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In this paper we present the full classification of symmetry-invariant solutions for the Gibbons–Tsarev equa-
tion. Then we use these solutions to construct explicit expressions for two-component reductions of Benney’s
moments equations, to get solutions of Pavlov’s equation, and to find integrable reductions of the Ferapontov–
Huard–Zhang system, which describes implicit two-phase solutions of the dKP equation.
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1. Introduction

The Gibbons-Tsarev equation

uyy = (uy + y)uxx−ux uxy−2 (1.1)

has been widely known since it arose in [15] as a special case of a reduction of Benney’s moment
equations, [7],

An,t +An+1,x +nAn−1 A0,x = 0, n ∈ N∪{0}. (1.2)

Namely, suppose that A2 and A3 depend functionally on p : = A0 and q : = A1, that is, A2 = R(p,q),
A3 = S(p,q) for some functions R and S. Then for all n ≥ 4 moments An also depend functionally
on A0 and A1, An = Qn(p,q), where all the functions Qn may be expressed recurrently in terms of R
and S. Substituting for A2 = R(p,q), A3 = S(p,q) into (1.2) yields an over-determined system{

Sq = Rp +R2
q,

Sp = Rq (Rp + p)−2q,
(1.3)

which is compatible whenever Rpp = (Rp + p)Rqq−Rq Rpq−2. This equation coincides with (1.1)
after renaming (q, p,R) 7→ (x,y,u).

This origin of the Gibbons–Tsarev equation connects it directly with a model (also presented
in the above-mentioned Benney’s work), which is meant to describe behavior of long waves on a
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shallow, inviscid and incompressible fluid. The Gibbons–Tsarev equation also arises in integrable
models on algebraic curves, [24]. In [18, 19] the method of differential constraints was applied to
find solutions of the Gibbons–Tsarev equation that are expressible in terms of solutions of Painlevé
equations.

In this paper we use the methods of group analysis of differential equations, see, e.g., [25], to
find solutions of the Gibbons–Tsarev equation that are invariant with respect to its symmetries. The
research, as usually when Lie theory is applied, is performed in an algorithmic way, which involves
reduction of the primary equation into equation in less independent variables than the primary one.
The basic method includes arbitrary choice of symmetries, but one may confine this choice in some
sense with the help of the adjoint representation of the symmetry algebra. In order to examine the
problem of finding group-invariant solutions in as much systematic way as possible, we applied the
method based on searching for an optimal system of one-dimensional subalgebras of the symmetry
algebra of Eq. (1.1). Hence, every other group-invariant solution can be derived from one of the
solutions we obtained.

As an immediate application of the invariant solutions of Eq. (1.1) we get explicit forms for
four two-component reductions of Benney’s moments equations. Two further applications are the
following. First, as it was shown in [6], Eq. (1.1) arises as a symmetry reduction of equation [10,26]

uyy = utx +uy uxx−ux uxy. (1.4)

Thus, solutions to Eq. (1.1) provide solutions to Eq. (1.4). Second, the change of variables

z = u+ 1
2 y2 (1.5)

transforms (1.1) to the first equation of the system{
zyy = zy zxx− zx zxy−1,
wyy = zy wxx− zx wxy.

(1.6)

This system was shown in [11] to produce two-phase solutions for the dispersionless Kadomtsev–
Petviashvili equation (dKP). Namely, if functions P(r,s), Q(r,s) satisfy{

Pss = Ps Prr−Pr Prs−1,
Qss = Ps Qrr−Pr Qrs,

(1.7)

then the system {
Qr = x+ t (r+Pr),

Qs = y+ t Ps,
(1.8)

implicitly defines a solution r(t,x,y), s(t,x,y) to the system{
rt = r rx + sy,

ry = sx,

which is equivalent to the dKP equation

ryy = rtx− (r rx)x. (1.9)

Each solution to (1.1) yields by substituting (1.5) into (1.6) a linear equation for w. We analyse
symmetries of the obtained linear equations. Their corresponding reductions appear to be ordinary
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differential equations equivalent to Airy’s equation,

vxx = xv,

Weber’s equation

vxx =

(
1
4

x2 +λ

)
v,

Whittaker’s equation

vxx =

(
1
4
− κ

x
+

4 µ2−1
4x2

)
v,

and Bessel’s equation

vxx =

(
1
4
+

4 µ2−1
4x2

)
v,

see, e.g., [1, 31]. While Airy’s equation is not integrable in quadratures, [17], for Weber’s equation,
Whittaker’s equation and Bessel’s equation there exist an infinite number of values of the parameters
λ , κ , µ such that those equations are integrable, see [30], [21] and [29]. Hence, we obtain an
infinite number of cases when system (1.6) is integrable in quadratures. While the corresponding
solutions to (1.7), (1.8) describe two-phase solutions for Eq. (1.9), their final form appears to be too
complicated to write it explicitly.

