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Let pN (z; t) be a (monic) time-dependent polynomial of arbitrary degree N in z, and let zn ≡ zn (t) be its N
zeros: pN (z; t) = ∏

N
n=1 [z− zn (t)]. In this paper we report a convenient expression of the k-th time-derivative

z(k)n (t) of the zero zn (t). This formula plays a key role in the identification of classes of solvable dynamical
systems describing the motion of point-particles moving in the complex z-plane while nonlinearly interacting
among themselves; one such example, featuring many arbitrary parameters, is reported, including its variation
describing the motion of many particles moving in the real Cartesian xy-plane and interacting among them-
selves via rotation-invariant Newtonian equations of motion (”accelerations equal forces”).

Keywords: time-derivatives of time-dependent polynomials, time-derivatives of the zeros of time-dependent
polynomials, solvable dynamical systems, solvable many-body problems, isochronous many-body problems

1. Introduction

Let pN (z; t) ≡ pN (z;~c(t) ;z(t)) be a (monic) time-dependent (t =time) polynomial of degree N in
z, where~c≡~c(t) is the N-vector of its coefficients cm ≡ cm (t) and z≡ z(t) is the unordered set of
its N zeros zn ≡ zn (t):

pN (z; ~c(t) ; z(t))≡ pN (z; t) = zN +
N

∑
m=1

[
cm (t) zN−m]= N

∏
n=1

[z− zn (t)] . (1.1a)

Note that the notation pN (z;~c(t) ;z(t)) is somewhat redundant, because clearly this time-dependent
monic polynomial is uniquely identified by assigning either its N coefficients cm (t) or its N zeros
zn (t). Indeed the N coefficients cm (t) can themselves be explicitly expressed in terms of the N zeros
zn (t) as follows:

cm (t) =
(−1)m

m!

N

∑
n1,n2,...,nm=1

∗

{
m

∏
j=1

[
zn j (t)

]}
, m = 1,2, ...,N . (1.1b)

Notation 1.1. Above and hereafter N is an arbitrary positive integer (N ≥ 2), indices such as n, n j,
m, ` run over the integers from 1 to N (unless otherwise indicated) and the ”∗-modified” summa-
tion symbol ∑

N
n1,n2,...,nm=1

∗ indicates that this ”∗-modified” sum runs over each of the N integers n1,

n2, ..., nm from 1 to N with the restriction that these m indices be all different among themselves;
while the ”∗n∗-modified” summation symbol ∑

N
n1,n2,...,nm=1

∗n∗ (see below) indicates that the sum
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runs over each of the N integers n1, n2, ..., nm from 1 to N with the restriction that these m indices
be all different among themselves and moreover be all different from the (external) index n. Note
that this implies that the ”∗-modified” sum vanishes identically (whatever its argument) if m > N
(which is not the case in (1.1b)) and likewise the ”∗n∗-modified” sum vanishes identically if m≥N,
as implied by the standard convention according to which a void sum vanishes; and note that we
also assume hereafter the standard convention according to which a void product equals unity (see
below). Let us emphasize that all variables and parameters—except of course indices—are gener-
ally considered to be complex numbers (unless otherwise indicated: for instance the time t is real,
see above). And we denote below by i the imaginary unit, so that i2 =−1.

Clearly the time-derivative of arbitrary order k of this polynomial, p(k)N (z; t)≡ (d/dt)k pN (z; t),
is expressed in terms of the k-th time-derivative c(k)m (t) ≡ (d/dt)k cm (t) of its N coefficients cm (t)
by the following formula:

p(k)N (z; t)≡ (d/dt)k pN (z; t) =
N

∑
m=1

[
c(k)m (t) zN−m

]
, k = 1,2,3, ... . (1.2)

The first goal of this paper is to report a formula which instead expresses the time-derivative
p(k)N (z, t) in terms of the time-derivatives (of order from 1 to k) of the N zeros zn (t) of the polynomial
pN (z; t). A version of this formula is rather directly obtained by inserting the k-th time-derivative
c(k)m (t) of the right-hand side of (1.1b),

c(k)m (t) =
(−1)m

m!

