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This paper is concerned with orbital stability of the smooth solitary wave with nonzero asymptotic value for
the mCH equation

ut −uxxt +2kux +au2ux = 2uxuxx +uuxxx.

Under the parametric conditions a > 0 and k < 1
8a , an interesting phenomenon is discovered, that is, for the

stability there exist three bifurcation wave speeds

c1 =
1+
√

1−8ak
2a

, c2 =
9
2a

and c3 =
9+3

√
9−8ak

2a

such that the following conclusions hold.
(i) When wave speed belongs to the interval (c1,c2) for− 63

8a < k < 1
8a , the smooth solitary wave is orbitally

stable.
(ii) When wave speed belongs to the interval (c2,c3) for − 63

8a < k < 1
8a , the smooth solitary wave is

orbitally unstable.
(iii) When wave speed belongs to the interval (c1,c3) for k ≤ − 63

8a , the smooth solitary wave is orbitally
unstable.
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1. Introduction

The celebrated Camassa-Holm(CH) equation is of the form

ut −uxxt +2kux +3uux = 2uxuxx +uuxxx, (1.1)

for the function u(x, t) of a single spatial variable x and time t. Eq. (1.1) was introduced as a new
integrable system by Fuchssteiner and Fokas [13] in 1981.
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Later, Camassa and Holm [3] recovered Eq. (1.1) as a shallow water wave model and showed
that when k = 0, it has a non-smooth solitary wave with expression

u0(x, t) = ce−|x−ct|. (1.2)

They discovered that the non-smooth solitary wave is a soliton [4]. The soliton is not a classical
solution of the shallow water equation, it has to be understood (see [8]) as a weak solution.

When k = 0, Constantin, Strauss and Molinet [9,10] demonstrated that u0(x, t) is orbitally stable.
That is, a wave starting close to u0(x, t) remains close to some translate of it at all later times. Thus
the shape of the wave remains approximately the same for all times.

When k 6= 0, Liu et. al [29] proved that Eq. (1.1) has a non-smooth solitary wave with expression

uk(x, t) = (k+ c)e−|x−ct|− k. (1.3)

Ouyang et. al [30] confirmed that uk(x, t) is orbitally stable too. Many authors, for instance [7, 11,
17–19, 22, 37, 39], studied others properties of the CH equation.

Further, some generalized forms of the CH equation have been considered successively. Li and
Olver [23] established local well-posedness in the Sobolev space Hs with any s > 3

2 for the equation

ut −uxxt +2kux +auux = 2uxuxx +uuxxx. (1.4)

Qian and Tang [31] studied some peakons and periodic cusp waves for Eq. (1.4).
Based on Eq. (1.4), Liu and Qian [28] suggested the equation

ut −uxxt +2kux +au2ux = 2uxuxx +uuxxx, (1.5)

which is called the mCH equation. When a = 3, Eq. (1.5) becomes

ut −uxxt +2kux +3u2ux = 2uxuxx +uuxxx, (1.6)

which has been investigated by many authors. For example, Tian and Song [34] gave some physical
explanation for Eq. (1.5). He et. al [16] used the integral bifurcation method to construct some exact
traveling wave solutions of Eq. (1.5). Khuri [20] obtained some periodic wave solutions for Eq.
(1.5). Shen and Xu [33] gave the condition under which compactons and cusp waves appear. When
k = 0, Wazwaz [35] showed that there is a bell-shaped solitary wave solution

u(x, t) =−2sech2 1
2
(x−2t). (1.7)

Liu and Liang [27] showed that there are several bifurcation wave speeds such that peakon and
anti-peakon appear in Eq. (1.5). Specially, Yin et. al [38] showed that the solitary waves of Eq.
(1.5) are stable for arbitrary wave speed. For stability of solitary waves to the other CH-types, many
interesting results have been obtained, see [21, 22, 24, 32] for example.

Just as mentioned above, on the study of stability of solitary waves for the CH equation and
its generalized forms, pioneers only considered the case of zero asymptotic value. It was showed
that the solitary waves with zero asymptotic value are orbital stability for any wave speed [38].
Orbital stability of solitary waves for the KdV type was investigated by Yin [36] and Zhang [40].
Yin [36] showed that the smooth solitary waves of the generalized Korteweg-de-Vries equation are
stable for any speed of wave propagation. Zhang [40] proved that the stability of the solitary waves
with nonzero asymptotic value is different from that of solitary waves with zero asymptotic value.
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The solitary waves with zero asymptotic value are orbitally stable. However, for one of the solitary
waves with nonzero asymptotic value, it is orbitally unstable just in part of the range of wave speed
which makes the solution meaningful. Therefore, we cannot derive orbital stability of solitary waves
with nonzero asymptotic value from that of solitary waves with zero asymptotic value.