2. The symmetry algebra of the Gibbons–Tsarev equation

Roughly speaking, a symmetry group of an equation

F(x,y,u,ux,uy,uxy,uxx,uyy) = 0, (2.1)

is a local group G of transformations g acting on some open subset of the space of independent and
dependent variables X ×Y ×U , which transform solutions of the equation into solutions (for the
precise definition see [25]). There is a one-to-one correspondence between symmetry group and its
infinitesimal generator, which is a vector field of the form:

V = ξ1(x,y,u)
∂

∂x
+ξ2(x,y,u)

∂

∂y
+η(x,y,u)

∂

∂u
.

Every infinitesimal generator has its characteristic function, defined as Q = η−ξ1 ux−ξ2 uy, which
is very useful from the computational point of view. In this paper, by symmetry we mean either a
characteristic or a corresponding vector field, depending on a context. Finally, a symmetry algebra
is a set of infinitesimal generators of symmetries, closed with respect to commutator [·, ·]. For any
two vector fields V1, V2, their commutator is defined as [V1,V2] :=V1 ◦V2−V2 ◦V1.

Let G be a Lie group of symmetries of Eq. (2.1). Then a solution u = f (x,y) of (2.1) is a G-
invariant solution of this equation if the graph Γ f = {(x,y, f (x,y)) ∈ X ×Y ×U | (x,y) ∈ dom( f )}
is a locally G-invariant subset of X×Y ×U , see [25, Chapter 3] for the full discussion.
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2.1. Symmetry algebra

With the help of Jets software, [5], we found the symmetry algebra of Eq. (1.1), which is presented
in the following table.

Symmetry Characteristic Vector field
φ1 −yux +2x y ∂

∂x +2x ∂

∂u
φ2 −xux− 2

3 yuy +
4
3 u x ∂

∂x +
2
3 y ∂

∂y +
4
3 u ∂

∂u
φ3 −ux

∂

∂x
φ4 −uy− y ∂

∂y − y ∂

∂u
φ5 1 ∂

∂u

The commutator table of this Lie algebra is the following:

φ1 φ2 φ3 φ4 φ5

φ1 0 1
3 φ1 −2φ2 −φ3 0

φ2 −1
3 φ1 0 −φ3 −2

3 φ4 −4
3 φ5

φ3 2φ2 φ3 0 0 0
φ4 φ3

2
3 φ4 0 0 0

φ5 0 4
3 φ5 0 0 0

Note that φ2 is a scaling symmetry, while φ3 and φ5 denote invariance of the set of solutions with
respect to translations of x and u.

2.2. Adjoint representation

The full symmetry group of Gibbons–Tsarev equation is generated by five one-dimensional sub-
groups whose generators are presented in table (2.1). Reduction with respect to one of these 1-
dimensional subgroups gives us an equation in 2− 1 = 1 variables. Any linear combination of
symmetries is again a symmetry and it brings new reduction, which makes the task of finding all
group-invariant solutions very tedious. However, it is easy to check, that if f (x,y) is a G-invariant
solution, then (h · f )(x,y) is hGh−1-invariant. This observation indicates the need of finding a set
of solutions, which are invariant with respect to non-conjugate subgroups. As usual, we will work
with vector fields rather than subgroups of transformations themselves. The adjoint representation
is defined as follows. For a given vector V from a Lie algebra denote by Adε V a linear map on the
Lie algebra, which is defined for every vector W from the Lie algebra as follows:

Adε V W :=W − ε [V,W ]+
ε2

2!
[V, [V,W ]]− ε3

3!
[V, [V, [V,W ]]]+ · · ·

The adjoint representation has a useful property of transforming vector W generating a subgroup GW

to the vector Adε V W generating subgroup hGW h−1, where h= exp(ε V ). The adjoint representation
for the symmetry algebra of the Gibbons–Tsarev equation is presented in the following table. The
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(i, j)-th entry is Adε φi φ j.

