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The Szekeres system is a four-dimensional system of first-order ordinary differential equations with nonlin-

ear but polynomial (quadratic) right-hand side. It can be derived as a special case of the Einstein equations,

related to inhomogeneous and nonsymmetrical evolving spacetime. The paper shows how to solve it and find

its three global independent first integrals via Darboux polynomials and Jacobi’s last multiplier method. Thus

the Szekeres system is completely integrable. Its two-dimensional subsystem is also investigated: we present

its solutions explicitly and discuss its behaviour at infinity.
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1. Introduction. The Szekeres system

Szekeres in [11] presented a new class of exact solutions of Einstein equations for irrotational

dust. The limiting case of Szekeres models are Lemaı̂tre–Tolman models, which in turn involve

Friedmann–Lemaı̂tre–Robertson–Walker models as their limiting case [2].

The Szekeres models can be written down in the form of real autonomous fourth-order dynam-

ical system: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ ′ =−θρ ,

θ ′ =− 1
3
θ 2 −6σ2 − 1

2
ρ ,

σ ′ = σ2 − 2
3
θσ −E,

E ′ =−3Eσ −θE − 1
2
ρσ ,

(1.1)

where the variables dependent on the time t with respect to which they are differentiated are respec-

tively: energy density ρ , expansion scalar θ , shear σ , and the electrical component of the Weyl

tensor E.
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When we put two of the four variables as equal to zero, σ = 0 and E = 0, then the Szekeres

system (1.1) reduces to the following dynamical system{
ρ ′ =−θρ ,

θ ′ =− 1
3
θ 2 − 1

2
ρ ,

(1.2)

which describes the Friedmann–Lemaı̂tre–Robertson–Walker models.

It is worth noting that the Szerekes models are a particular case of more general Silent Uni-

verse models [3], which are described by a sixth order dynamical system with energy density ρ ,

expansion scalar θ , two independent eigenvalues σ1 and σ2 of the traceless shear tensor σab, and

eigenvalues E1 and E2 of the traceless component of the Weyl tensor Eab as variables. If σ1 =σ2 =σ
and E1 = E2 = E, then the Silent Universe models reduce to the Szekeres system (1.1).

Recently there can be noted ever growing interest in Szekeres’s solutions. They have been

applied in cosmology in describing formation and evolution of structure in the Universe, as well

as in investigating effects related to propagation of light in nonhomogeneous universe models (see

e.g. [1, 10]).

Our purpose is to show the complete integrability of the system (1.1) by finding its three inde-

pendent first integrals. The paper consists of seven sections and an appendix. In the second section,

we introduce the notion of first integral. Section 3 contains the description of the Darboux poly-

nomials method and two first integrals of the system (1.1) resulting from the method’s application.

Next, in Section 4, one can find the key transformation of the system (1.1), the Jacobi’s last multi-

plier method, and the third independent first integral.

Sections 5 and 6 describe the way to solve the transformed system (4.1) directly and present

some of its special solutions, contained in an invariant two-dimensional subspace. In Section 7, we

provide the conclusions and pose a number of further questions. Appendix A explains the Poincaré

compactification of the invariant two-dimensional subsystem of (4.1), presented on Fig. 1.

2. Preliminaries

We introduce our notions with respect to a system of n autonomous ordinary differential equations

defined on an open set U ⊂ Rn

ẋ = f(x), (2.1)

where x=(x1, . . . ,xn), f=( f1, . . . , fn), and fi is a C 1 real-valued function on U for every i= 1, . . . ,n.

By a (global) first integral of a system (2.1) we understand a C 1 function I = I(x) : V → R,

defined on an open dense subset V ⊂U , such that

δf(I) :=
n

∑
i=1

fi
∂ I
∂xi

= 0.

Let I1, . . . , Ik be k first integrals of (2.1). We call them independent first integrals if there exists an

open dense subset V ⊂U such that V ⊂ dom Ii for every i = 1, . . . ,k and the rank of the matrix⎡
⎢⎢⎣

∂ I1

∂x1
(a) . . . ∂ I1

∂xn
(a)

...
. . .