(
d
dt

)k
{

N

∑
n1,n2,...,nm=1

∗
m

∏
`=1

[zn` (t)]

}
, m = 1,2, ...,N , (1.3)

in the right-hand side of (1.2). But this version is not convenient for our main goal, see below. Indeed
the motivation for obtaining another version of this formula, (1.2), is to evince from it an expression
of the k-th time-derivative of any one of the zeros zn (t) in terms of the k-th time-derivative c(k)m (t)
of the N coefficients cm (t) and of the N zeros zm (t) and their time-derivatives of order less than
k, because such a formula plays a key role in the identification of classes of solvable dynamical
systems describing the motion of N point-particles moving in the complex z-plane while nonlinearly
interacting among themselves. Indeed a version of this formula—but only for k = 1,2—was already
obtained in [1] and used for this purpose in [1–4], and—but only for k = 3,4—in [5].

These formulas are reported in the following Section 2. In Section 3 we indicate how solvable
dynamical systems—more general than those treated in the papers quoted above—are identified by
using, for arbitrary (positive integer) values of k, the key formula reported in Section 2; and we
describe such an example featuring many arbitrary parameters, including its variation describing
the motion of many particles moving in the real Cartesian xy-plane and interacting among them-
selves via rotation-invariant Newtonian equations of motion (”accelerations equal forces”). Explicit
versions of the key formula expressing z(k)n (t) are displayed in the Appendix for k from 1 to 6 and
N arbitrary (N ≥ k), and for N = 2 and k arbitrary (k ≥ 2).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

475



M. Bruschi and F. Calogero / A convenient expression of the time-derivative z(k)n (t)

2. A convenient formula

A compact way to express the k-th time-derivative p(k)N (z; t) of the polynomial pN (z; t) , see (1.1a),
reads

dk pN (z; t)
dtk ≡ p(k)N (z; t) = pN (z; t) bN,k (z; t) , (2.1a)

with the following definition of the function bN,k (z; t): let

qN,k (x) =

[
N

∑
j=1

(x j)

]k

, (2.1b)

where of course the N quantities x j are the N components of the unordered set x; then expand this
expression of qN,k (x) in powers of x j and perform, for every positive value of the exponent r of
(x j)

r, the replacement

(x j)
r =⇒− [z− z j (t)]

−1 z(r)j (t) , r = 1,2, ...,k , (2.1c)

where of course, above and hereafter,

z(r)j (t)≡
dr z j (t)

dt
, r = 1,2,3, ... . (2.1d)

This yields bN,k (z; t).
In a previous version of this paper a proof of this result was provided, because we had been

unable to find this formula in the literature; but a competent referee convinced us that this result is
not sufficiently new to justify a report of its proof.

To apply this rule it is convenient for our purposes to reformulate the standard multinomial
theorem according to which (see, for instance, [6])[

N

∑
j=1

(x j)

]k

=
k

∑
k1, k2,...,kN=0;

k1+k2+···+kN=k

[(
k!

k1! k2! · · · kN!

) N

∏
j=1

(x j)
k j

]
, (2.2)

by treating separately the terms with vanishing exponents k j, so that[
N

∑
j=1

(x j)

]k

=
min(N,k)

∑
s=1

[bN,k,s (x)] , (2.3a)

with (see Notation 1.1)

bN,k,s (x) =
(

k!
s!

) N

∑
n1,n2,...,ns=1

∗


k

∑
k1, k2,...,kN=1;

k1+k2+···+ks=k

[
s

∏
r=1

(xnr)
kr

kr!

] . (2.3b)

In these formulas, (2.3), s identifies of course the number of terms in the right hand side of (2.2)
with a nonvanishing exponent k j.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

476



M. Bruschi and F. Calogero / A convenient expression of the time-derivative z(k)n (t)

Then, via the rule described above (see, in particular, (2.1c)) one gets

bN,k (z; t) =
min(N,k)

∑
s=1

[
(−)s

(
k!
s!