Adε φi φ j φ1 φ2 φ3 φ4 φ5

φ1 φ1 φ2 +
ε

3 φ1 φ3−2ε φ5 φ4− ε φ3 + ε2 φ5 φ5

φ2 e−
1
2 ε φ1 φ2 e−ε φ3 e−

2
3 ε φ4 e−

4
3 ε φ5

φ3 φ1 +2ε φ5 φ2 + ε φ3 φ3 φ4 φ5

φ4 φ1 + ε φ3 φ2 +
2
3 ε φ4 φ3 φ4 φ5

φ5 φ1 φ2 +
4
3 ε φ5 φ3 φ4 φ5

The following lemma presents an optimal system of one-dimensional subalgebras for the symmetry
algebra of the Gibbons–Tsarev equation, by which a list of vectors generating conjugacy inequiva-
lent one-parameter subgroups is meant, [25, § 3.3].

Lemma 2.1. The optimal system of one-dimensional subalgebras consists of the subalgebras
spanned by the following vectors: φ1, φ2, φ3, φ4 +α φ1, φ4 +α φ5, where α is an arbitrary con-
stant.

Proof. Proof is obtained by a standard computation, see, e.g., [25, § 3.3].

3. Reductions and invariant solutions

In this section we find solutions of Eq. (1.1) that are invariant with respect to the optimal system
obtained in the above lemma. We use the method described, e.g., in [25, § 3.1].

3.1. Reduction with respect to φ1

The φ1-invariant solutions of the Gibbons–Tsarev equation satisfy (1.1) and

φ1 =−yux +2x = 0.

Solving the last equation for ux and integrating gives u = x2 y−1 +W (y). Substituting this to (1.1)
and solving for unknown function W (y) yields

u =
x2

y
+β y3 + γ, (3.1)

where β , γ are arbitrary constants.

3.2. Reduction with respect to φ2

The φ2-invariant solutions of the Gibbons–Tsarev equation satisfy (1.1) and

φ2 =−xux−
2
3

yuy +
4
3

u = 0.

Solving this we get u = x4/3 v(ζ ) with ζ = yx−2/3. Inserting the outcome into (1.1) yields the
ordinary differential equation

vζ ζ =
2(ζ v2

ζ
+(2v+3ζ 2)vζ −2ζ v+9)

8ζ v+4ζ 3−9
. (3.2)

The point symmetries of this equation are trivial, so the methods of group analysis can not be applied
to its integration. The general solution to (3.2) may be extracted from results of [28]: this solution
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may be written in the parametric form
v = − 32/3

2(1+ ε1 + ε2)1/3 ·
P2(t)

(P3(t))2/3 ,

ζ = − 34/3

2(1+ ε1 + ε2)2/3 ·
P4(t)

(P3(t))4/3

(3.3)

with

P2(t) = (ε1 + ε2 t)2 + ε1 + ε2 t2,

P3(t) = (ε1 + ε2 t)3− ε1− ε2 t3,

P4(t) = (1+2(ε1 + ε2))(ε1 + ε2 t)4 + ε2 (2(1+ ε1− ε
2
2 )+ ε2) t4−4ε1 ε

2
2 t3

−2ε1 ε2 (1+ ε1 + ε2) t2−4ε
2
1 ε2 t + ε1 (ε1 +2(1+ ε2− ε

2
1 )), (3.4)

where ε1 and ε2 are arbitrary constants and t is a parameter a. Since

det


∂v
∂ε1

∂v
∂ε2

∂vζ

∂ε1

∂vζ

∂ε2

=
35/3(1+ ε1 + ε2)

2/3(t−1)2(ε1 +(1+ ε2)t)2(1+ ε1 + ε2t)2

8(P3(t))8/3 6≡ 0,

system (3.3), (3.4) indeed defines the general solution to Eq. (3.2). This fact was not proved in [28].
This solution is very complicated, so we will not use it in the constructions of Section 4. Note
that eliminating t from (3.3) yields an algebraic dependence between v and ζ , while it seems to be
beyond the capacities of the existing systems of symbolic computations to obtain the explicit form
of this dependence for arbitrary ε1 and ε2.

3.3. Reduction with respect to φ3

For φ3-invariant solutions of the Gibbons–Tsarev equation we have

φ3 =−ux = 0,

so they do not depend on x and thus satisfy uyy =−2. Hence these solutions are of the form

u =−y2 +β y+ γ (3.5)

with β ,γ = const.