In this paper, attention will be directed to orbital stability of the smooth solitary wave with
nonzero asymptotic value for Eq. (1.5). Firstly, we give the explicit expression of the smooth solitary
wave of Eq. (1.5). Secondly, we derive its orbital stability by applying the theory presented by
Grillakis-Shatah-Strauss [14,15]. Finally, via decaying estimates on the semigroup and the methods
used in [2,25,26], we obtain its orbital instability. From the results of the stability analysis it follows
that, unlike the CH equation (1.1), not all the allowed solitary waves are stable.

2. Explicit expression of the smooth solitary wave

In this section, we give the explicit expression of solitary wave solution with nonzero asymptotic
value for Eq. (1.5).

We substitute u = ϕ(ξ ) with ξ = x− ct into Eq. (1.5). Then we get

−cϕ
′
+ cϕ

′′′
+2kϕ

′
+aϕ

2
ϕ
′
= 2ϕ

′
ϕ
′′
+ϕϕ

′′′
, (2.1)

where c is a constant wave speed.
Integrating (2.1) once, we have

ϕ
′′
(ϕ− c) =

a
3

ϕ
3 +(2k− c)ϕ− 1

2
(ϕ
′
)2 +g, (2.2)

where g is a constant of integration.
Letting y = ϕ

′
, we get the following planar system{

dϕ

dξ
= y,

dy
dξ

= 1
ϕ−c

(a
3 ϕ3 +(2k− c)ϕ− 1

2 y2 +g
)
.

(2.3)

Since in system (2.3) there is a singular line l : ϕ = c which is inconvenient for our study, we
multiply both sides of system (2.3) by ϕ− c. Then we have{

(ϕ− c)dϕ

dξ
= (ϕ− c)y,

(ϕ− c) dy
dξ

= a
3 ϕ3 +(2k− c)ϕ− 1

2 y2 +g.
(2.4)

Using the transformation dξ = (ϕ− c)dτ , (2.4) is carried into the Hamiltonian system{
dϕ

dτ
= (ϕ− c)y,

dy
dτ

= a
3 ϕ3 +(2k− c)ϕ− 1

2 y2 +g.
(2.5)

Systems (2.4) and (2.5) have the same first integral

H(ϕ,y) = h,

where

H(ϕ,y) = y2(ϕ− c)− a
6

ϕ
4− (2k− c)ϕ2−2gϕ. (2.6)
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Let

f (ϕ) =
a
6

ϕ
4 +(2k− c)ϕ2 +2gϕ +h. (2.7)

In order to get the solitary wave solution, we suppose that

f (ϕ) =
a
6
(ϕ− c)(ϕ−α)2(ϕ−β ), (2.8)

where α and β are the roots of f (ϕ) = 0.
From (2.7) and (2.8), we get

α =
−ac+∆

3a
,

β =
−ac−2∆

3a
,

where ∆ =
√
−2a2c2−18a(2k− c). Then (2.6) can be rewritten as

y2 =
a
6
(ϕ−α)2(ϕ−β ), (2.9)

or

y =±
√

a
6

√
ϕ−β (ϕ−α), (a > 0). (2.10)

Substituting the expression (2.10) into dϕ

dξ
= y and integrating it, we have

∫
ϕ

β

ds

(s−α)
√

s−β
=

√
a
6

∫
ξ

0
dξ . (2.11)

In (2.11) completing the integration and solving the equation for ϕ , it follows that

ϕ(ξ ) = α +(β −α)sech2 η

2
, (2.12)

where η =
√

a(α−β )
6 ξ .

Note that u(x, t) = ϕ(ξ ), we obtain the smooth solitary wave solution

u(x, t) = α +(β −α)sech2 η

2
(2.13)

with nonzero asymptotic value D = α for Eq. (1.5).
Next, we transform Eq. (1.5) into a new nonlinear equation by a translation transformation.

Therefore, we only need to study the stability of the solitary wave with zero asymptotic value for
the new equation.
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3. Spectral analysis

In this section, we prove that the equation which derives from Eq. (1.5) by using the translation
transformation is a Hamiltonian system, and satisfies the conditions of the orbital stability theory
presented by Grillakis-Shatah-Strauss [14, 15].