) N

∑
n1,n2,...,ns=1

∗ ·

·


k

∑
k1, k2,...,ks=1;

k1+k2+···+ks=k

[
s

∏
r=1

(
z(kr)

nr (t)
kr! [z− znr (t)]

)]
 , (2.4)

which, via (2.1a) and the last of the formulas (1.1a), yields the identity

p(k)N (z; t) = k!
min(N,k)

∑
s=1

[
(−)s

s!

N

∑
n1,n2,...,ns=1

∗ ·

·


(

N

∏
`=1; 6̀=n1,n2,...,ns

[z− z` (t)]

)
k

∑
k1, k2,...,ks=1;

k1+k2+···+ks=k

[
s

∏
r=1

(
z(kr)

nr (t)
kr!

)]
 .

(2.5)

It is now convenient to rewrite this formula by separating out the term with s = 1, which is the
only term containing in its right-hand side the highest derivative (of order k) of the zeros:

p(k)N (z; t) =−
N

∑
n1=1

[(
N

∏
`=1; 6̀=n1

[z− z` (t)]

)
z(k)n1 (t)

]

+k!
min(N,k)

∑
s=2

[
(−)s

s!

N

∑
n1,n2,...,ns=1

∗

{(
N

∏
`=1; 6̀=n1,n2,...,ns

[z− z` (t)]

)
·

·
k

∑
k1, k2,...,ks=1;

k1+k2+···+ks=k

[
s

∏
r=1

(
z(kr)

nr (t)
kr!

)]
 . (2.6)

Setting z = zn (t) in this identity one then clearly gets (see again Notation 1.1)

p(k)N (zn (t) ; t) =−

(
N

∏
`=1; 6̀=n

[zn− z` (t)]

)
z(k)n (t)+

min(N,k)

∑
s=2

b̃N,k,n,s (t) (2.7a)

with

b̃N,k,n,s (t) =
(−)s k!

s!

N

∑
n1,n2,...,ns=1

∗

{(
N

∏
`=1; 6̀=n1,n2,...,ns

[zn− z` (t)]

)
·

·
k

∑
k1, k2,...,ks=1;

k1+k2+···+ks=k

[
s

∏
r=1

(
z(kr)

nr (t)
kr!

)] . (2.7b)

It is on the other hand plain (see (1.2)) that

p(k)N [zn (t) ; t] =
N

∑
m=1

{
c(k)m (t) [zn (t)]

N−m
}

, k = 1,2,3, ... . (2.8)
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Hence a comparison of this last formula with (2.7a) yields, for k = 1,2,3, ..., the formula

z(k)n (t) =

{
N

∏
`=1, 6̀=n

[zn (t)− z` (t)]

}−1

·

·

(
min(N,k)

∑
s=2

b̃N,k,n,s (t)−
N

∑
m=1

{
c(k)m (t) [zn (t)]

N−m
})

, (2.9)

This formula, with (2.7b), provides a convenient starting point for the identification of solvable
dynamical systems, as explained in the following section; hence we display it more explicitly in the
Appendix for k from 1 to 6 (with N ≥ k) and for N = 2 with k ≥ 2.

3. Solvable dynamical systems

Let us recall the standard definition of solvable dynamical systems: they are systems of an arbi-
trary number N of Ordinary Differential Equations (ODEs) involving N time-dependent variables
zn (t), the general solution of which—and as well the solution of their initial-values problem—can
be achieved by algebraic operations, essentially by finding the N roots of a known time-dependent
polynomial pN (z; t), see (1.1a). These dynamical systems—in contrast to a generic autonomous
nonlinear dynamical system with N ≥ 3—generally do not yield a chaotic time evolution, indeed in
some cases their general behavior can be remarkably neat, for instance isochronous or multiply peri-
odical—i. e., all their solutions are completely periodic with a fixed period independent of the initial
data or feature a, possibly nonlinear, superposition of a finite number of different fixed periods—or
can display such behaviors asymptotically, in the remote future—i. e. be asymptotically isochronous
or asymptotically multiply periodic [7,8]. Note, however, that when the solution of the initial-values
problem is provided by the N roots zn (t) of a known time-dependent polynomial pN (z, t), this solu-
tion identifies the overall configuration of the system at any time t, but generally it does not allow to
identify one by one the particles, namely to recognize which one of the N coordinates zn (t) corre-
sponds to the specific initial data characterizing that specific coordinate; although such an identifi-
cation can be obtained by evaluating—possibly even with lower accuracy—a sequence of solutions
over sufficiently short time subintervals by an argument of contiguity applied to the positions of the
particles at the beginning and the end of each such time subinterval. Alternatively, one can follow
the time evolution of each zero on the Riemann surface associated to the polynomial pN (z; t), but
this is generally a nontrivial task, see for instance [9–13].