...
∂ Ik
∂x1

(a) . . . ∂ Ik
∂xn

(a)

⎤
⎥⎥⎦
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is equal to k for every a ∈V . The definition of a first integral I restricts the dimension of the space

of possible gradient vectors
(

∂ I
∂x1

(a), . . . , ∂ I
∂xn

(a)
)

at a point a to n− 1. Therefore, the system (2.1)

has at most n−1 independent global first integrals.

3. Darboux polynomials method

Two rational first integrals for (1.1) can be found by the well-known method of Darboux [4], in a

broadly developed form (see e.g. [6]). The point is to find as many as possible Darboux polynomials
for the system.

Definition 3.1. A Darboux polynomial of the system (2.1) is a polynomial J = J(x)∈R[x] fulfilling

an ‘eigen-equation’

δf(J) = μJ

with some polynomial μ = μ(x) ∈ R[x], called a cofactor.

Note that a Darboux polynomial J involves some geometrical information on the system (2.1),

as its zero-level sets are invariant hypersurfaces for the flow defined by the vector field δf. It follows

straight from the fact that

J(x) = 0 =⇒ δf(J)(x) = μ(x)J(x) = 0.

However, most important for us is the fact that sufficiently many Darboux polynomials form a

first integral.

Theorem 3.1 (Darboux [5]). Let f ∈ C[x]n be a polynomial vector field of degree d and assume
that δf admits q Darboux polynomials J1, . . . , Jq. Then, if q >

(n+d−1
n

)
, the system admits a first

integral of the form

I = Jλ1

1 · . . . · Jλq
q , λi ∈ C.

Applying this theorem to the real case of the Szekeres system, we need at least
(

4+2−1
4

)
= 5

Darboux polynomials to be sure to obtain a first integral. Here, however, just four are sufficient.

Algorithmic searching for a Darboux polynomial J consists in fixing the degree of J and solving

a (overdetermined) system of linear equations for its indefinite coefficients. Direct computation in

Mathematica [8] results in two Darboux polynomials of degree one for the Szekeres system:

J11 = ρ , μ11 =−θ ,

J12 = 6E +ρ , μ12 =−θ −3σ ,

and two of degree two:

J21 =−3(6E +ρ)+(θ +3σ)2, μ21 =−2

3
θ −2σ ,

J22 = 9E +θ 2 −3ρ −3θσ −18σ2, μ22 =−2

3
θ +σ .

There are no independent Darboux polynomials of degree three.
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Following the Darboux theory, we check whether there exists a first integral of the form

Jλ11

11 Jλ12

12 Jλ21

21 Jλ22

22 , λi j ∈ R.

It turns out that for λ12 = − 1
3
(λ11 + 2λ21), λ22 = −λ11 one obtains first integrals. Such λ s span a

two-dimensional vector space, so we get two families of independent first integrals. Let us fix one

of each family:

I1 =
−3(6E +ρ)+(θ +3σ)2

(6E +ρ)2/3
for λ11 = 0, λ21 = 1,

I2 =
(6E +ρ)1/3(9E +θ 2 −3ρ −3θσ −18σ2)

ρ
for λ11 =−1, λ21 = 0.

One can easily check that the integrals are independent on the common domain {J11 ·J12 ·J21 ·J22 �=
0}, which is an open dense subset of R4, invariant under the flow. Note that λ s can be also chosen

so that to get rational integrals (e.g. I3
1 and I3

2 ).

4. Jacobi multiplier

In order to prove the complete integrability of the four-dimensional system (1.1), we need an addi-

tional global first integral, functionally independent of I1, I2. We apply here the Jacobi’s last multi-

plier method.

4.1. Change of variables

First we introduce new variables

ε := 6E +ρ , β :=−3σ −θ .

