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1. Introduction

Integrable PDEs can be written as the compatibility condition of two linear eigenvalue equations,

which are called Lax pairs [9]. In 1967, Gardner, Greene, Kruskal, Miura [7] used the Inverse

Scattering Transform (IST) formalism to analyze the initial value problem for KdV equation. From

then on, the IST method became a powerful tool to analyze the other integrable PDEs, such as

NLS equation, Sine-Gordon equation and so on. Until the 1990s the IST methodology was pursued

almost entirely for pure initial value problems. However, in many situations, we need to consider an

initial-boundary value (IBV) problem instead of a pure initial value problem.

In 1997, Fokas announced a new unified approach for the analysis of IBV problems for linear

and nonlinear integrable PDEs [2, 3](see also [4]). The Fokas method provides a generalization of

the IST formalism from initial value to IBV problems. As the IST on the line, the unified method

yields an expression for the solution of an IBV problem in terms of the solution of a Riemann-

Hilbert problem. But there has a big difference between the unified method and IST method. The

IST method just need analyze the x-part of Lax pairs to obtain the scattering data, the other t-part of
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Lax pairs is used to determine the time-dependent of the scattering data. But the unified method need

analyze simultaneously the x-part and t-part of Lax pairs. This difference leads to some difficulties

in analyzing the IBV problem. Usually, the derivative order involved in the t-part of Lax pairs is

less than the original integrable PDEs one. Hence, we need know all these boundary data to the

spectral analysis. However, it needs ”more” boundary data than a well-posed IBV problem. We

need determine these ”more” boundary data. This can be done by analyzing the global relation,

which expresses the initial value data and all boundary data are not independent.

The unified method was usually used to analyze the IBV problem for integrable PDES with

2× 2 Lax pairs [1, 5] (see also a series of paper [6, 12, 13]). But many important integrable PDEs

involve 3×3 Lax pairs, such as Boussnissq equation, DP equation, manakov systems and so on. It

naturally leads to extend unified method from 2× 2 Lax pairs to 3× 3 Lax pairs. In 2012, Lenells

developed an extended methodology for analyzing IBV problems for integrable evolution equations

with Lax pairs involving 3× 3 matrices [10], Degasperis-Procesi equation [11]. And some other

3× 3 integrable equations, such as Sasa-Satsuma equation [15], the three-wave equation [16] are

considered by the authors.

In this paper, we will consider IBV problem for the manakov systems. It is well known that the

nonlinear Schrödinger(NLS) equation

iqt +qxx +2σ |q|2q = 0, σ =±1, (1.1)

describes slowly varying wave envelopes in dispersive media and arises in various physical systems

such as water waves, plasma physics, solid-state physics and nonlinear optics. One of the most

successful among them is the description of optical solitons in fibers. But, many complex systems,

such as nonlinear optics, etal, involves more than one-component. It is nature to extend the studies

to the two-component case, see [14].

The two-component nonlinear Schrödinger equation or Manokov equation is

{
iq1t +q1xx −2σ(|q1|2 + |q2|2)q1 = 0,

iq2t +q2xx −2σ(|q1|2 + |q2|2)q2 = 0.
σ =±1. (1.2)

Here, σ = 1 means defocusing case and σ =−1 means focusing case. In this paper, we consider the

defocusing casea on the half-line x ≥ 0. That is to say, we consider the following initial-boundary

aAfter we finish this paper, we are told that the focusing case is considered in a very recently paper [8]. So here we just

consider the defocusing case. And we compare this paper with the paper [8], the Lax pairs of equation (1.2) are chosen

different form and we find that although we all use the same unified method, but we use block matrix to analyze the

global relation, as we did in [15]. And in the results of Dirichlet to Neumann map, we also consider the possible finite

simple poles, which wasn’t considered in [8].
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value problem of the 2-NLS equation,

q10(x) = q1(x, t = 0), q20(x) = q2(x, t = 0),

g01(t) = q1(x = 0, t), g02(t) = q2(x = 0, t),

g11(t) = q1x(x = 0, t), g12(t) = q2x(x = 0, t).