3.4. Reduction with respect to φ4 +αφ1

Solutions of the Gibbons–Tsarev equation that are invariant w.r.t. φ4 +αφ1 satisfy (1.1) and

φ4 +α φ1 =−α yux−uy− y+2α x = 0.

When α 6= 0, we solve this equation for ux, substitute the output into (1.1) and obtain the reduced
equation

uyy =
2(x−α y2)

y(2x−α y2)
uy−

4α x2

y(2x−α y2)
.

aWe are grateful to M.V. Pavlov for making this connection and for guiding us through [28]. The details of the reformu-
lation are too cumbersome for presenting here.
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This is a linear ordinary differential equation with x treated as a parameter. Solutions of this equation
are of the form

u = 2α xy− 2
3

α
2 y3 +W1(x) · |2x−α y2|

3
2 +W2(x),

where W1(x) and W2(x) are arbitrary (smooth) functions of x. By substituting this solution to (1.1)
we obtain that W1(x) = β = const and W2(x) = −α−1 x+ γ , γ = const. Finally, solution invariant
with respect to symmetry φ4 +α φ1 is of the form:

u = (2α y−α
−1)x− 2

3
α

2 y3 +β |α y2−2x|
3
2 + γ. (3.6)

When α = 0, we have uy =−y, so u =−1
2 y2 +W1(x). But substituting for this into (1.1) gives

a contradiction.

3.5. Reduction with respect to φ4 +α φ5

Solutions of the Gibbons–Tsarev equation that are invariant w.r.t. φ5 +βφ4 satisfy (1.1) and

φ4 +α φ5 =−uy− y+α = 0.

This gives u =−1
2 y2 +α y+W (x). Substituting to (1.1) and solving for W (x) gives the solution of

the form

u =
1

2α
x2− 1

2
y2 +α y+β x+ γ (3.7)

with β , γ = const.

4. Applications

4.1. Two-component reductions of Benney’s moments equation

Renaming (q, p,R) 7→ (x,y,u) in system (1.3) and substituting for a solution of Eq. (1.1) into the
resulting system {

Sx = uy +u2
x ,

Sy = ux (uy + y)−2x,

we obtain a compatible system for S. This system has the following solutions that correspond to the
invariant solutions (3.1), (3.5), (3.6), (3.7) of the Gibbons–Tsarev equation, respectively:

S =
x3

y2 +3β xy2 +δ ,

S = (β −2y)x+δ ,

S =
β (3α2 y−2)

α
|α y2−2x|

3
2 − 1

4 α2 (4α +9β 2)y4−4xy+ 1
α2 x

+4
3 α y3 +(α−9β 2)x2 + 1

2α
(18α2 β 2 x+4α3 x−1)y2 +δ ,
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S =
x3

3α2 +
β x2

α
+(α +β

2− y)x+α β y+δ ,

where δ is an arbitrary constant.

4.2. Solutions to Eq. (1.4)

Eq. (1.4) has solutions of the form

u(t,x,y) = v(τ,y)−2 t x− t2 y, (4.1)

where τ = x+ t y and function v(τ,y) is a solution of Eq. (1.1) with x replaced by τ . Since we know
four explicit solutions (3.1), (3.5), (3.6), (3.7) of the Gibbons–Tsarev equation, after substituting
them into (4.1) we obtain four explicit solutions of Eq. (1.4). They are, respectively,

u =
x2

y
+β y3 + γ,

u =−y2 +β y−2 t x− t2 y+ γ,

u = (2α y−2 t−α
−1)(x+ t y)− 2

3
α

2 y3 +β |2x−α y2 + t y|
3
2 + t2 y+ γ,

u =
1

2α
(x+ t y)2− 1

2
y2 +α y+β (x+ t y)−2 t x− t2 y+ γ.

4.3. Reductions of the Ferapontov–Huard–Zhang system

In this section we study solutions of system (1.6) that correspond to the obtained solutions (3.1),
(3.5), (3.6), (3.7) of the Gibbons–Tsarev equation. Each solution of (1.1) yields by substituting (1.5)
into (1.6) a linear equation for w. Any linear equation admits trivial symmetries, that is, symmetries
of the form w0

∂

∂w , where w0 is a (fixed) arbitrary solution of the equation. We consider nontrivial
symmetries of the obtained linear equations. These symmetries allow one to reduce their equations
to ordinary differential equations. For each one of these ODEs we indicate all the cases when the
ODE is integrable in quadratures.

