=1

µigi

H j .

Note that G = exp(h) being h a rational function, that has cofactor L = ∑
q
i=1 µiLi = 0 and that

satisfies, after simplifying by G

p1
∂g
∂q1

+ p2
∂g
∂q2
− (cq3

1 +dq1q2
2)

∂g
∂ p1
− (dq2

1q2 + eq3
2)

∂g
∂ p2

=
q

∑
i=1

µiLi = 0.

In particular h must be a rational first integral. However, in view of Theorems 2.1 and 3.1, if system
(1.2) has a potential (1.1) not satisfying any of the conditions (i)–(v) in Theorem 1.1, then it cannot
have rational first integrals. This completes the proof.
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d’équations différentielles algébriques, C. R. Math. Acad. Sci. Paris 86 (1878), 1012–1014.
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