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The Heisenberg supermagnet model which is the supersymmetric generalization of the Heisenberg ferro-
magnet model is an important integrable system. We consider the deformations of Heisenberg supermag-
net model under the two constraint 1. S2 = S for S ∈ USPL(2/1)/S(L(1/1)×U(1)) and 2. S2 = 3S− 2I
S ∈USPL(2/1)/S(U(2)×U(1)). By means of the gauge transformation, we construct the gauge equivalent
counterparts, i.e., the super generalized Hirota equation and Gramman odd nonlinear Schrödinger equation.
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1. Introduction

The Heisenberg ferromagnet (HF) model occurring in the domain of optics and plasma physics is
an important integrable systems, and its quantum variant describes a many-particle system with
delta-function interaction. HF model has wide applications in the anti-de Sitter/conformal field the-
ories [1, 5], two-dimensional (2D) gravity theory [13], and so on. Takhtajan [20] obtained the Lax
representation of HF model and studied its solution through the inverse scattering method. Then, it
is presented that HF model is geometrically and gauge equivalent to the nonlinear Schrödinger equa-
tion (NLSE) [6,24]. Much of the work focused on the integrable deformations of HF model includ-
ing the higher order and inhomogeneous extensions of HF model. Mikhailov and Shabat [15] con-
structed the first-order integrable deformations of HF model by means of the equivalence between
the HF model and the integrable NLSE. In terms of a differential geometric approach, Lakshmanan
et al. [8,16,18,25] expressed the higher order deformation of HF model in the form of a higher-order
generalized NLSE. Since the inhomogeneous integrable equations have the attractive applications in
many fields, Lakshmanan and Ganesan [7] showed that the deformation of HF model is equivalent
to the generalized Hirota’s equation with linear inhomogeneities. The generalized inhomogeneous
HF model and its corresponding gauge equivalent equation is studied in [26]. Recently, Levin et
al. [9] investigated the deformed HF model related the quantum 11-vertex R-matrix. By means of
the quantum R-matrices, they also established the classical integrable tops which can construct more
complicated integrable systems.
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The supersymmetry are of great interest to both mathematicians and physicists. It is encoun-
tered in gravity theory, extended supergravity, in the theory of strings and superstrings [2, 3, 17].
As is well known, a number of integrable systems admit a natural extension by odd variables. Thus
more motivation comes from superextensions of of many important integrable systems [12, 14, 19]
and investigating their structures and integrable properties. Heisenberg supermagnet (HS) models
proposed by [10, 11] were the supersymmetric generalizations of the HF model. They have pro-
vided a approach to construct the gauge equivalence between the established HS models and the
related NLSEs. It has been demonstrated that there is a close relation between HS model and the
strong electron correlated Hubbard model. Lately, various deformed integrable HS models were
constructed and their integrability properties have been also studied [4, 21–23]. The aim of this
paper is to establish another deformations of HS models, which, as far as these authors’s knowl-
edge goes, was not previously known. Furthermore, we shall analyze the integrability properties
of deformed HS models. By means of the gauge transformation, we derive the gauge equivalent
counterparts.

The paper is organized as follows. In section 2, we recall the HS model and its integrable prop-
erties. Section 3 is dedicated to introducing the deformed HS models under the two different con-
straint, and then we investigate their corresponding gauge equivalent counterparts. We end this paper
with a summary and discussion in section 4.

2. HS Model

Let us recall the HS model that will be useful in what follows. For a more detailed description we
refer to [10, 11].

The HF model is given by

St = [S,Sxx], (2.1)

where S is the spin vector and satisfies the constraint S2 = 1.
The HS model is the superextensions of the HF model, it can be expressed as follows

iSt = [S,Sxx], (2.2)

where S is the superspin variable and can be represented

S = 2
4

∑
a=1

SaTa +2
8

∑
a=5

CaTa,

=

 S3 +S4 S1− iS2 C5− iC6

S1 + iS2 −S3 +S4 C7− iC8

C5 + iC6 C7 + iC8 2S4

 , (2.3)

where S1, · · · ,S4 are the bosonic components and C5, · · · ,C8 are the fermionic ones, T1, · · · ,T4 are
bosonic generators and T5, · · · ,T8 are fermionic generators of the superalgebra uspl(2/1).

