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A N-body problem “of goldfish type” is introduced, the Newtonian (“acceleration equal force”) equations of
motion of which describe the motion of N pointlike unit-mass particles moving in the complex z-plane. The
model—for arbitrary N—is solvable, namely its configuration (positions and velocities of the N “particles”) at
any later time t can be obtained from its configuration at the initial time by algebraic operations. It features
specific nonlinear velocity-dependent many-body forces depending on N2 arbitrary (complex) coupling con-
stants. Sufficient conditions on these constants are identified which cause the model to be isochronous—so that
all its solutions are then periodic with a fixed period independent of the initial data. A variant with twice as
many arbitrary coupling constants, or even more, is also identified.
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1. Introduction

Recently a technique has been introduced [1] which allows a rather straightforward identifica-
tion of solvable N-body problems “of goldfish type” (for the identification of this class of solv-
able N-body problems, and a selection of previous developments concerning this class, see for
instance [2–18]). The usefulness of this technique to identify new many-body problems character-
ized by certain Newtonian (“acceleration equal force”) equations of motion describing the motion
of N nonlinearly interacting pointlike unit-mass particles moving in the complex z-plane has been
demonstrated by several examples [1,19–21]. In this short communication we report one more such
example with the novel property to feature as many as N2 arbitrary coupling constants.

In the following Section 2 the equations of motion of this solvable model are displayed, and
their solution is reported and tersely discussed. The following Section 3 explains how this model,
and its solution, were obtained. A final Section 4 entitled “Outlook” completes the paper: in this
section a variant of the N-body model treated in the preceding sections is also identified, which is
as well solvable, while featuring twice as many arbitrary coupling constants, or even more.

2. Results

Notation 2.1. In this paper N is an arbitrary integer (N ≥ 2), indices such as n, m, `, j run over
the integers from 1 to N (unless otherwise indicated, see for instance the restriction ` 6= n in (2.1a)
below), all quantities other than indices are generally complex numbers (unless otherwise indi-
cated, see for instance below “time”), boldface lower-case Latin letters are N-vectors (for instance
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the N-vector z features the N components zn), boldface upper-case Latin letters are N×N matri-
ces (for instance the N×N matrix A features the N2 elements Anm), the real variable t indicates
“time” and differentiations with respects to this variable are denoted by superimposed dots (so that
żn (t)≡ d zn (t)/d t, z̈n (t)≡ d2 zn (t)/d t2). In the following the time-dependence of quantities will
not be explicitly displayed whenever the context allows to do so with a negligible risk to cause mis-
understandings. There is one exception to the above definition of N-vectors: we hereafter denote
(for typographic convenience) as i the imaginary unit, so that i2 = −1. We also adopt the standard
convention according to which an empty sum has a vanishing value and an empty product has unit
value, for instance ∑

J
j=K (x j) = 0, ∏

J
j=K (x j) = 1 if K > J. Finally we denote as usual with δnm the

Kronecker symbol, so that δnm = 1 if n = m, δnm = 0 if n 6= m. �

Proposition 2.1. The solvable N-body problem is characterized by the following N Newtonian
equations of motion:

z̈n =
N

∑
`=1, 6̀=n

(
2 żn ż`
zn− z`

)
+

[
N

∏
`=1, 6̀=n

(zn− z`)

]−1 N

∑
m, j=1

[
Am j c j (zn)

N−m
]
, (2.1a)

where of course zn ≡ zn (t) are the coordinates of the moving particles, Am j are N2 arbitrary (cou-
pling) constants, and the N quantities c j ≡ c j (t) are—up to a sign, see below—the symmetrical
sums of j coordinates zn (t), being defined in terms of them as follows:

cm = (−1)m
∑

1≤s1<s2<···<sm≤N
(zs1 zs2 · · · zsm) , (2.1b)

where of course (above and hereafter) the symbol ∑1≤s1<s2<···<sm≤N denotes the sum from 1 to N
over the m indices s1, s2, · · ·, sm with the restriction s1 < s2 < · · · < sm. Note that the first sum
in the right-hand side of (2.1a) is the characterizing mark of N-body problems “of goldfish type”.
Also note (see below) that the right-hand side of the equations of motion (2.1a) blows up when two
different coordinates coincide, corresponding to a “collision” of two “particles”; but the occurrence
of such events is not generic for motions taking place in the complex z-plane.