The new variables are related to one of the Darboux polynomials of degree one: ε = J12, β = μ12.

The system (1.1) in the variables (ρ,θ ,β ,ε) can be rewritten as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ ′ =−θρ ,

θ ′ =−θ 2 − 2
3
β 2 − 4

3
βθ − 1

2
ρ ,

β ′ = 1
3
β 2 + 1

2
ε ,

ε ′ = εβ .

(4.1)

We also transform the Darboux polynomials:

j11 = ρ , μ11 =−θ ,

j12 = ε , μ12 = β ,

j21 =−1

3
β 2 + ε , μ21 =

2

3
β ,

j22 =
1

6
(4β 2 +6βθ −3ε +9ρ), μ22 =−1

3
β −θ ,

and the previously chosen two independent first integrals now get the form I1,2(ρ,θ ,σ ,E) �→
i1,2(ρ,θ ,β ,ε), where:

i1 :=
3ε −β 2

ε2/3
, i2 :=

3
√

ε
(
4β 2 +6βθ −3ε +9ρ

)
6ρ

.
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4.2. Outline of the method

The Jacobi’s last multiplier method for an n-dimensional system ẋ = f(x) allows to find an addi-

tional first integral if n− 2 integrals are known. In the original formulation, the system is locally

volume-preserving, but the theorem giving this integral explicitly is also valid if the system admits

a Jacobi multiplier M.

Definition 4.1. A Jacobi multiplier for the system (2.1) is a non-zero C 1 real function M = M(x)
so that

div(Mf) =
n

∑
i=1

∂ (M fi)

∂xi
= 0.

In other words, the system multiplied by M becomes a volume-preserving one.

There are several methods for finding such a multiplier. If the system is polynomial, one often

searches for a multiplier of the form xααα = xα1

1 · . . . · xαn
n by solving a system of linear equations for

αs. The method is presented briefly in [5]a.

In the first place, we present a system S of n first-order ordinary differential equations in the

matrix form

S : ẋi = xi

m

∑
j=1

Ai j

n

∏
k=1

xB jk
k , i = 1, . . . ,n

where A ∈ Mn,m(R), B ∈ Mm,n(K). Typically, K=N, Z or Q. For a system with a polynomial vector

field, we have in general K=N∪{−1}. The matrices A and B are determined uniquely if we do not

allow zero line vectors and order the monomials lexicographically. We also specify S = S(A,B,x, t).
The Szekeres system (4.1) in the new variables is expressed by S = S(A,B,(ρ,θ ,β ,ε), t), where

A =

⎛
⎜⎜⎝

0 0 0 −1 0

− 2
3

0 − 4
3
−1 − 1

2

0 1
2

1
3

0 0

0 0 1 0 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎜⎜⎝

0 −1 2 0

0 0 −1 1

0 0 1 0

0 1 0 0

1 −1 0 0

⎞
⎟⎟⎟⎟⎠ .

Theorem 4.1 (Goriely [5], Prop. 4.11). Let S(A,B,x, t) be a polynomialb system and M = BA.
Define v ∈ Cm to be the vector of components vi =−Mii −∑n

j=1 A ji.
If ηηη .v = 0, ∀ηηη ∈ Ker(M), then the system S(A,B) admits a Jacobi multiplier of the form xααα , where
ααα is a solution of AT ααα = v.

Using this method, we obtain ααα = (−3,0,0,− 1
3
), which corresponds to the multiplier for (4.1):

M(ρ,θ ,β ,ε) = ρ−3ε−1/3.