(1.3)

where q10(x) and q20(x) lie in Schwartz space.

In fact, the most important motivation for us to consider this IBV problem for 2-component

NLS equation or manakov systems is that we try to extend the IBV problem on the half-line to the

IBV problem on the finite interval for integrable PDEs with 3× 3 Lax pairs. And we indeed do

this extension in the paper [17], where we consider both the defocusing and focusing case. And the

results about the Dirichlet to Neumann map obtained in this paper can be viewed as the results of

the length of the finite interval goes to infity, in [17].

Organization of the paper: In section 2 we perform the spectral analysis of the associated

Lax pair. And we formulate the main Riemann-Hilbert problem in section 3. We also get the map

between the Dirichlet and the Neumann boundary problem through analysising the global relation

in section 4.

2. Spectral analysis

The 2-NLS equation admits a 3×3 Lax pair,

Ψx =UΨ, Ψ =

⎛
⎜⎜⎝

Ψ1

Ψ2

Ψ3

⎞
⎟⎟⎠ . (2.1a)

Ψt =V Ψ. (2.1b)

where

U = ikΛ+V1. (2.2)

and

V = 2ik2Λ+V2 (2.3)

here

Λ =

⎛
⎜⎜⎝

−1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠ ,V1 =

⎛
⎜⎜⎝

0 q1 q2

q̄1 0 0

q̄2 0 0

⎞
⎟⎟⎠ ,V2 = kV (1)

2 +V (0)
2 . (2.4)
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where

V (1)
2 = 2V1, V (0)

2 = iΛ(V 2
1 −V1x). (2.5)

2.1. The closed one-form

Suppose that u(x, t) is sufficiently smooth function of (x, t) in the half-line domain Ω = {0 < x <

∞,0 < t < T} which decay as x → ∞. Introducing a new eigenfunction μ(x, t,k) by

Ψ = μeiΛkx+2iΛk2t (2.6)

then we find the Lax pair equations

{
μx − [ikΛ,μ] =V1μ,

μt − [2ik2Λ,μ] =V2μ.
(2.7)

Letting Â denotes the operators which acts on a 3×3 matrix X by ÂX = [A,X ] , then the equations

in (2.7) can be written in differential form as

d(e−(ikx+2ik2t)Λ̂μ) =W, (2.8)

where W (x, t,k) is the closed one-form defined by

W = e−(ikx+2ik2t)Λ̂(V1dx+V2dt)μ. (2.9)

2.2. The μ j’s

We define three eigenfunctions {μ j}3
1 of (2.7) by the Volterra integral equations

μ j(x, t,k) = I+
∫

γ j

e(ikx+2ik2t)Λ̂Wj(x′, t ′,k). j = 1,2,3. (2.10)

where Wj is given by (2.9) with μ replaced with μ j, and the contours {γ j}3
1 are showed in Figure 1.

The first, second and third column of the matrix equation (2.10) involves the exponentials

(x, t)

O

T

t

x
γ1

(x, t)

O

T

t

x
γ2

(x, t)

O

T

t

x
γ3

Fig. 1. The three contours γ1,γ2 and γ3 in the (x, t)−domain.
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[μ j]1: e2ik(x−x′)+4ik2(t−t ′),e2ik(x−x′)+4ik2(t−t ′)

[μ j]2: e−2ik(x−x′)−4ik2(t−t ′),

[μ j]3: e−2ik(x−x′)−4ik2(t−t ′).

(2.11)

And we have the following inequalities on the contours:

γ1 : x− x′ ≥ 0, t − t ′ ≤ 0,

γ2 : x− x′ ≥ 0, t − t ′ ≥ 0,

γ3 : x− x′ ≤ 0.

(2.12)

So, these inequalities imply that the functions {μ j}3
1 are bounded and analytic for k ∈C such that k

belongs to

μ1 : (D2,D3,D3),

μ2 : (D1,D4,D4),

μ3 : (D3 ∪D4,D1 ∪D2,D1 ∪D2).