By using the translation transformation u = ϕ +D to Eq. (1.5), we have

ϕt −ϕxxt +2kϕx +a(ϕ +D)2
ϕx = 2ϕxϕxx +ϕϕxxx +Dϕxxx. (3.1)

For convenience, Eq. (3.1) can be rewritten as

ut −uxxt +2kux +a(u+D)2ux = 2uxuxx +uuxxx +Duxxx. (3.2)

Analogously to the case [3] for Eq. (1.1), Eq. (3.2) can be written in Hamiltonian form and has
the invariants

E(u) =
1
2

∫
R
(u2 +u2

x)dx,

F(u) =
∫

R

[
a

12
(
u4 +4u3D+6u2D2 +4uD3)+ 1

2
(u+D)u2

x + ku2
]

dx.
(3.3)

In fact, if u is a classical solution of Eq. (3.2), it is straightforward to check that E(u) is con-
served. To see that F(u) is an invariant, a different approach is needed.

Let ν := u−uxx. Furthermore, Eq. (3.2) can be written in a Hamiltonian form

νt =−∂x(1−∂
2
x )

∂F
∂ν

, (3.4)

where ∂F
∂ν

denotes the variational derivative of the functional F , defined by

〈∂F
∂ν

, f 〉L2 =
d

dε
F(ν + ε f )|ε=0. (3.5)

Indeed, since ν = u−uxx, we have (see [5], page 70)

∂F
∂u

= (1−∂
2
x )

∂F
∂ν

. (3.6)

Furthermore, an easy computation yields

∂F
∂u

=
a
3

u3 +aDu2 +aD2u− 1
2

u2
x− (u+D)uxx +2ku. (3.7)

Therefore, Eq. (3.2) takes the form

νt =−∂x
∂F
∂u

=−∂x(1−∂
2
x )

∂F
∂ν

, (3.8)

where u ∈ X , X = H2(R) whose dual space is denoted by X∗ = H−2(R). (3.8) ensures that F is an
invariant.
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Let the inner product of X be

( f ,g) =
∫

R
f g+ f ′g′+ f ′′g′′dx, ∀ f ,g ∈ X . (3.9)

There exists a natural isomorphism I : X → X∗ defined by

〈I f ,g〉= ( f ,g), (3.10)

where

〈 f ,g〉=
∫

R
f gdx. (3.11)

From (3.9)-(3.11), it is clearly that I = 1− ∂ 2

∂x2 +
∂ 4

∂x4 .
Let T be a one-parameter group of unitary operator on X defined by

T (s)u(·) = u(·− s), ∀s ∈ R,u(·) ∈ X . (3.12)

From (3.12), we get T ′(0) =− ∂

∂x .
Now we consider the orbital stability of solitary waves ϕc = T (ct)ϕ(x) with zero asymptotic

value for Eq. (3.2), where

ϕ(x) = (β −α)sech2

√
a(α−β )

24
x.

Next, we give the existence of solutions to the initial value problem of Eq. (3.2) from Theorem
2.2 in [39].

Lemma 3.1. [39] Assume that s > 3
2 . For any fixed u0 ∈ Hs, there exists a unique solution u ∈

C([0,T ∗),Hs(R)) for some 0 < T ∗ < ∞, such that u(0) = u0 for Eq. (3.2).

Since E(u) and F(u) are invariants, it is easy to know that E(u) and F(u) satisfy

E(u(t)) = E(u(0)) = E(u0),

F(u(t)) = F(u(0)) = F(u0),

respectively. From (2.12), we know that ϕc(ξ ) = ϕ(ξ )−D is a bounded state solution.

Lemma 3.2. ϕc satisfies cE
′
(ϕc)−F ′(ϕc) = 0.

Proof. Notice that ϕc satisfies Eq. (3.2), we have

−cϕcx + cϕcxxx +2kϕcx +aϕ
2
c ϕcx +2aDϕcϕcx +aD2

ϕcx = 2ϕcxϕcxx +ϕcϕcxxx +Dϕcxxx. (3.13)

Integrating (3.13) once leads to

−cϕc + cϕcxx +2kϕc +
a
3

ϕ
3
c +aDϕ

2
c +aD2

ϕc =
1
2
(ϕcx)

2 +ϕcϕcxx +Dϕcxx +g1,

where g1 is a constant of integration. Since ϕc, ϕcx, ϕcxx→ 0 as x→ ∞, g1 = 0, i.e.