With M, i1, i2, the assumptions of the following theorem are fulfilled:

Theorem 4.2 (Jacobi [5]). Consider an n-dimensional vector field ẋ = f(x) and assume that it
admits a Jacobi multiplier M = M(x) and (n−2) first integrals Ii(x) = ci, i = 1, . . . ,n−2. Then the

aProp. 4.11 in [5] actually involves an error. We have corrected it here.
bOriginally, quasinomial, which is too general for this case.
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system admits an extra first integral given by

In−1 =
∫ M̃

Δ̃
(

f̃n dxn−1 − f̃n−1 dxn
)

, (4.2)

where (∼) denotes quantities expressed in the variables (c1, . . . ,cn−2,xn−1,xn) and

Δ =

∣∣∣∣∣∣∣∣∣

∂x1
I1 ∂x2

I1 . . . ∂xn−2
I1

∂x1
I2 ∂x2

I2 . . . ∂xn−2
I2

...
...

. . .
...

∂x1
In−2 ∂x2

In−2 . . . ∂xn−2
In−2

∣∣∣∣∣∣∣∣∣
.

4.3. Third integral of the system (1.1)

Direct computation leads to the third integral of the system (4.1):

i3 =−
√

i31
3
√

ε(−β −2θ)

ρ
+

3β
√

i1i2
ε2/3

−3(3i2 − i1)arctan

( −β√
i1 3
√

ε

)
.

Substituting i1 �→ (3ε −β 2)ε−2/3 and then ε �→ 6E +ρ , β �→ −3σ −θ , we finally obtain the first

integral for the original system (1.1):

I3 =

3
(−E

(
18E +2θ 2 +3ρ

)
+3θσ(2E +ρ)+9σ2(4E +ρ)

)
arctan

(
θ+3σ√

18E−(θ+3σ)2+3ρ

)
ρ(6E +ρ)2/3

+

+

√
18E − (θ +3σ)2 +3ρ

(
9E(σ −θ)+σ

(
(θ +3σ)2 +6ρ

))
ρ(6E +ρ)2/3

.

The Jacobi theorem, however, gives the third integral just locally. One can readily notice that I3 is

defined for ρ(6E+ρ) = J11 ·J12 �= 0 — which is not a problem here, and (18E−(θ +3σ)2+3ρ) =
−J21 > 0, which restricts the domain essentially.

Let us extend it to the common domain {J11 · J12 · J21 · J22 �= 0}. We use the fact that the above

formula is a complex-valued function and that arctan(ix) = −iartanh(x). The third integral I3 can

be thus extended as follows:

• for J11 · J12 · J22 �= 0, J21 < 0:

3
(−E

(
18E +2θ 2 +3ρ

)
+3θσ(2E +ρ)+9σ2(4E +ρ)

)
arctan

(
θ+3σ√

18E−(θ+3σ)2+3ρ

)
ρ(6E +ρ)2/3

+

+

√
18E − (θ +3σ)2 +3ρ

(
9E(σ −θ)+σ

(
(θ +3σ)2 +6ρ

))
ρ(6E +ρ)2/3

,
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• for J11 · J22 �= 0, J21 > 0, J12 < 0:

3
(−E

(
18E +2θ 2 +3ρ

)
+3θσ(2E +ρ)+9σ2(4E +ρ)

)
artanh

(
θ+3σ√

−(18E−(θ+3σ)2+3ρ)

)
ρ(6E +ρ)2/3

−

−
√
−(18E − (θ +3σ)2 +3ρ)

(
9E(σ −θ)+σ

(
(θ +3σ)2 +6ρ

))
ρ(6E +ρ)2/3

,

• for J11 · J22 �= 0, J21 > 0, J12 > 0:

3
(−E

(
18E +2θ 2 +3ρ

)
+3θσ(2E +ρ)+9σ2(4E +ρ)

)
arcoth

(
θ+3σ√

−(18E−(θ+3σ)2+3ρ)

)
ρ(6E +ρ)2/3

−

−
√
−(18E − (θ +3σ)2 +3ρ)

(
9E(σ −θ)+σ

(
(θ +3σ)2 +6ρ

))
ρ(6E +ρ)2/3

.