(2.13)

where {Dn}4
1 denote four open, pairwisely disjoint subsets of the complex k−sphere showed in

Figure 2. And the sets {Dn}4
1 has the following properties:

O

D1D2

D3 D4

Fig. 2. The sets Dn, n = 1, . . . ,4, which decompose the complex k−plane.

D1 = {k ∈ C|Rel1 > Rel2 = Rel3,Rez1 > Rez2 = Rez3},
D2 = {k ∈ C|Rel1 > Rel2 = Rel3,Rez1 < Rez2 = Rez3},
D3 = {k ∈ C|Rel1 < Rel2 = Rel3,Rez1 > Rez2 = Rez3},
D4 = {k ∈ C|Rel1 < Rel2 = Rel3,Rez1 < Rez2 = Rez3},
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where li(k) and zi(k) are the diagonal entries of matrices ikΛ and 2ik2Λ, respectively.

In fact, for x = 0, μ1(0, t,k) has enlarged domain of boundedness: (D2 ∪D4,D1 ∪D3,D1 ∪D3),

and μ2(0, t,k) has enlarged domain of boundedness: (D1 ∪D3,D2 ∪D4,D2 ∪D4).

2.3. The Mn’s

For each n = 1, . . . ,4, define a solution Mn(x, t,k) of (2.7) by the following system of integral equa-

tions:

(Mn)i j(x, t,k) = δi j +
∫

γn
i j

(e(ikx+2ik2t)Λ̂Wn(x′, t ′,k))i j, k ∈ Dn, i, j = 1,2,3. (2.14)

where Wn is given by (2.9) with μ replaced with Mn, and the contours γn
i j, n = 1, . . . ,4, i, j = 1,2,3

are defined by

γn
i j =

⎧⎪⎪⎨
⎪⎪⎩

γ1 i f Reli(k)< Rel j(k) and Rezi(k)≥ Rez j(k),

γ2 i f Reli(k)< Rel j(k) and Rezi(k)< Rez j(k),

γ3 i f Reli(k)≥ Rel j(k) .

for k ∈ Dn. (2.15)

The following proposition ascertains that the Mn’s defined in this way have the properties

required for the formulation of a Riemann-Hilbert problem.

Proposition 2.1. For each n = 1, . . . ,4, the function Mn(x, t,k) is well-defined by equation (2.14)

for k ∈ D̄n and (x, t) ∈ Ω. Moreover, Mn admits a bounded and contious extension to D̄n and

Mn(x, t,k) = I+O(
1

k
), k → ∞, k ∈ Dn. (2.16)

Proof. Substituting the expansion

M = M0 +
M(1)

k
+

M(2)

k2
+ · · · , k → ∞.

into the Lax pair (2.7) and comparing the terms of the same order of k yield the equation (2.16).

Remark 2.1. Of course, for any fixed point (x, t), Mn is bounded and analytic as a function of

k ∈ Dn away from a possible discrete set of singularities {k j} at which the Fredholm determinant

vanishes. The bounedness and analyticity properties are established in appendix B in [10].

2.4. The jump matrices

We define spectral functions Sn(k), n = 1, . . . ,4, and

Sn(k) = Mn(0,0,k), k ∈ Dn, n = 1, . . . ,4. (2.17)
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Let M denote the sectionally analytic function on the Riemann k−sphere which equals Mn for

k ∈ Dn. Then M satisfies the jump conditions

Mn = MmJm,n, k ∈ D̄n ∩ D̄m, n,m = 1, . . . ,4, n 	= m, (2.18)

where the jump matrices Jm,n(x, t,k) are defined by

Jm,n = e(ikx+2ik2t)Λ̂(S−1
m Sn). (2.19)

According to the definition of the γn, we find that

γ1 =

⎛
⎜⎜⎝

γ3 γ3 γ3

γ2 γ3 γ3

γ2 γ3 γ3

⎞
⎟⎟⎠ γ2 =

⎛
⎜⎜⎝

γ3 γ3 γ3

γ1 γ3 γ3

γ1 γ3 γ3

⎞
⎟⎟⎠

γ3 =

⎛
⎜⎜⎝

γ3 γ1 γ1

γ3 γ3 γ3

γ3 γ3 γ3

⎞
⎟⎟⎠ γ4 =

⎛
⎜⎜⎝

γ3 γ2 γ2

γ3 γ3 γ3

γ3 γ3 γ3

⎞
⎟⎟⎠ .