The configuration at time t of this system is provided by the following prescription: the N
coordinates zn (t) are the N zeros of the t-dependent (monic) polynomial pN (z; t), of degree N in z,
given by the following formulas in terms of the initial data zn (0) , żm (0):

pN (z; t) = zN +
N

∑
m=1

[
cm (t) zN−m] , (2.2a)

where

cm (t) =
N

∑
n=1

{ [
γ
(+)
n exp(i αn t)+ γ

(−)
n exp(−i αn t)

]
u(n)m

}
. (2.2b)

Here the quantities αn respectively u(n)m are defined via the N eigenvalues α2
n respectively the corre-

sponding N eigenvectors u(n) (with components u(n)m ) of the (time-independent) eigenvalue problem

A u(n) = α
2
n u(n) , (2.3)

where the N×N matrix A features as its elements the N2 coupling constants Anm, see (2.1a); while
the 2N time-independent quantities γ

(±)
n are the solutions of the following linear system of 2N
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algebraic equations (see (2.2b)):

N

∑
n=1

{ [
γ
(+)
n + γ

(−)
n

]
u(n)m

}
= cm (0) , (2.4a)

i
N

∑
n=1

{
αn

[
γ
(+)
n − γ

(−)
n

]
u(n)m

}
= ċm (0) , (2.4b)

where of course the 2N quantities cm (0) respectively ċm (0) are expressed as follows in terms of the
initial data zn (0) , żm (0) (see (2.1b)):

cm (0) = (−1)m
∑

1≤s1<s2<···<sm≤N
[zs1 (0) zs2 (0) · · · zsm (0)] , (2.4c)

ċm (0) = (−1)m
N

∑
n=1

(
żn (0)

{
δm1

+ ∑
1≤s1<s2<···<sm−1≤N; s j 6=n, j=1,...,m−1

[
zs1 (0) zs2 (0) · · · zsm−1 (0)

] } )
, (2.4d)

where the symbol ∑1≤s1<s2<···<sm−1≤N; s j 6=n, j=1,...,m−1 denotes the sum from 1 to N over the m− 1
indices s1, s2, · · ·, sm−1 with the restriction s1 < s2 < · · · < sm−1 and the additional restriction that
all these indices be different from n (note that, for m = 1, this sum vanishes, see the above Notation
2.1).

Note that in writing this solution we are implicitly assuming that the N eigenvalues α2
n are all

different among themselves; otherwise the standard limit must be taken, yielding terms in the right-
hand side of (2.2b) featuring powers of t (see below, after eq. (3.9)). �

Remark 2.1. It is plain that a rescaling respectively a shifting of the N coordinates zn (t),

zn (t)⇒ βn zn (t)+ γn (2.5)

with βn respectively γn arbitrary (constant) parameters, changes only rather trivially the equations
of motions (2.1): indeed if βn = β and γn = γ it amounts almost only to a redefinition of the N2

coupling constants Anm. �

Remark 2.2. Let us emphasize that, while the above technique of solution, as formulated in Propo-
sition 2.1, provides the configuration of the system at time t as an unordered set of N coordinates
zn (t), it does of course also allow to identify, say, which is the value at time t of the specific coordi-
nate z1 (t) which has evolved by continuity in time from the initial data z1 (0) , ż1 (0). To do so one
must investigate the time evolution of each coordinate over the Riemann surface associated with the
configuration of the zeros of the polynomial (2.2). This is not a trivial endeavour, as demonstrated
by various papers where this phenomenology has been studied in considerable detail [8,12,22–25].
In practice to get such information it may be easier to integrate numerically the equations of motion
from the initial data (possibly only with rather poor precision); or to chop up the time interval from
0 to t into several (say, s) subintervals (from 0 to t1, from t1 to t2, ..., from ts−1 to ts = t), to solve in
every subinterval by the technique described in this paper, and to make sure that each subinterval is
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sufficiently short to allow the identification of each moving particles by an argument of contiguity
(approximating continuity) of their positions over their time evolution. On the other hand let us also
emphasize that the technique of solution described in Proposition 2.1 also yields some important
general properties of the solutions of the system (2.1), see for instance the following Remark 2.3.
�

Remark 2.3. It is plain from Proposition 2.1 that the following general properties of the N-body
problem characterized by the Newtonian equations of motion (2.1) hold.