The manufacture/identification of solvable dynamical systems has been an important sector of
mathematical physics research in the last few decades. A natural approach in this context is to
consider a (monic) time-dependent polynomial pN (z; t), see (1.1a), and to assume that the time-
evolution of its N coefficients cm (t) is characterized by a solvable dynamical system; it is then
clear that the time evolution of its N zeros zn (t) is—as it were, by definition—also solvable. This
procedure allows to infer from trivially solvable systems—including those characterized by linear
equations of motion—other dynamical systems which are still solvable while featuring less trivial,
generally highly nonlinear, equations of motion. Moreover, this procedure can be repeated, by let-
ting the time-dependent solutions—yielded by the zeros of a known time-dependent polynomial—
play the role of coefficients of new polynomials, and by then considering the zeros of the new
polynomials as the coordinates of new dynamical systems, which of course shall also be—again, as
it were, by definition—solvable. Note that this procedure yields, from any polynomial pN (z; t)—in
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the generic case with its N zeros all different among themselves—N! new polynomials, since N!
different assignments of the ordered set of N coefficients of the new polynomials are obtained by
identifying them with the N! different elements of the unordered set of the N zeros zn (t) of pN (z; t).
And an iteration of this procedure—leading to the notion of generations of polynomials [4]—allows
the identification of endless sequences of solvable dynamical systems.

In order to exhibit the equations of motion of these solvable dynamical systems, one must
be able to relate explicitly the time evolution of the zeros of a time-dependent polynomial to the
time evolution of its coefficients. A convenient way to do so is provided by the key formula (2.9)
with (2.7b). We now illustrate this notion by outlining a simple example. The analogous derivation
of vast classes of novel solvable dynamical systems, and the detailed investigation of their time
evolutions—going beyond the results already reported in [1–5, 14–16]—is a task for the future, to
be pursued by ourselves and/or by others.

So, let us assume that the coefficients cm (t) evolve in time according to the following system of
N decoupled autonomous and linear ODEs:

c(k)m (t) =
k

∑
s=1

[
ams c(s−1)

m (t)
]
, m = 1,2, ...,N , (3.1a)

where of course c(r)m (t) is, for all nonnegative integer values of r, the r-th time-derivative of cm (t).
This system, featuring kN arbitrary constants ams, is of course solvable, indeed its general solution
reads

cm (t) =
k

∑
s=1

[γms exp(λms t)] , (3.1b)

where, for every value of m, the k numbers λms with s = 1, 2, ..., k are the k roots of the following
polynomial equations of degree k in the variable λm,

(λm)
k =

k

∑
s=1

[
ams (λm)

s−1
]
, m = 1,2, ...,N ; (3.1c)

while the kN constants γms can be arbitrarily assigned, or determined as the solutions of the system
of kN linear equations

c(s−1)
m (0) =

k

∑
s=1

[
γms (λm)

s−1
]
, s = 1, ...,k, m = 1, ...,N (3.1d)

in order to solve the initial-values problem, with the kN initial values c(s−1)
m (0) assigned.

Remark 3.1. Note that here, for simplicity, we restricted consideration to the solvable dynami-
cal system (3.1a), and we moreover assumed that, for every value of m, the k roots of the alge-
braic equation (3.1c) are all different among themselves. While of course the treatment—above and
below—could be easily generalized to the more general solvable dynamical system characterized
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by the (now coupled but still linear) equations of motion

c(k)m (t) =
N

∑
n=1

k

∑
s=1

[
amns c(s−1)

n (t)
]
, m = 1,2, ...,N , (3.2)

featuring the kN2 arbitrary constants amns.