The concepts of gauge equivalence between integrable systems play an important role in the
theory of solitons [24]. The fact is that gauge equivalence exists only for integrable systems possess
Lax representations. Understanding the properties of the gauge equivalent counterpart help us know
more about the integrable systems. The gauge equivalence can also be used to supersymmetric
systems. Under the following two constraints, Makhankov and Pashaev [11] showed the HS modle
(2.2) is gauge equivalent to supersymmetric NLSE and Grassman odd NLSE, respectively
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1. S2 = S for S ∈USPL(2/1)/S(L(1/1)×U(1))

iϕt +ϕxx +2(ϕϕ̄ +ψψ̄)ϕ = 0,

iψt +ψxx+2ϕϕ̄ψ = 0, (2.4)

2. S2 = 3S−2I for S ∈USPL(2/1)/S(U(2)×U(1))

iψ1t +ψ1xx +2ψ̄2ψ2ψ1 = 0,

iψ2t +ψ2xx +2ψ̄1ψ2ψ2 = 0, (2.5)

where ϕ(x, t) is a Grassman even filed and ψ,ψ1,ψ2 are the Grassman odd fileds.

3. Integrable Deformations of the HS Model

Let us consider the deformation of the HS model under the constraint 1. S2 = S, it is easy to get
SStS = 0 and S[S,Sxx]S = 0. Now we suppose the deformation of the HS model as follows

iSt = f [S,Sxx]+g[S,Sx]+uSx, (3.1)

where f is the function of x and t, g and u need to determined later. For the constraint 1, it is not
difficult to check S[S,Sx]S = 0,SSxS = 0. We now take

U = λS,

V = iλ f [Sx,S]+ v(S,Sx), (3.2)

where λ is the spectral parameter.
The zero-curvature condition equation

Ut −Vx +[U,V ] = 0, (3.3)

Substituting (3.2) into (3.3), we obtain

g = fx,

u = −ih,

v = −(λh+ iλ 2 f )S,

λt = −iλ 2 fx−λhx. (3.4)

where h is the function of x and t.
Then we can rewrite (3.1) as the expression

iSt = f [S,Sxx]+ fx[S,Sx]− ihSx. (3.5)

To achieve a better understanding of the the deformation of the HS modle (3.5), let us turn
to investigate its gauge equivalent counterpart. It has been known with the constraint 1 and 2, HS
model (2.2) is gauge equivalent to super-NLSE and Grassman odd NLSE, respectively. Now one
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shall construct the gauge equivalent counterpart of (3.4). Following the strategy in [11], we take

S(x, t) = g−1 (x, t)Σg(x, t) , (3.6)

where g(x, t) ∈ USPL(2/1) . Under the constraint 1 and 2, we take Σ = diag(0,1,1) and Σ =

diag(1,1,2), respectively. Then we introduce the currents

J1 = gxg−1,J0 = gtg−1, (3.7)

satisfying the condition

∂tJ1−∂xJ0 +[J1,J0] = 0. (3.8)

We now turn to decompose the super algebra uspl(2/1) into two orthogonal parts to obtain J0

and J1

L = L(0)⊕L(1), (3.9)

here [L(i),L(j)} ⊂ L(i+j)mod(2). L(0) is an algebra constructed by means of the generators of the
stationary subgroup H. The stationary subgroup H is S(L(1/1)×U(1)) and S(U(2)×U(1)) for
constraint 1 and 2, respectively.

We take

1. J1 = i

 0 ϕ ψ

ϕ̄ 0 0
ψ̄ 0 0

 ∈ L(1) for S ∈USPL(2/1)/S(L(1/1)×U(1)), (3.10)

where ϕ(x, t) and ψ(x, t) are the Grassman even and odd field, respectively.
In terms of (3.6), (3.7) and (3.10), we obtain

St = g−1(x, t)[Σ,J0]g(x, t),

Sx = g−1(x, t)[Σ,J1]g(x, t),

Sxx = g−1(x, t)([[Σ,J1],J1]+ [Σ,J1x])g(x, t). (3.11)

Substituting (3.11) into (3.5), we have

i[Σ,J0] = f [Σ, [[Σ,J1],J1]+ [Σ,J1x]]+ fx[Σ, [Σ,J1]]− ih[Σ,J1]. (3.12)

Under constraint 1, we get J(1)0 by meas of (3.12) and the condition [Σ,J(0)0 ] = 0

J(1)0 = i

 0 i( f ϕ)x−hϕ i( f ψ)x−hψ

−i( f ϕ̄)x−hϕ̄ 0 0
−i( f ψ̄)x−hψ̄ 0 0

 , (3.13)

Based on J0 = J(0)0 + J(1)0 , the Eq.(3.8) leads to

(J(0)0 )x = [J1,J
(1)
0 ]. (3.14)

Substituting (3.10) and (3.13) into (3.14) and integrating Eq.(3.14), we obtain

J(0)0 =

A 0 0
0 −i f ϕ̄ϕ− i

∫ x
−∞

fxϕ̄ϕdx′ −i f ϕ̄ψ− i
∫ x
−∞

fxϕ̄ψdx′

0 −i f ψ̄ϕ− i
∫ x
−∞

fxψ̄ϕdx′ −i f ψ̄ψ− i
∫ x
−∞

fxψ̄ψdx′

 , (3.15)
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where A = i f (ϕϕ̄ +ψψ̄)+ i
∫ x
−∞

fx(ϕϕ̄ +ψψ̄)dx′.