−cϕc + cϕcxx +2kϕc +
a
3

ϕ
3
c +aDϕ

2
c +aD2

ϕc =
1
2
(ϕcx)

2 +ϕcϕcxx +Dϕcxx. (3.14)
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Furthermore,

cE ′(ϕc)−F ′(ϕc)= cϕc−cϕcxx−2kϕc−
a
3

ϕ
3
c −aDϕ

2
c −aD2

ϕc+
1
2
(ϕcx)

2+ϕcϕcxx+Dϕcxx. (3.15)

Therefore, from (3.14) and (3.15), we obtain that ϕc satisfies

cE ′(ϕc)−F ′(ϕc) = 0. (3.16)

Now we define the operator Hc : X → X∗,

Hc = cE
′′
(ϕc)−F ′′(ϕc), (3.17)

where

E ′′(ϕc) = 1−∂xx, (3.18)

F ′′(ϕc) = aϕ
2
c +2aDϕc +aD2−ϕcx∂x−ϕc∂xx−ϕcxx−D∂xx +2k. (3.19)

Therefore,

Hc =−aϕ
2
c −2aDϕc +(ϕc +D− c)∂xx +ϕcx∂x +ϕcxx− (aD2 +2k− c). (3.20)

For any ϕ1, ϕ2 ∈ H2(R), we have

〈Hcϕ1,ϕ2〉= 〈ϕ1,Hcϕ2〉, (3.21)

which suggests that Hc is a self-conjugate operator in the sense that Hc = H∗c .
In fact,

〈Hcϕ1,ϕ2〉=∫
R

[
−aϕ2

c ϕ1−2aDϕcϕ1 +(ϕc +D− c)ϕ1xx +ϕcxϕ1x +ϕcxxϕ1− (aD2 +2k− c)ϕ1
]

ϕ2dx,
(3.22)

where ∫
R
[(ϕc +D− c)ϕ1xxϕ2 +ϕcxϕ1xϕ2]dx

=
∫

R
[(ϕc +D− c)ϕ2]dϕ1x +

∫
R

ϕcxϕ2dϕ1

=−
∫

R
[ϕcxϕ2 +(ϕc +D− c)ϕ2x]ϕ1xdx−

∫
R
(ϕcxxϕ2ϕ1 +ϕcxϕ2xϕ1)dx

=
∫

R
[ϕcxxϕ2 +2ϕcxϕ2x +(ϕc +D− c)ϕ2xx]ϕ1dx−

∫
R
(ϕcxxϕ2ϕ1 +ϕcxϕ2xϕ1)dx

=
∫

R
[ϕcxϕ1ϕ2x +(ϕc +D− c)ϕ1ϕ2xx]dx.

Therefore,

〈Hcϕ1,ϕ2〉

=
∫

R
ϕ1

[
−aϕ

2
c ϕ2−2aDϕcϕ2 +(ϕc +D− c)ϕ2xx +ϕcxϕ2x +ϕcxxϕ2− (aD2 +2k− c)ϕ2

]
dx

= 〈ϕ1,Hcϕ2〉.
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This means that I−1Hc is a bounded self-conjugate operator on X . The eigenvalues of Hc consist
of the real numbers λ which ensure that Hc−λ I has a non-trivial kernel.

We claim that λ = 0 belongs to the eigenvalues of Hc. From (3.13) and (3.20), we have
HcT ′(0)ϕc(x) = −Hcϕcx = 0. Letting Z′ = {rϕcx|r ∈ R}, then Z′ is contained in the kernel of Hc

denoted by Z = {u ∈ X |Hcu = 0}.
Obviously, x = 0 is a unique zero point of ϕcx, by using Sturm-Liouville theorem, we know that

zero is the second eigenvalue of Hc. Furthermore, Hc only has a negative eigenvalue −σ2, whose
corresponding eigenfunction is denoted by χ . Namely, Hχ =−σ2χ , where 〈χ,χ〉= 1.

Since ϕ , ϕcx, ϕcxx → 0 exponentially fast as |x| → ∞, we obtain that the essential spectrum of
Hc is essHc = [c−2k−aD2,+∞) by Weyl′s essential spectrum theorem, where c−2k−aD2 > 0.