Remark 3.2. It is plain that the time evolution of the dynamical system (3.1) is essentially char-
acterized by the values of the kN exponents λms. For instance clearly if these exponents are all
purely imaginary (and all different among themselves), then all solutions of the dynamical system
(3.1) will, for all time, remain confined to a finite region of the complex c-plane, and if more-
over all the kN exponents λms are (different) rational multiples of the same imaginary number
iω, λm = i(qm/pm)ω with qm and pm coprime real integers and pm > 0, then the system (3.1) is
isochronous, all its solutions being periodic with period T = 2π p/ω ,

cm (t +T ) = cm (t) , (3.3)

where of course the integer p is the Minimum Common Multiple of the N integers pm. Likewise,
if some of the exponents λms have the features we just described and the remaining ones are com-
plex numbers all featuring a negative real part, then the corresponding dynamical system is clearly
asymptotically isochronous.

It is then plain that also solvable is the, also autonomous but nonlinearly coupled, dynamical
system the solutions of which are identified as the N zeros of the polynomial pN (z; t) , see (1.1a),
with the coefficients cm (t) satisfying the system (3.1). And—on the basis of the above treatment—it
is clear that the equations of motions of this dynamical system can be explicitly written as follows:

z(k)n (t) =

{
N

∏
`=1, 6̀=n

[zn (t)− z` (t)]

}−1

·

·

(
min(N,k)

∑
s=2

b̃N,k,n,s (t)−
N

∑
m=1

{
[zn (t)]

N−m
k

∑
s=1

[
ams c(s−1)

m (t)
]})

,

(3.4a)

with the quantities b̃N,k,n,s (t) expressed in terms of the N quantities z` (t) and their time-derivatives
of order less than k by (2.7b), and with the quantities c(s−1)

m (t) also expressed in terms of the N
quantities z` (t) and their time-derivatives of order less than k by (1.1b) and by the time-derivatives
of this formula of order less than k,

c(s−1)
m (t) =

(−1)m

m!

(
d
dt

)s−1
{

N

∑
n1,n2,...,nm=1

∗

[
m

∏
`=1

[zn` (t)]

]}
,

m = 1,2, ...,N , s = 1,2, ...,k . (3.4b)

And it is moreover plain that this nonlinear dynamical system, featuring the kN arbitrary con-
stants ams—the solvable character of which we believe to be a novel finding—also inherits proper-
ties of the system (3.1), for instance those described in Remark 3.2; except for the fact that, in the
isochronous cases—and likewise in the asymptotically isochronous cases—the period might turn
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out to be an integer multiple of T, due to the fact that the N zeros zn (t) of a time-dependent poly-
nomial pN (z; t) which is periodic with period T are certainly also all periodic, but possibly with a
larger period νT, with ν a positive integer, ν ≤ N! (for a discussion in an analogous context of the
relevance of this phenomenon see [17]).

To illustrate this finding—and to display a remarkable isochronous system featuring many arbi-
trary (but rational) parameters—let us report the following:

Remark 3.3. The dynamical system (3.4) with (2.7b) is isochronous provided the Nk constants ams

are given by the following formulas:

ams =−
(−i ω)s

s!

k

∑
k1,k2,...,ks=1

∗ (rmk1 rmk2 · · · rmks) , (3.5a)

in terms of the arbitrary (nonvanishing) real parameter ω and of the Nk real rational numbers
rms—which are also arbitrary, except for the restriction to be all different among themselves,

rms =
qms

pms
, m = 1,2, ...,N , s = 1,2, ...,k; rms 6= rm′s′ unless m = m′, s = s′ , (3.5b)

with qms and pms arbitrary coprime real integers and, for definiteness, pms > 0. Indeed then all
its generic solutions—except for a set of nongeneric solutions which are singular due to ”particle
collisions”—are then periodic, zn (t +T ) = zn (t), with the overall period

T = (N!) p
(

2 π

ω

)
, p = MinCommMult

m=1,...,N; s=1,...,k
[pms] ; (3.5c)

but of course there also are sets of generic initial data yielding solutions with periods which are
integer submultiples of T .