(2.20)

2.5. The adjugated eigenfunctions

As the expressions of Sn(k) will involve the adjugate matrix of {s(k),S(k)} defined in the next sub-

section. We will also need the analyticity and boundedness properties of the minors of the matrices

{μ j(x, t,k)}3
1. We recall that the adjugate matrix XA of a 3×3 matrix X is defined by

XA =

⎛
⎜⎜⎝

m11(X) −m12(X) m13(X)

−m21(X) m22(X) −m23(X)

m31(X) −m32(X) m33(X)

⎞
⎟⎟⎠ ,

where mi j(X) denote the (i j)th minor of X .

It follows from (2.7) that the adjugated eigenfunction μA satisfies the Lax pair{
μA

x +[ikΛ,μA] =−V T
1 μA,

μA
t +[2ik2Λ,μA] =−V T

2 μA.
(2.21)

where V T denote the transform of a matrix V . Thus, the eigenfunctions {μA
j }3

1 are solutions of the

integral equations

μA
j (x, t,k) = I−

∫
γ j

e−ik(x−x′)−2ik2(t−t ′)Λ̂(V T
1 dx+V T

2 )μA, j = 1,2,3. (2.22)

Then we can get the following analyticity and boundedness properties:

μA
1 : (D3,D2,D2),

μA
2 : (D4,D1,D1),

μA
3 : (D1 ∪D2,D3 ∪D4,D3 ∪D4).

(2.23)

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

173



J. Xu / Initial-boundary value problem

In fact, for x = 0, μA
1 (0, t,k) has enlarged domain of boundedness: (D1∪D3,D2∪D4,D2∪D4), and

μA
2 (0, t,k) has enlarged domain of boundedness: (D2 ∪D4,D1 ∪D3,D1 ∪D3).

2.6. The Jm,n’s computation

Let us define the 3×3−matrix value spectral functions s(k) and S(k) by

μ3(x, t,k) = μ2(x, t,k)e(ikx+2ik2t)Λ̂s(k), (2.24a)

μ1(x, t,k) = μ2(x, t,k)e(ikx+2ik2t)Λ̂S(k), (2.24b)

Thus,

s(k) = μ3(0,0,k), S(k) = μ1(0,0,k). (2.25)

And we deduce from the properties of μ j and μA
j that s(k) and S(k) have the following boundedness

properties:

s(k) : (D3 ∪D4,D1 ∪D2,D1 ∪D2),

S(k) : (D2 ∪D4,D1 ∪D3,D1 ∪D3),

sA(k) : (D1 ∪D2,D3 ∪D4,D3 ∪D4),

SA(k) : (D1 ∪D3,D2 ∪D4,D2 ∪D4).

Moreover,

Mn(x, t,k) = μ2(x, t,k)e(ikx+2ik2t)Λ̂Sn(k), k ∈ Dn. (2.26)

Proposition 2.2. The Sn can be expressed in terms of the entries of s(k) and S(k) as follows:

S1 =

⎛
⎜⎜⎝

1
m11(s)

s12 s13

0 s22 s23

0 s32 s33

⎞
⎟⎟⎠ , S2 =

⎛
⎜⎜⎝

S11

(ST sA)11
s12 s13

S21

(ST sA)11
s22 s23

S31

(ST sA)11
s32 s33

⎞
⎟⎟⎠ , (2.27a)

S3 =

⎛
⎜⎜⎝

s11
m33(s)M21(S)−m23(s)M31(S)

(sT SA)11

m32(s)M21(S)−m22(s)M31(S)
(sT SA)11

s21
m33(s)M11(S)−m13(s)M31(S)

(sT SA)11

m32(s)M11(S)−m12(s)M31(S)
(sT SA)11

s31
m23(s)M11(S)−m13(s)M21(S)

(sT SA)11

m22(s)M11(S)−m12(s)M21(S)
(sT SA)11

⎞
⎟⎟⎠ ,

S4 =

⎛
⎜⎜⎝

s11 0 0

s21
m33(s)

s11

m32(s)
s11

s31
m23(s)

s11

m22(s)
s11

⎞
⎟⎟⎠ .