By the expression J0 = J(0)0 + J(1)0 , we obtain

J0 =

 A −( f ϕ)x− ihϕ −( f ψ)x− ihψ

( f ϕ̄)x− ihϕ̄ −i f ϕ̄ϕ− i
∫ x
−∞

fxϕ̄ϕdx′ −i f ϕ̄ψ− i
∫ x
−∞

fxϕ̄ψdx′

( f ψ̄)x− ihψ̄ −i f ψ̄ϕ− i
∫ x
−∞

fxψ̄ϕdx′ −i f ψ̄ψ− i
∫ x
−∞

fxψ̄ψdx′

 . (3.16)

In terms of the gauge transformation, U and V in (3.2) becoms Û and V̂ , respectively,

Û = gUg−1 +gxg−1 = λΣ+ J1,

V̂ = gV g−1 +gtg−1 =−iλ f J1− (λh+ iλ 2 f )Σ+ J0. (3.17)

Substituting Σ = diag(0,1,1), (3.10) and (3.16) into (3.17), we get

Û =

 0 iϕ iψ
iϕ̄ λ 0
iψ̄ 0 λ

 , (3.18)

V̂ =

 V̂11 −( f ϕ)x− ihϕ +λ f ϕ −( f ψ)x− ihψ +λ f ψ

( f ϕ̄)x− ihϕ̄ +λ f ϕ̄ V̂22 −i f ϕ̄ψ− i
∫ x
−∞

fxϕ̄ψdx′

( f ψ̄)x− ihψ̄ +λ f ψ̄ −i f ψ̄ϕ− i
∫ x
−∞

fxψ̄ϕdx′ V̂33

 , (3.19)

where

V̂11 = i f (ϕϕ̄ +ψψ̄)+ i
∫ x

−∞

fx(ϕϕ̄ +ψψ̄)dx′, (3.20)

V̂22 = −iλ 2 f −λh− i f ϕ̄ϕ− i
∫ x

−∞

fxϕ̄ϕdx′, (3.21)

V̂33 = −iλ 2 f −λh− i f ψ̄ψ− i
∫ x

−∞

fxψ̄ψdx′. (3.22)

By means of the zero-curvature condition equation of Û and V̂ , we give the super generalized Hirota
equation (SGHE)

iϕt + i(hϕ)x + f [ϕxx +2(ϕϕ̄ +ψψ̄)ϕ]+2 fxϕx +2ϕ

∫ x

−∞

fxϕ̄ϕdx′+ψ

∫ x

−∞

fxψ̄ϕdx′

+ϕ

∫ x

−∞

fxψψ̄dx′ = 0,

iψt + i(hψ)x + f (ψxx +2ϕϕ̄ψ)+2 fxψx +ϕ

∫ x

−∞

fxϕ̄ψdx′+ψ

∫ x

−∞

fxϕϕ̄dx′ = 0. (3.23)

Equation (3.23) can be regarded as the supersymmetric generalized Hirota equation proposed by
Lakshmanan. It should be noted that (3.23) is reduced to generalized Hirota equation [7] with γ = 0
by taking h(x, t) = ν1 +µ1x, f (x, t) = ν2 +µ2x in the bosonic limit. The reduction equation can be
expressed as follows

iϕt + iµ1ϕ + i(ν1 +µ1x)ϕx +(ν2 +µ2x)[ϕxx +2(ϕϕ̄)ϕ]

+2µ2(ϕx +ϕ

∫ x

−∞

ϕ̄ϕdx′) = 0. (3.24)

Taking f = 1 and h = 0, (3.23) is reduced to super NLSE (2.4).
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We now consider the constraint 2. S2 = 3S− 2I. It is showed that the expression of the
corresponding integrable deformation is also (3.5). We should note that SStS = 2St ,S[S,Sxx]S =

2[S,Sxx],S[S,Sx]S = 2[S,Sx],SSxS = 2Sx. Proceeding the similar procedure as the constraint 1, we
consider the deformation equation (3.5) with the constraint 2.