(i) For generic (complex) initial data zn (0) , żn (0) the time evolution of this N-body system is,
for all (finite) time, nonsingular.

(ii) If the N eigenvalues α2
n of the N ×N matrix A are all positive and distinct, for generic

(complex) initial data the time evolution of this N-body system is multiply periodic, hence confined
to a finite region of its phase space.

(iii) If and only if some (say, ν) of the N eigenvalues α2
n of the N×N matrix A are—up to a

common positive parameter η2—the squares of distinct integers, say

α
2
p = η

2 q2
p , p = 1,2, ...,ν < N , (2.6a)

with all qp’s positive integers and qp 6= qp′ if p 6= p′, then the system (2.1) features ν completely
periodic solutions,

zn (t +Tp) = zn (t) , (2.6b)

with periods Tp = 2π/ |ηqp|; or possibly their periods might be a finite integer multiple of Tp—
generally small with respect to its possible maximal value N!—due to the possibility that the zeros
of a polynomial pN (z; t) of order N in z which itself evolves periodically in time with period Tp

exchange their roles when the polynomial becomes equal to itself after one period: see [8].
(iv) If and only if all the N eigenvalues α2

n of the N×N matrix A are—up to a common positive
parameter η2—the squares of N distinct integers,

α
2
p = η

2 q2
p , p = 1,2, ...,N , (2.7a)

again with qp integer and qp 6= qp′ if p 6= p′, then the system (2.1) is isochronous, i. e. all its
nonsingular solutions are completely periodic with a period T̃ = 2π/ |η q̃| where q̃ is the minimum
common multiple of the N integers |qp| (or, again, the period might be a finite integer multiple of T̃ ,
generally small with respect to its possible maximal value N!: see [8, 12, 22–25]). �

3. Proofs

The starting point of our proof are the identities

z̈n =
N

∑
`=1, 6̀=n

(
2 żn ż`
zn− z`

)
−

[
N

∏
`=1, 6̀=n

(zn− z`)

]−1 N

∑
m=1

[
c̈m (zn)

N−m
]
, (3.8)

which—as proven in [1]—relate the (time-evolutions of the) N zeros zn ≡ zn (t) and the N coeffi-
cients cm = cm (t) of any time-dependent monic polynomial of degree N in z, see (2.2a).
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Let us now assume that the coefficients cm (t) of such a polynomial evolve in time according to
the following system of N linearly coupled Ordinary Differential Equations (ODEs):

c̈m (t) =−
N

∑
j=1

[Am j c j (t)] . (3.9)

It is then plain that the time evolution of these quantities is provided by (2.2b) with (2.3) and
(2.4) (here the assumption that the N eigenvalues α2

n be all different among themselves plays a
crucial role; otherwise the standard treatment of systems of autonomous linear ODEs implies that
the solution of (3.9) features powers of t besides exponentials); while clearly the insertion of (3.9)
in the right-hand side of (3.8) yields (2.1a), and (2.1b) is an identical consequence of (2.2a). The
validity of Proposition 2.1 is an immediate consequence.

4. Outlook

The results reported in this paper are rather immediate consequences of the findings reported in [1];
yet the identification of a solvable N-body problem “of goldfish type” featuring as many as N2

arbitrary coupling constants is, to the best of my knowledge, a novel fact: hence deserving to be
reported.

It is also possible to consider the more general solvable N-body model of goldfish type, the
equations of motion of which obtain by inserting, in the right-hand side of (3.8), instead of (3.9),
the linear set of N ODEs

c̈m (t) =−
N

∑
j=1

[Bm j ċ j (t)+Am j c j (t)] , (4.1)

which feature the additional set of N2 arbitrary constants Bm j (and of course additional arbitrary
parameters can be introduced by the trivial trick mentioned in Remark 2.1). But we leave the
details of this extension as a task for the interested reader.

And let us end by mentioning the possibility to, as it were, iterate these findings, i. e. to introduce
the sequel of solvable N-body problems of goldfish type which obtain by inserting in the right-hand
side of (3.8)—to characterize the evolution of the quantities cm (t)—the solvable model obtained at
the previous level of the iteration. [20]
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