Furthermore, we separate cases J12 < 0 and J12 > 0, because artanh as a real function is defined

only on the interval (−1,1) and the domain of arcoth is (−∞,−1)∪ (1,+∞). One can check that

∣∣∣∣∣ θ +3σ√
−(18E − (θ +3σ)2 +3ρ)

∣∣∣∣∣< 1 ⇐⇒ 6E +ρ = J12 < 0.

As mentioned before, the domain {J11 · J12 · J21 · J22 �= 0}, common for I1, I2, I3, is an open, dense

and invariant set and therefore we obtain three global independent first integrals for the Szekeres

system. Hence we can state the following

Theorem 4.3. The Szekeres system (1.1) is completely integrable.

5. Direct solving of the system (4.1)

After changing variables, the system (4.1) becomes separable and there arises a chance that it can

be also solved directly. Note that two last equations of (4.1) and one of the first integrals (i1) depend

on β and ε only, so now it is possible to investigate the reduced problem

β ′ =
1

3
β 2 +

1

2
ε , (5.1)

ε ′ = εβ . (5.2)

The behaviour of the flow on the βOε plane and at infinity is presented on Fig. 1; the system defined

by (5.1) and (5.2) is transformed (see Appendix) to the Poincaré disc.

Using the level sets of the first integral i1 = i1(β ,ε) and the fact that the origin is the only

stationary point of the system, we conclude that the system (4.1) admits a family of homoclinic

orbits from the origin, contained in the βOε plane.
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-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

X

Y

Fig. 1. Dynamics of the system (4.1) on the Poincaré disc of the βOε plane, transformed to XOY (see Appendix).

The two-dimensional problem (5.1) and (5.2) can be reduced further to one dimension by setting

the first integral i1 =
3ε−β 2

ε2/3 = const. This leads to the substitution

β =±
√

3ε − i1ε2/3, (5.3)

and then by replacing β in (5.2), we obtain an autonomous first-order differential equation

ε ′(t) =±ε
√

3ε − i1ε2/3.

By integrating we obtain the implicit formula for ε = ε(t):

9arctan

(√
−i1ε2/3 +3ε√

i1ε1/3

)

i3/2
1

+
3
√
−i1ε2/3 +3ε

i1ε2/3
= t0 ± t for i1 > 0, or (5.4)

9artanh

(√
−i1ε2/3 +3ε√−i1ε1/3

)

(−i1)3/2
+

3
√
−i1ε2/3 +3ε

i1ε2/3
= t0 ± t for i1 < 0, (5.5)

where t0 ∈ R is a constant of integration.
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The substitution (5.3) allows us to find directly β . Subsequently, setting i2 = const, one can also

substitute

θ =
−9ρ −4β 2 +3ε

6β
+

i2ρ
β 3
√

ε
(5.6)

to the first equation of (4.1) to obtain a Bernoulli differential equation for ρ:

ρ ′ =
(

2

3
β − ε

2β

)
ρ +

(
3

2β
− i2

β 3
√

ε

)
ρ2, (5.7)

which can be solved in quadratures.

6. Reparametrized solutions on βOε plane

6.1. Particular solutions

There are also two particular families of solutions contained in the βOε plane (i.e. in the set {ρ =

θ = 0}) that cannot be put in the form (5.4). These are the solutions contained in the curve ε(t) = 0

or i1 = 0.

They are easy to be calculated directly. In order to determine the family of solutions contained

in ε = 0, we substitute ε(t) = 0 to Equation (5.1) and get

β ′(t) =
1

3
β 2(t) =⇒ β (t) =− 3

t − t0
or β (t) = 0.

Therefore the first family of solutions consists of
(
− 3

t−t0
,0
)

, for t ∈ (−∞, t0) or t ∈ (t0,∞) and the

stationary solution (0,0) for t ∈ R.

The other special case is i1 =
3ε−β 2

ε2/3 = 0, when the solutions’ images lie in the curve ε = 1
3
β 2

(excluding the point (0,0)). Substituting this formula to Eq. (5.1), we obtain

β ′(t) =
1

2
β 2(t) =⇒ β (t) =− 2

t − t0
=⇒ ε(t) =

4

3(t − t0)
2

,

so the second family of solutions is
(
− 2

t−t0
, 4

3(t−t0)2

)
, for t ∈ (−∞, t0) or t ∈ (t0,∞).