According to the above analysis, we make spectrum decomposition for Hc. Let

Z = {r1ϕcx|r1 ∈ R},
N = {r2χ|r2 ∈ R},
P = {p ∈ X |(p,χ) = (p,ϕcx) = 0}.

Due to 〈Hcr2χ,r2χ〉 = r2
2〈H2χ,χ〉 = −r2

2σ2〈χ,χ〉 = −r2
2σ2 < 0, we get 〈Hcu,u〉 < 0 for any

u ∈ N. Due to 〈Hcr1ϕcx,r1ϕcx〉= 0, we get 〈Hcz,z〉= 0 for any z ∈ Z.
For any p ∈ P, along the lines of proof in Appendix of [32], we find that for any real function

p ∈ H2(R) with 〈p,χ〉 = 〈p,ϕcx〉 = 0, there exists δ > 0 independent of p such that 〈Hc p, p〉 ≥
δ ||p||2X . Therefore, 〈Hc p, p〉> 0.

So the space X can be decomposed as a direct sum X =N+Z+P, where Z is the kernel space of
Hc, N is a finite-dimensional subspace and P is a closed subspace. Furthermore, it is known [14,15]
that the stability would be ensured by the convexity of the scalar function [6]

d(c) = cE(ϕc)−F(ϕc), (3.23)

and d′′(c) as the Hessian matrix of function d.

4. Orbital stability of the solitary wave

Definition 4.1. Assume that ϕc = T (ct)ϕ(x) is a solitary wave of Eq. (3.2). The solitary wave ϕc is
called orbitally stable if for any ε > 0, there exists δ > 0 such that if u ∈C([0,T ∗),H2(R)) for some
0 < T ∗ < ∞ is a solution of Eq. (3.2) with u(0) = u0 and ||u0−ϕc||H2 < δ , then for every t ∈ [0,T ∗),

sup
0<t<+∞

inf
s∈R
||u(t)−T (s)ϕc||H2 < ε.

Otherwise, T (ct)ϕ(x) is called orbitally unstable.

According to the general theory of Bona, Grillakis, Shatah, Souganidis, and Strauss in [2, 14,
15], the stability of the solitary wave depends on the convexity of the function d(c). We have the
following theorem:
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Theorem 4.1. The solitary wave ϕc is stable if the function d is strictly convex, i.e. d′′(c)> 0. The
solitary wave ϕc is unstable if the function d is strictly concave, i.e. d′′(c)< 0.

In view of (3.21) and taking (3.16) into account, we have

d′(c) = 〈cE ′(ϕc)−F ′(ϕc),
∂ϕc

∂c
〉+E(ϕ) = E(ϕc) =

1
2

∫
R
(ϕ2

c +ϕ
2
cx)dx. (4.1)

From (2.12) we have

ϕc =
−4∆

a
1

e
√

∆

6 x + e−
√

∆

6 x +2
, (4.2)

and

ϕcx =
4∆

3
2 e
√

∆

6 x
(

e
√

∆

6 x−1
)

√
6a
(

1+ e
√

∆

6 x
)3 . (4.3)

Then, we have

d′(c) =
1
2

∫
R
(ϕ2

c +ϕ
2
cx)dx =

4∆
3
2 (30+∆)

15
√

6a2
, (4.4)

and

d′′(c) =

√
2(9−2ac)(18+∆)

3
√

3a∆
1
2

. (4.5)

According to the orbital stability theorem, we only need to observe the sign of d′′(c). We note
that c−2k−aD2 > 0 in the essential spectrum of Hc. Then we get c1 < c < c2. From (4.5) we know
that the wave speed c has a critical point c = c2, where c1 =

1−
√

1−8ak
2a , c2 =

9
2a and c3 =

9+3
√

9−8ak
2a .

Then we have the following conclusions.
(1) When c1 < c < c2 for −63

8a < k < 1
8a , we have d′′(c)> 0.

(2) When c2 < c < c3 for −63
8a < k < 1

8a , we have d′′(c)< 0.
(3) When c1 < c < c3 for k ≤−63

8a , we have d′′(c)< 0.
Applying the abstract result on orbital stability of solitary wave, the solitary wave obtained in

the Section 2 are orbitally stable when d′′(c)> 0. Next, we will give the proof of orbital instability
of the solitary wave when d′′(c)< 0.