4.3.1. Solution (3.1)

For solution (3.1) the second equation of system (1.6) takes the form

wyy = (3β y2 + y− x2 y−2)wxx−2xy−1 wxy.

After the change of variables x = x̃ ỹ, y = ỹ, w = w̃ and dropping tildes the last equation acquires
the form wyy = (3β y+ 1)y−1 wxx. This equation has a nontrivial symmetry wx−λ w, where λ is
an arbitrary constant. The corresponding reduction w = eλ x v(y) gives an ODE vyy = λ 2 (3β y+
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1)y−1 v. After the scaling ỹ = 2
√

3λ β 1/2 y and dropping tildes we have Whittaker’s

vyy =

(
1
4
− κ

y

)
v (4.2)

with κ = −1
6

√
3λ β 1/2. From results of [29] it follows that Eq. (4.2) is integrable in quadratures

whenever κ ∈ Z. Therefore for each choice of β there exists an infinite number of values for λ such
that Eq. (4.2) is integrable in quadratures.

4.3.2. Solution (3.5)

Without loss of generality it is possible to put β = 0 in solution (3.5). Then we have

wyy =−ywxx. (4.3)

The nontrivial symmetries of this equation are the following: ψ1 = wx−λ w with λ = const, ψ2 =

3xwx +2ywy, and ψ3 = 12xyuy +3xw− (4y3−9x2)ux.
The ψ1-invariant solution of Eq. (4.3) is of the form w= eλ x v(y), where v satisfies vyy =−λ 2 yv.

After rescaling y =−λ 2/3 ỹ and dropping tildes the last equation acquires the form of Airy’s equa-
tion

vyy = yv,

which is not integrable in quadratures, [17].
The ψ2-invariant solution of Eq. (4.3) is of the form w = v(η) with η = xy−3/2, where v is a

solution of equation

vηη =− 10η2

4η3 +9
vη .

The general solution of this equation is

U = c1 + c2

∫ dη

(4η3 +9)5/6 .

The last integral can not be expressed in elementary functions, [30].
For a ψ3-invariant solution we have

w =
y

(4y3 +9x2)5/6 v(σ), σ =
4y3 +9x2

y3/2 ,

where v(σ) is a solution to vσσ = −3−1 σ−1 vσ . This equation is integrable in quadratures, its
general solution reads v = c1 + c2 σ2/3, where c1, c2 = const. Therefore we have

w =
c1 y

(4y3 +9x2)5/6 +
c2

(4y3 +9x2)1/6 .
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4.3.3. Solution (3.6) with β 6= 0

For solution (3.6) in the case of β 6= 0 the second equation of system (1.6) acquires the form

wyy =−(3α β y |2x−β y2|1/2−2β x+2β
2 y2− y)wxx

−(3α |2x−β y2|1/2 +2β y−β
−1)wxy.

After the change of variables x = 1
2 (x̃

2 +β ỹ2), y = ỹ, w = w̃ and dropping tildes we get

wyy = β wxx +
1−3α β x

β x
wxy.

This equation has a nontrivial symmetry wy− λ w, λ = const. The corresponding reduction w =

eλ y v(x) yields ODE vxx = λ (3α β x−1)β−2 x−1 vx +λ 2 β−1 v, which after the change of variables
v = λ

2β
(3α x− lnx) ṽ and dropping tildes takes the form

vxx =
λ

4β 2

(
λ (9α

2 +4β )− 6α λ

β x
+

λ −2β

β 2 x2

)
v. (4.4)

Analysis of this equation splits into two branches. The first one corresponds to the case of 9α2 +

4β 6= 0. In this case the scaling x̃ = λ β−1 (9α2 +4β )1/2 x after dropping tildes gives Whittaker’s
equation

vxx =

(
1
4
− κ

x
+

λ (λ −2β )

4β 2 x2

)
v (4.5)

with κ = 3α λ β−2 (9α2+4β )−1/2 and µ =±1
2 (λ β−2−1). As it was shown in [29], this equation

is integrable in quadratures whenever ±κ±µ− 1
2 ∈ Z. Therefore for each choice of α and β there

exists an infinite number of values for λ such that equation (4.5) is integrable in quadratures.
The second branch corresponds to the case of 9α2 +4β = 0. Then Eq. (4.4) acquires the form

vxx =

(
A
x
+

B
x2

)
v

with A= 27
2 α3 λ̃ 2, B= λ̃ (λ̃−1), and λ̃ = 8

81 λ α−4. After the change of variables v= 1
2 A−1/4 x̃1/2 ṽ,

x = 1
16 A−1 x̃2 and dropping tildes we have Bessel’s equation

vxx =

(
1
4
+

4B+ 3
4

x2

)
v, (4.6)

which is integrable in quadratures whenever B = − 3
16 +

1
2

(
n+ 1

2

)2, n ∈ Z, see [30]. So for each
choice of α there exists an infinite number of values for λ such that Eq. (4.6) is integrable in
quadratures.
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4.3.4. Solution (3.6) with β = 0