According to Fig. 2, the curves ε = 0 and ε = 1
3
β 2 divide the βOε plane into three areas where

the solutions behave differently.

6.2. Generic solutions

We are now going to give explicitly all the other solutions on the βOε plane by reparametrising the

independent variable t, separately on each of three areas.

Area I: {3ε −β 2 > 0}
Consider a new independent variable η ∈ (0,π), related to t through a diffeomorphism

(0,π) � η �−→ t(η) =
1

2
α(2η − sin(2η)) ∈ (0,πα)
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I

IIII

III

-4 -2 0 2 4

-4

-2

0

2

4

Fig. 2. Dynamics of the system (4.1) on the βOε plane. Solutions (β (t),ε(t)) are divided into three classes: ε > β 2/3

(white Area I), β 2/3 > ε > 0 (light gray Area II consisting of two parts), ε < 0 (gray Area III).

for some parameter α > 0. Define also functions

β̄ (η) =−3cot(η)csc2(η)

α
, ε̄(η) =

3csc6(η)

α2
.

Then there is a family of solutions of (5.1) and (5.2), fulfilling the condition 3ε −β 2 > 0, given by

the formula

β (t) = β̄ (η(t)), ε(t) = ε̄(η(t)).

Note that each solution curve of Area I can be represented in the above form. The solutions are

saturated, because (β̄ , ε̄)→ (−∞,+∞) with η → 0 and (β̄ , ε̄)→ (+∞,+∞) with η → π . The curves

are symmetric as β̄ (η) =−β̄ (π −η) and ε̄(η) = ε̄(π −η), with minima
(
β̄
(π

2

)
, ε̄
(π

2

))
=
(
0, 3

α2

)
,

and their images cover the Area I as α ∈ (0,∞). The first integral is related to the parameter α
through i1 = 34/3α−2/3.

Area II: {β 2/3 > ε > 0}
Let us define a reparametrisation on this area as

(0,∞) � η �−→ t(η) = α(sinh(η)−η) ∈
{
(−∞,0) for α < 0,

(0,∞) for α > 0.
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Then there is a family of solutions of (5.1) and (5.2), fulfilling the conditions 3ε −β 2 < 0, ε > 0,

given by β (t) = β̄ (η(t)), ε(t) = ε̄(η(t)), where

β̄ (η) =− 3

α
sinh(η)

(cosh(η)−1)2
, ε̄(η) =

3

4α2
csch6

(η
2

)
.

One should observe that for α < 0, the solutions lie on the left half of the area, because t ∈
(−∞,0), and then β (t) < 0. The solutions on the right part are defined for α > 0 and their time is

positive: t ∈ (0,+∞). Let us also mention that the relation between i1 and α is i1 =−34/3(2α)−2/3.

Area III: {ε < 0}
Define the reparametrisation on the last area as

(−∞,∞) � η �−→ t(η) =
1

12
α
(
2η − e−η + eη) ∈ (−∞,∞)

for α > 0. Then there is a family of solutions of (5.1) and (5.2), fulfilling the condition ε < 0, given

by β (t) = β̄ (η(t)), ε(t) = ε̄(η(t)), where:

β̄ (η) =
36(e−η (e−η −1))

α (e−η +1)3
, ε̄(η) =− 1728e−3η

α2 (e−η +1)6
.

As expected, the solutions are homoclinic to (0,0):

lim
η→±∞

β̄ (η) = 0 = lim
η→±∞

ε̄(η),

and symmetric with respect to the Oε axis, because β̄ is an odd function and ε̄ is even. The first

integral can be expressed as i1 =−9α−2/3.