5. Orbital instability of the solitary wave

Due to the operator ∂x(1− ∂ 2
x ) in (3.8) is not a one-to-one mapping, the abstract theory of orbital

instability in [14, 15] cannot be applied directly. Bona et. al [2] proved that the solitary waves are
indeed orbitally unstable when d′′(c)< 0. The instability proof in [2] requires the use of two special
ingredients which are the invariant I(u) and an estimate of the primitives of the solution. In this
section, we obtain the orbital instability of solitary wave when d′′(c) < 0 by detailed decaying
estimates on the semigroup and the methods of proof in [2].
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For the instability, we first state Lemma 5.1 and Theorem 5.1.

Lemma 5.1. Let I(u) =
∫

R udx. If
∫

R u(x,0)dx converges, then for 0 ≤ t ≤ T ∗, I(u) converges to
constant, where T ∗ denotes the maximum existence time for u(x, t).

Proof. Integrating (3.2) over the domain {(x, t) : a≤ x≤ b,0≤ t ≤ T ∗}, we have

∫ b

a
[u(x, t)−u(x,0)]dx

=
∫ b

a

∫ t

0

[
2uxuxx +(u+D)uxxx−a(u+D)2ux−2kux−uxxt

]
dtdx

=
∫ b

a

∫ t

0

[
1
2
(u2

x)x +(uuxx)x +Duxxx−
a
3
((u+D)3)x− k(u2)x− (uxt)x

]
dtdx.

Since u∈H2, the above formula tends to zero as a→−∞ and b→+∞. Hence if I(u0) =
∫

R u0(x)dx
exists as an improper integral, then I(u) exists and I(u) = I(u0). This completes the proof of
Lemma 5.1.

The next theorem is the principal result of this section and also a key step in the proof of orbital
instability.

Theorem 5.1. Assume that u(x, t) satisfies Eq. (3.2) with initial data u0(x) = u0. Then

sup
−∞<z<+∞

∣∣∣∣∫ z

−∞

u(x, t)dx
∣∣∣∣≤C0(1+ t

7
8 ), (5.1)

where the constant C0 depends only on u0.

To prove Theorem 5.1, we need a series of lemmas given below. The first one is the well-known
Van der Corput Lemma which we state without proof.

Lemma 5.2. Let h be either convex or concave on [a,b] with −∞≤ a < b≤+∞. Then

∣∣∣∣∫ b

a
eih(ω)dω

∣∣∣∣≤ 4{min
[a,b]
|h′′(ω)|}−

1
2 , i f h′′ 6= 0 in [a,b].

Lemma 5.3. For 1≤ t <+∞, we have

sup
−∞<γ<+∞

∣∣∣∣∫ n

−n
eith(ω,γ)dω

∣∣∣∣≤C0(t−
1
3 + t−

1
2 n

3
2 ), (5.2)

where h(ω,γ) = (k1−D)ω
1+ω2 + γω , k1 = 2k+ aD2, D is bounded and h′(ω,γ) denotes the derivative

with respect to ω .
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Proof. Through simple calculation, we have

h′(ω,γ) =
(k1−D)(1−ω2)

(1+ω2)2 + γ,

and

h′′(ω,γ) =
2(k1−D)ω(ω2−1)

(1+ω2)3 .

Define A = {ω ∈ R||ω| < t−θ}, B = {ω ∈ R|1− t−θ < |ω| < 1+ t−θ} and Ω = [−n,n]\ (A∪B),
where t > 1 and 0 < θ < 1. By Lemma 5.2, we have∣∣∣∣∣∣

∫
Ω

eith(ω,γ)dω

∣∣∣∣∣∣≤ 4{t min
Ω
|h′′(ω,γ)|}−

1
2 ≤C0

(
t−

1
2 n

3
2 + t−

1
2+

θ

2

)
.

On the other hand, ∣∣∣∣∣∣
∫

A∪B

eith(ω,γ)dω

∣∣∣∣∣∣≤ 6t−θ .

Hence,

sup
−∞<γ<+∞

∣∣∣∣∫ n

−n
eith(ω,γ)dω

∣∣∣∣≤C0

(
t−

1
2 n

3
2 + t−

1
2+

θ

2 + t−θ

)
.

Choosing θ = 1
3 , we complete the proof of Lemma 5.5.

Lemma 5.4. (1− ∂ 2
x )
−1 is a convolution by a function in L1, that is, (1− ∂ 2

x )
−1u = K ∗ u, where

K(x) = 1
2π

∫ +∞

−∞
eixω(1+ω2)−1dω , K(x) ∈ L1(R) and ||(1−∂ 2

x )
−1u||L1(R) ≤ 2||u||L1(R).