Let us take

2. J1 = i

 0 0 ψ1

0 0 ψ1

ψ̄1 ψ̄2 0

 ∈ L(1) for S ∈USPL(2/1)/S(U(2)×U(1)), (3.25)

where ψ1(x, t),ψ2(x, t) are the Grassman odd fields.
Taking the similar procedure, then we obtain

J(0)0 = i

 f ψ1ψ̄1 +
∫ x
−∞

fxψ1ψ̄1dx′ f ψ1ψ̄2 +
∫ x
−∞

fxψ1ψ̄2dx′ 0
f ψ2ψ̄1 +

∫ x
−∞

fxψ2ψ̄1dx′ f ψ2ψ̄2 +
∫ x
−∞

fxψ2ψ̄2dx′ 0
0 0 B

 , (3.26)

J(1)0 =

 0 0 −ihψ1− ( f ψ1)x

0 0 −ihψ2− ( f ψ2)x

−ihψ̄1 +( f ψ̄1)x −ihψ̄2 +( f ψ̄2)x 0

 , (3.27)

where B = f (ψ1ψ̄1 +ψ2ψ̄2)+
∫ x
−∞

fx(ψ1ψ̄1 +ψ2ψ̄2)dx′.
Combining (3.27) and (3.26), we obtain

J0 =

 i f ψ1ψ̄1 + i
∫ x
−∞

fxψ1ψ̄1dx′ i f ψ1ψ̄2 + i
∫ x
−∞

fxψ1ψ̄2dx′ −ihψ1− ( f ψ1)x

i f ψ2ψ̄1 + i
∫ x
−∞

fxψ2ψ̄1dx′ i f ψ2ψ̄2 + i
∫ x
−∞

fxψ2ψ̄2dx′ −ihψ2− ( f ψ2)x

−ihψ̄1 +( f ψ̄1)x −ihψ̄2 +( f ψ̄2)x B

 . (3.28)

In terms of the gauge transformation, U and V turn to Ũ and Ṽ , respectively,

Ũ = gUg−1 +gxg−1 = λ Σ̂+ J1,

Ṽ = gV g−1 +gtg−1 =−iλ f J1− (λh+ iλ 2 f )Σ̂+ J0, (3.29)

where Σ̂ = diag(1,1,2).
By means of (3.25) and (3.28), we rewrite (3.29) as follows

Ũ =

 λ 0 iψ1

0 λ iψ2

iψ̄1 iψ̄2 2λ

 ,

Ṽ =

 Ṽ11 i f ψ1ψ̄2 + i
∫ x
−∞

fxψ1ψ̄2dx′ λ f ψ1− ihψ1− ( f ψ1)x

i f ψ2ψ̄1 + i
∫ x
−∞

fxψ2ψ̄1dx′ Ṽ22 λ f ψ2− ihψ2− ( f ψ2)x

λ f ψ̄1− ihψ̄1 +( f ψ̄1)x λ f ψ̄2− ihψ̄2 +( f ψ̄2)x Ṽ33

 ,

(3.30)
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where

Ṽ11 = −iλ 2 f −λh+ i f ψ1ψ̄1 + i
∫ x

−∞

fxψ1ψ̄1dx′,

Ṽ22 = −iλ 2 f −λh+ i f ψ2ψ̄2 + i
∫ x

−∞

fxψ2ψ̄2dx′

Ṽ33 = −2(iλ 2 f +λh)+ i f (ψ1ψ̄1 +ψ2ψ̄2)+ i
∫ x

−∞

fx(ψ1ψ̄1 +ψ2ψ̄2)dx′. (3.31)

From the zero-curvature condition equation of Ũ and Ṽ , we give the Gramman odd NLSE

iψ1t + i(hψ1)x +( f ψ1)xx +2 f ψ1ψ̄2ψ2−ψ1

∫ x

−∞

fxψ2ψ̄2dx′+ψ2

∫ x

−∞

fxψ1ψ̄2dx′ = 0,

iψ2t + i(hψ2)x +( f ψ2)xx +2 f ψ2ψ̄1ψ1−ψ2

∫ x

−∞

fxψ1ψ̄1dx′+ψ1

∫ x

−∞

fxψ2ψ̄1dx′ = 0. (3.32)

Under the reduction f = 1 and h = 0, (3.32) leads to Gramman odd NLSE (2.5).

4. Summary and discussion

We have investigated the integrable deformations of the HS model. The Lax pairs associ-
ated with the deformed models have been deduced. Under the constraint 1. S2 = S for S ∈
USPL(2/1)/S(L(1/1)×U(1)) and 2. S2 = 3S−2I S ∈USPL(2/1)/S(U(2)×U(1)), we construct
the integrable deformations of the HS model. The gauge equivalence of the constructed model and
the related NLSE is derived. HS model has close relation with the strong electron correlated Hub-
bard model. Much interest has been stimulated in the study of the strong electron correlated Hubbard
model for its important applications in physics. Therefore the applications of the deformations of
the HS model in physics worth studying. It should be noted that the gauge equivalent counterpart
SGHE (3.23) is reduced to the GHE with γ = 0 (3.24) in the bosonic limit. The reduction equation
is a special case of the GHE. How to construct SGHE with any parameter γ so that it can be reduced
to the GHE and how to establish the corresponding deformed HS model still deserves further study.
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