7. Conclusion

The complete integrability of the Szekeres system (1.1) has been proven by giving the explicit for-

mulas for three independent global first integrals. Moreover, one can find two independent rational

integrals. However, the question if the system is completely integrable in the class of rational func-

tions is still open.

It is worth mentioning that we also investigated the more general, six-dimensional Silent Uni-

verse system [3] using similar methods. The Darboux polynomials method yields then one first

integral only and the Jacobi’s last multiplier method cannot be applied. We would also like to indi-

cate that both the Szekeres system and the Silent Universe system have no polynomial integrals.

It is a straightforward corollary from the Yoshida theorem [12, 13], because one can check that

the systems possess balances with the set of negative Kovalevskaya exponents which are not N-

independent. This fact can be also proven using the methods similar to those of Llibre and Valls [6].

More on this topic is to be found in our future papers.
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Appendix A. Poincaré compactification

This well-known method of studying the behaviour of the planar system at infinity by projecting it

onto a hemisphere (or further onto the equatorial plane) has been widely discussed in the literature

(see [7,9]). Here we shortly present the transformation of the system (5.1) and (5.2) to the Poincaré

disc, as shown on Fig. 1.

We start from the system on the plane βOε{
β ′ = 1

3
β 2 + 1

2
ε =: P(β ,ε),

ε ′ = εβ =: Q(β ,ε),
(A.1)

and then project it onto the unit sphere, tangent to the plane βOε at its origin in the point (0,0,1).

We use common coordinates (X ,Y,Z) on the upper hemisphere {X2 +Y 2 +Z2 = 1,Z � 0}, so that

the relation between them is

{
β = X

Z ,

ε = Y
Z ,

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X = β√
1+β 2+ε2

,

Y = ε√
1+β 2+ε2

,

Z = 1√
1+β 2+ε2

.

We transform the system (A.1) to the system on the upper hemisphere via the formula (s. [9])⎧⎪⎨
⎪⎩

X ′ = Z
((

1−X2
)

P
(X

Z ,
Y
Z

)−XY Q
(X

Z ,
Y
Z

))
,

Y ′ = Z
((

1−Y 2
)

Q
(X

Z ,
Y
Z

)−XY P
(X

Z ,
Y
Z

))
,

Z′ = Z2
(
X
(−P

(X
Z ,

Y
Z

))−Y Q
(X

Z ,
Y
Z

))
,

to obtain ⎧⎪⎪⎨
⎪⎪⎩

X ′ = X2(3Y Z+6Y 2−2)+2X4−3Y Z
6Z ,

Y ′ = XY(2X2+3Y Z+6Y 2−6)
6Z ,

Z′ = 1
6
X
(
2X2 +3Y (2Y +Z)

)
.

Eventually, we would like to get a two-dimensional system on the Poincaré disc {(X ,Y ) : X2 +

Y 2 � 1}. It can be done by simply projecting it onto the XOY plane and setting Z �→ √
1−X2 −Y 2.

We should also rescale it by multiplying by
√

1−X2 −Y 2 to study the behaviour of the system at

infinity. The system on the Poincaré disc is of the form (as presented on Fig. 1):

⎧⎨
⎩

X ′ = 1
6

(
−2X4 −X2

(
3Y

√
1−X2 −Y 2 +6Y 2 −2

)
+3Y

√
1−X2 −Y 2

)
,

Y ′ =− 1
6
XY
(

2X2 +3Y
√

1−X2 −Y 2 +6Y 2 −6
)

,

where (β ,ε) is transformed to (X ,Y ).
It can be readily checked that this system involves five stationary points: (0,0) – the only sta-

tionary point on βOε plane – and four points at infinity: S− = (−1,0), K+ = (0,1), S+ = (1,0),

K− = (0,−1). The points S−, S+ are saddles, whereas K−, K+ have a more complicated nature,

similar to the central degenerate stationary point (0,0), i.e. the Jacobian matrix of the vector field at

those points has two conjugated zero eigenvalues.
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