(2.27b)
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Proof. Let γX0

3 denote the contour (X0,0)→ (x, t) in the (x, t)−plane, here X0 > 0 is a constant. We

introduce μ3(x, t,k;X0) as the solution of (2.10) with j = 3 and with the contour γ3 replaced by γX0

3 .

Similarly, we define Mn(x, t,k;X0) as the solution of (2.14) with γ3 replaced by γX0

3 . We will first

derive expression for Sn(k;X0) = Mn(0,0,k;X0) in terms of S(k) and s(k;X0) = μ3(0,0,k;X0). Then

(2.27) will follow by taking the limit X0 → ∞.

First, We have the following relations:⎧⎪⎪⎨
⎪⎪⎩

Mn(x, t,k;X0) = μ1(x, t,k)e(ikx+2ik2t)Λ̂Rn(k;X0),

Mn(x, t,k;X0) = μ2(x, t,k)e(ikx+2ik2t)Λ̂Sn(k;X0),

Mn(x, t,k;X0) = μ3(x, t,k)e(ikx+2ik2t)Λ̂Tn(k;X0).

(2.28)

Then we get Rn(k;X0) and Tn(k;X0) are fedined as follows:

Rn(k;X0) = e−2ik2T Λ̂Mn(0,T,k;X0), (2.29a)

Tn(k;X0) = e−ikxΛ̂Mn(X0,0,k;X0). (2.29b)

The relations (2.28) imply that

s(k;X0) = Sn(k;X0)T−1
n (k;X0), S(k) = Sn(k;X0)R−1

n (k;X0). (2.30)

These equations constitute a matrix factorization problem which, given {s,S} can be solved for the

{Rn,Sn,Tn}. Indeed, the integral equations (2.14) together with the definitions of {Rn,Sn,Tn} imply

that ⎧⎪⎪⎨
⎪⎪⎩

(Rn(k;X0))i j = 0 i f γn
i j = γ1,

(Sn(k;X0))i j = 0 i f γn
i j = γ2,

(Tn(k;X0))i j = δi j i f γn
i j = γ3.

(2.31)

It follows that (2.30) are 18 scalar equations for 18 unknowns. By computing the explicit solution

of this algebraic system, we find that {Sn(k;X0)}4
1 are given by the equation obtained from (2.27)

by replacing {Sn(k),s(k)} with {Sn(k;X0),s(k;X0)}. taking X0 → ∞ in this equation, we arrive at

(2.27).

2.7. The residue conditions

Since μ2 is an entire function, it follows from (2.26) that M can only have sigularities at the points

where the S′ns have singularities. We denote the possible zeros by {k j}N
1 and assume they satisfy the

following assumption.
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Assumption 2.1. We assume that

• m11(s)(k) has n0 possible simple zeros in D1 denoted by {k j}n0

1 ;

• (ST sA)11(k) has n1 −n0 possible simple zeros in D2 denoted by {k j}n1

n0+1;

• (sT SA)11(k) has n2 −n1 possible simple zeros in D2 denoted by {k j}n2

n1+1;

• s11(k) has N −n2 possible simple zeros in D4 denoted by {k j}N
n2+1;

and that none of these zeros coincide. Moreover, we assume that none of these functions have zeros

on the boundaries of the Dn’s.