The formulation of the analogous but more general result encompassing asymptotically
isochronous systems is left to the interested reader.

Let us conclude this paper with the following two rather elementary remarks, which underscore
the interest of the solvable dynamical system described above.

Remark 3.4. For any even integer k = 2S with S any positive integer, the solvable dynamical system
(3.4) can be rephrased as a system of equations of motion of Newtonian type (”accelerations equal
forces”) describing the evolution of SN unit-mass particles the coordinates of which can be denoted
as wns ≡ wns (t) , by rephrasing the equations of motion (3.4)—which themselves read (in self-
evident notation: identify the right-hand side of the following equation with the right-hand side of
(3.4))

z(k)n = fnk

(
~z, ~z(2), ..., ~z(2S−2);

·
~z,
·
~z (2), ...,

·
~z (2S−2)

)
(3.6a)

—by setting

z(2s−2)
n = wn,s , s = 1,2, ...,S, (3.6b)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

481



M. Bruschi and F. Calogero / A convenient expression of the time-derivative z(k)n (t)

so that the equations of motion in terms of the new dependent variables wns ≡ wns (t) then read as
follows:

ẅn,s = wn,s−1 , s = 1,2, ...,S−1 ,

ẅn,S = fnk

(
~w1, ~w2, ...,~wS;

·
~w1,

·
~w2, ...,

·
~wS

)
. (3.6c)

Here of course the superimposed arrows denote S-vectors.

Remark 3.5. The equations of motion (3.4), as well as the Newtonian equations of motion presented
in the preceding Remark 3.4, are clearly invariant under a constant rescaling of the dependent
variables, zn⇒Czn and likewise wns⇒Cwns with C an arbitrary nonvanishing complex constant,
Ċ = 0; hence in particular they are invariant under rotations around the origin of the complex z-
plane, i. e. under the transformations zn ⇒ exp(i θ) zn and likewise wns ⇒ exp(i θ) wns with θ

an arbitrary constant angle. This indicates the possible interest of an additional reformulation of
these solvable many-body problems in terms of unit-mass particles moving in the real Cartesian
xy-plane—their positions being identified by the real 2-vectors~rn = (xn, yn) where zn = xn + iyn or
~rns = (xns, yns) where wns = xns + iyns.

Appendix: explicit display of the formula (2.9) in special cases

In this Appendix we display the formula (2.9) for k = 1,2,3,4,5,6 and N ≥ k; and for N = 2 and
k ≥ N. The diligent reader will verify that, for k = 1,2,3,4, the formulas (3.7a)-(3.7d) displayed
below are consistent with the findings obtained previously [1, 5].

Notation A. As above, z(k) ≡ z(k) (t) ≡ dk z(t)/dtk and c(k) ≡ c(k) (t) ≡ dk c(t)/dtk; and recall
Notation 1.1 for the significance of the symbol ∑

∗n∗.

z(1)n =−

[
N

∏
`=1, 6̀=n

(zn− z`)

]−1 N

∑
n=1

[
c(1)m (zn)

N−m
]
, (3.7a)

z(2)n =
N

∑
`=1; 6̀=n

(
2 z(1)n z(1)`

zn− z`

)

−

[
N

∏
`=1, 6̀=n

(zn− z`)

]−1 N

∑
m=1

[
c(2)m (zn)

N−m
]
, (3.7b)
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z(3)n = 3
N

∑
`=1; 6̀=n

(
z(2)n z(1)` + z(2)` z(1)n

zn− z`

)

−3
N

∑
`1,`2=1

∗n∗

[
z(1)n z(1)`1

z(1)`2

(zn− z`1) (zn− z`2)

]

−

[
N

∏
`=1, 6̀=n

(zn− z`)

]−1 N

∑
m=1

[
c(3)m (zn)

N−m
]
, (3.7c)

z(4)n =
N

∑
`=1; 6̀=n

(
4 z(3)n z(1)` +4 z(3)` z(1)n +6 z(2)n z(2)`

zn− z`

)