Proof. Since

1
1+ξ 2 =

1
4π

∫ +∞

0
e−

1+ξ 2
4π

ydy,

using the Fubini’s theorem, we obtain

K(x) =
1

2π

∫ +∞

0
e−

π|x|2
y · e−

y
4π · y−

1
2 dy.

Notice that ∫ +∞

−∞

e−
π|x|2

y dx = y
1
2 .

Applying the Fubini’s theorem again, we get∫ +∞

−∞

|K(x)|dx =
1

2π

∫ +∞

0
e−

y
4π dy = 2.

Therefore using Young’s inequality, we obtain

||(1−∆)−1u||L1(R) ≤ ||K(x)||L1(R) · ||u||L1(R) ≤ 2||u||L1(R).
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Lemma 5.5. Let S(t) be the evolution operator for the linear equation

(1−∂
2
x )ut + k1ux−Duxxx = 0, (5.3)

that is u(t) = S(t)u(0). Then there exists a constant C0 > 0 such that

|u(t)| ≤C0t−
1
8

(
||u(0)||L1(R)+ ||u(0)||H1(R)

)
.

Proof. The solution of the linear equation (5.3) is

u(t) = S(t)u(0) =
1

2π

∫ +∞

−∞

[
eixωei k1ω

1+ω2 t+i Dω3

1+ω2 t û0(ω)

]
dω,

û0(ω) is the Fourier transform of u0(ω).
In virtue of Lemma 5.3 and Lemma 5.4, we have

|u(t)|= |S(t)u(0)|

=

∣∣∣∣ 1
2π

∫ +∞

−∞

[
eit
(
(k1−D)ω

1+ω2 +(D+ x
t )ω

)
û0(ω)

]
dω

∣∣∣∣
≤ 1

2π

[∫
|ω|>n

|û0(ω)|dω +

∣∣∣∣∫ n

−n
eit
(
(k1−D)ω

1+ω2 +(D+ x
t )ω

)
dω

∣∣∣∣ |û0(ω)|L∞(R)

]
≤ 1

2π

[
||u0||H1(R)

(∫
|ω|>n

(1+ |ω|)−2dω

) 1
2

+C0(t−
1
3 + t−

1
2 n

3
2 )||u0||L1(R)

]
≤C0

(
n−

1
2 + t−

1
3 + t−

1
2 n

3
2

)(
||u(0)||L1(R)+ ||u(0)||H1(R)

)
.

Choosing n = t
1
4 (t ≥ 1), we obtain

|u(t)| ≤C0t−
1
8 (||u(0)||L1(R)+ ||u(0)||H1(R)).

This completes the proof of Lemma 5.5.

Proof of Theorem 5.1. Let z(t) = S(t)u(0), that is

(1−∂
2
x )zt + k1zx−Dzxxx = 0, z(0) = u(0) = u0.

Then

u(t) = z(t)−
∫ t

0

[
S(t− τ)(1−∂

2
x )
−1

∂x

(
a
3

u3 +aDu2− 1
2

u2
x−uuxx

)]
dτ

= z(t)−∂x

∫ t

0

[
S(t− τ)(1−∂

2
x )
−1
(

a
3

u3 + c1(1−∂
2
x )u

2 + c2u2− 3
2

u2
x

)]
dτ,

where c1 =−1
2 , c2 = aD+ 1

2 . Let

U(x, t) =
∫ x

−∞

u(y, t)dy, Z(x, t) =
∫ x

−∞

z(y, t)dy.

Then

U(t) = Z(t)−
∫ t

0

[
S(t− τ)

(
(1−∂

2
x )
−1 a

3
u3 + c1u2 + c2(1−∂

2
x )
−1u2− 3

2
(1−∂

2
x )
−1u2

x

)]
dτ.
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We estimate the two terms on the right-hand side of the above equation separately. From the
equation for z(x, t) we write

z(x, t) = u0−
∫ t

0
(1−∂

2
x )
−1

∂x(k1z(τ)−D∂xxz(τ))dτ

= u0−∂x

∫ t

0
(1−∂

2
x )
−1(k1z(τ)−D∂xxz(τ))dτ,

so that the first term is

Z(t) =U0−∂x

∫ t

0
(1−∂

2
x )
−1(k1z(τ)−D∂xxz(τ))dτ

=U0−
∫ t

0
S(τ)

[
(k1−D)(1−∂

2
x )
−1u0 +Du0

]
dτ,

where U0(x) =
∫ x
−∞

u0(y)dy. Using Lemma 5.5, we have

|Z(x, t)| ≤C0(1+ t
7
8 )||u0||H1∩L1 .