The second equation of system (1.6) that corresponds to solution (3.6) in the case of β = 0 has the
form

wyy = (2α x−2α
2 y2 + y)wxx− (2α y−α

−1)wxy.

After the change of variables x = 1
8 α−3 (2 x̃+ ỹ2+2 ỹ−1), y =−1

2 α−2 ỹ, w = w̃ and dropping tildes
we get

wyy = 2(x+ y)wxx +wx.

This equation has a nontrivial symmetry wx +wy− λ w, λ = const. The corresponding reduction
w = eλ x v(τ) with τ = x+y yields ODE vττ =−((4λ τ +1)vτ +λ (2λ τ +1)v)(2τ−1)−1, which
after the change of variables v = x̃−λ/2−1/4e−x̃/2 ṽ, τ = 1

2 (λ
−1 x̃+ 1) and dropping tildes acquires

the form of Whittaker’s equation

vxx =

(
1
4
+

3λ +1
4x

+
(2λ +1)2

8x2

)
v. (4.7)

From results of [29] it follows that this equation is integrable in quadratures whenever λ = 1±
12n± (128n2−32n+6)1/2, n ∈ Z. Therefore for each choice of α there exists an infinite number
of values for λ such that Eq. (4.7) is integrable in quadratures.

4.3.5. Solution (3.7)

In the case of solution (3.7) we can put β = 0 without loss of generality. Then the second equation
of system (1.6) takes the form

wyy = α wxx−α
−1 xwxy.

The nontrivial symmetry wy− λ w, λ = const leads to the reduction w = eλ y v(x), where v is a
solution of ODE

vxx = λ α
2 xvx +λ

2
α v.

After the change of variables v = e
1
4 x̃2

ṽ, x = β−1 λ−1/2 x̃ and dropping tildes we have Weber’s
equation

Uxx =
(1

4 x2 +µ− 1
2

)
U (4.8)

with µ = β−1 λ−1/2, which is integrable in quadratures whenever µ ∈ Z, [21]. Therefore for each
choice of α there exists an infinite number of values for λ such that Eq. (4.8) is integrable in
quadratures.

5. Conclusion

We found a number of exact solutions to the Gibbons–Tsarev equation (1.1). Whereas solutions of
this equation obtained in [24] and [18,19] are expressed in terms of the Weierstrass elliptic function
and solutions of the Painlevé equations, respectively, our solutions are rational or algebraic func-
tions, which are easier to use in applications. This allowed us to find exact solutions for Eq. (1.4),
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integrable reductions of the Ferapontov–Huard–Zhang system (1.6), and exact solutions of the two-
component reduction (1.3) of Benney’s moments equations. The last application is a part of the large
and important problem of finding solutions to the multi-component reductions of Benney’s system.
There is extensive literature devoted to this problem, see, e.g., [2–4,8,9,12–16,20,22,23,27,32–34].
Searching for exact solutions to the multi-component reductions of Benney’s system by means of
the methods of Lie group analysis is an interesting and promising direction for the further research.
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Lax integrable 3-dimensional systems, Journal of Nonlinear Mathematical Physics 21 (2014) 643–671.
[7] D.J. Benney, Some properties of long nonlinear waves, Stud. App. Math. 52 (1973) 45–50.
[8] L.V. Bogdanov and B.G. Konopelchenko, Symmetry constraints for dispersionless integrable equations

and systems of hydrodynamic type, Phys. Lett. A 330 (2004) 448–459.
[9] M. England and J. Gibbons, A genus six cyclic tetragonal reduction of the Benney equations, J. Phys.

A: Math. Gen. 42 (2009) 375202.
[10] M. Dunajski, A class of Einstein–Weil spaces associated to an integrable system of hydrodynamic type,

J. Geom. Phys. 51 (2004) 126–137.
[11] E.V. Ferapontov, B. Huard and A. Zhang, On the central quadric ansatz: integrable models and Painlevé
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