−6
N

∑
`1,`2=1

∗n∗

[
z(2)n z(1)`1

z(1)`2
+2 z(2)`1

z(1)`2
z(1)n

(zn− z`1) (zn− z`2)

]

+4
N

∑
`1,`2, `3=1

∗n∗

[
z(1)n z(1)`1

z(1)`2
z(1)`3

(zn− z`1) (zn− z`2) (zn− z`3)

]

−

[
N

∏
`=1, 6̀=n

(zn− z`)
−1

]
N

∑
m=1

[
c(4)m (zn)

N−m
]
, (3.7d)

z(5)n = 5
N

∑
`=1; 6̀=n

z(4)n z(1)` + z(4)` z(1)n +2
(

z(3)n z(2)` + z(3)` z(2)n

)
zn− z`

−5
N

∑
`1,`2=1

∗n∗


(

2 z(3)n z(1)`1
z(1)`2

+4 z(1)n z(3)`1
z(1)`2

+6 z(2)n z(2)`1
z(1)`2

+3 z(1)n z(2)`1
z(2)`2

)
(zn− z`1) (zn− z`2)


+10

N

∑
`1,`2, `3=1

∗n∗

[
z(2)n z(1)`1

z(1)`2
z(1)`3

+3 z(1)n z(2)`1
z(1)`2

z(1)`3

(zn− z`1) (zn− z`2) (zn− z`3)

]

−5
N

∑
`1,`2, `3, `4=1

∗n∗

[
z(2)n z(1)`1

z(1)`2
z(1)`3

z(1)`4

(zn− z`1) (zn− z`2) (zn− z`3)(zn− z`4)

]

−

[
N

∏
`=1, 6̀=n

(zn− z`)

]−1 N

∑
m=1

[
c(5)m (zn)

N−m
]
, (3.7e)
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z(6)n =
N

∑
`=1; 6̀=n

6
(

z(5)n z(1)` + z(5)` z(1)n

)
+15

(
z(4)n z(2)` + z(4)` z(2)n

)
+20 z(3)n z(3)`

zn− z`

−
N

∑
`1,`2=1

∗n∗


15 z(4)n z(1)`1

z(1)`2
+30 z(1)n z(4)`1

z(1)`2
+60 z(3)n z(2)`1

z(1)`2

+60 z(2)n z(3)`1
z(1)`2

+60 z(1)n z(3)`1
z(2)`2

+45 z(2)n z(2)`1
z(2)`2

(zn− z`1) (zn− z`2)



+10
N

∑
`1,`2, `3=1

∗n∗


(

2 z(3)n z(1)`1
z(1)`2

z(1)`3
+6 z(1)n z(3)`1

z(1)`2
z(1)`3

+9 z(2)n z(2)`1
z(1)`2

z(1)`3
+9 z(1)n z(2)`1

z(2)`2
z(1)`3

)
(zn− z`1) (zn− z`2) (zn− z`3)


−15

N

∑
`1,`2, `3, `4=1

∗n∗

[
z(2)n z(1)`1

z(1)`2
z(1)`3

z(1)`4
+4 z(1)n z(2)`1

z(1)`2
z(1)`3

z(1)`4

(zn− z`1) (zn− z`2) (zn− z`3)(zn− z`4)

]

+6
N

∑
`1,`2, `3, `4,`5=1

∗n∗

 z(1)n z(1)`1
z(1)`2

z(1)`3
z(1)`4

z(1)`5

(zn− z`1) (zn− z`2) (zn− z`3)(zn− z`4)(zn− z`5)


−

[
N

∏
`=1, 6̀=n

(zn− z`)

]−1 N

∑
m=1

[
c(6)m (zn)

N−m
]
. (3.7f)

For N = 2 and k ≥ 2,

z(k)n =
(
zn− zñ(n)

)−1

{
k−1

∑
k1=1;

[(
k!

(k− k1)! k1!

)
z(k−k1)

n z(k1)
ñ(n)

]

−
2

∑
m=1

[
c(k)m (zn)

2−m
]}

, n = 1,2 , ñ(1) = 2 , ñ(2) = 1 . (3.8)
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