If P(x, t) denotes the second term, then from Lemma 5.5, we have

|P(x, t)| ≤
∫ t

0

∣∣c1S(t− τ)u2∣∣dτ +
∫ t

0

∣∣∣a
3

S(t− τ)(1−∂
2
x )
−1u3

∣∣∣dτ

+
∫ t

0

∣∣c2S(t− τ)(1−∂
2
x )
−1u2∣∣dτ +

∫ t

0

∣∣∣∣32S(t− τ)(1−∂
2
x )
−1u2

x

∣∣∣∣dτ

≤
∫ t

0
C1(1+ t + τ)−

1
8 ||u2||H1∩L1dτ +

∫ t

0
C2(1+ t + τ)−

1
8 ||(1−∂

2
x )
−1u3||H1∩L1dτ

+
∫ t

0
C3(1+ t + τ)−

1
8 ||(1−∂

2
x )
−1u2||H1∩L1dτ +

∫ t

0
C4(1+ t + τ)−

1
8 ||(1−∂

2
x )
−1u2

x ||H1∩L1dτ.

Since u ∈ H1, then u ∈ L∞. So ||u2||L1 ≤ C0, ||u3||L1 ≤ C0, ||(1− ∂ 2
x )
−1u3||L1 ≤ C0, ||(1−

∂ 2
x )
−1u2||L1 ≤C0. Since H1 is an algebra,

||up||H1 ≤ ||u||pH1 ≤ ||u0||pH1 ,

and

||(1−∂
2
x )
−1up||H1 ≤ ||up||H1 ≤ ||u0||pH1 .

Next, we observe that

||(1−∂
2
x )
−1uxux||H1 ≤ ||uxux||H1 ≤ ||ux||H0 ||ux||H0 ≤C0||u||2H1 ,

and

||(1−∂
2
x )
−1uxux||L1 ≤C0||uxux||L1 =C0

∫
R
|ux|2dx≤C0||u||H1 .

Thus

|P(x, t)| ≤C0

∫ t

0
(1+ t + τ)−

1
8 dτ ≤C0(1+ t)

7
8 .

This completes the proof of Theorem 5.1.
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Next, we will give the outline of the proof of instability. Let ε > 0 be sufficiently small. To prove
the instability of ϕc, it suffice to show that there exists u0 ∈ X sufficiently close to ϕc such that the
solution u subject to the initial data u0 exists outside the “tube” Uε

∆
= {u ∈ X : inf

s∈R
||u−T (s)ϕc||X <

ε} in finite time. Let [0, t1) denote the maximal interval for which u lies continuously in Uε . Next
we will show that t1 <+∞.

We define the functional

A(t) =
∫ +∞

−∞

Y (x−β (t))u(x, t)dx, for 0≤ t < t1,

where Y (x) =
∫ x
−∞

y(p)d p− ∂xy(x), y = d
ds(ϕc(s) + sχ)|s=0. Here χ is defined in Section 3. By

Lemma 5.1 and Theorem 5.1, using Minkowski’s inequality, we can obtain the following estimate

|A(t)| ≤C0(1+ t
7
8 ), 0≤ t < t1. (5.4)

On the other hand, using the similar ideas in [2, 12, 26, 41], we can prove that there exists some
δ0 > 0 such that

dA
dt

<−δ0. (5.5)

From (5.4) and (5.5), we have t1 6=+∞, which implies t1 <+∞. Thus the solitary wave obtained
in Section 2 is orbitally unstable when d′′(c)< 0.

6. Conclusions

In this paper, we have investigated the stability of the smooth solitary wave with nonzero asymptotic
value for the mCH equation. We have not only showed that there exists a smooth solitary wave with
explicit expression, but also derived its orbital stability. From the results of the stability analysis it
follows that, unlike the CH equation, not all the allowed solitary waves are stable.

Note that in this paper there are two problems waiting to solve. The first one is that the wave
speed c has a critical point c = c2. At this critical point we do not know whether the solitary wave
is orbitally stable. The second one is that we have investigated the orbital stability of the smooth
solitary wave. But the stability of the non-smooth solitary wave awaits further study.
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