We determine the residue conditions at these zeros in the following:

Proposition 2.3. Let {Mn}4
1 be the eigenfunctions defined by (2.14) and assume that the set {k j}N

1

of singularities are as the above assumption. Then the following residue conditions hold:

Resk=k j [M]1 =
s33(k j)[M(k j)]2 − s23(k j)[M(k j)]3

ṡ33(k j)m22(s)(k j)
e2θ(k j), 1 ≤ j ≤ n0,k j ∈ D1 (2.32a)

Resk=k j [M]1 =
S21(k j)s33(k j)−S31(k j)s23(k j)

˙(ST sA)33(k j)m11(k j)
e2θ(k j)[M(k j)]2

+
S31(k j)s22(k j)−S21(k j)s32(k j)

˙(ST sA)33(k j)m11(k j)
e2θ(k j)[M(k j)]3

n0 +1 ≤ j ≤ n1,k j ∈ D2,

(2.32b)

Resk=k j [M]2 =
m33(s)(k j)M21(S)(k j)−m23(s)(k j)M31(S)(k j)

˙(sT SA)11(k j)s11(k j)
e−2θ(k j)[M(k j)]1

n1 +1 ≤ j ≤ n2,k j ∈ D3,
(2.32c)

Resk=k j [M]3 =
m32(s)(k j)M21(S)(k j)−m22(s)(k j)M31(S)(k j)

˙(sT SA)11(k j)s11(k j)
e−2θ(k j)[M(k j)]1

n1 +1 ≤ j ≤ n2,k j ∈ D3.
(2.32d)

Resk=k j [M]2 =
m33(s)(k j)

ṡ11(k j)s21(k j)
e−2θ(k j)[M(k j)]1, n2 +1 ≤ j ≤ N,k j ∈ D4. (2.32e)

Resk=k j [M]3 =
m32(s)(k j)

ṡ11(k j)s21(k j)
e−2θ(k j)[M(k j)]1, n2 +1 ≤ j ≤ N,k j ∈ D4. (2.32f)

where ḟ = d f
dk , and θ is defined by

θ(x, t,k) = ikx+2ik2t. (2.33)
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Proof. We will prove (2.32a), (2.32c), the other conditions follow by similar arguments. Equation

(2.26) implies the relation

M1 = μ2e(ikx+2ik2t)Λ̂S1, (2.34a)

M3 = μ2e(ikx+2ik2t)Λ̂S3, (2.34b)

In view of the expressions for S1 and S3 given in (2.27), the three columns of (2.34a) read:

[M1]1 = [μ2]1
1

m11(s)
, (2.35a)

[M1]2 = [μ2]1e−2θ s12 +[μ2]2s22 +[μ2]3s32, (2.35b)

[M1]3 = [μ2]1e−2θ s13 +[μ2]2s23 +[μ2]3s33. (2.35c)

while the three columns of (2.34b) read:

[M3]1 = [μ2]1s11 +[μ2]2s21e2θ +[μ2]3s31e2θ (2.36a)

[M3]2 = [μ2]1
m33(s)M21(S)−m23(s)M31(S)

(sT SA)11
e−2θ

+[μ2]2
m33(s)M11(S)−m13(s)M31(S)

(sT SA)11

+[μ2]3
m23(s)M11(S)−m13(s)M21(S)

(sT SA)11

(2.36b)

[M3]3 = [μ2]1
m32(s)M21(S)−m22(s)M31(S)

(sT SA)11
e−2θ

+[μ2]2
m32(s)M11(S)−m12(s)M31(S)

(sT SA)11

+[μ2]3
m22(s)M11(S)−m12(s)M21(S)

(sT SA)11
.

(2.36c)

We first suppose that k j ∈ D1 is a simple zero of m11(s)(k). Solving (2.35b) and (2.35c) for [μ2]1

and substituting the result in to (2.35a), we find

[M1]1 =
s33[M1]2 − s23[M1]3

m11(s)m22(s)
e2θ − [μ2]2

m21(s)
e2θ .

Taking the residue of this equation at k j, we find the condition (2.32a) in the case when k j ∈ D1.

In order to prove (2.32c), we solve (2.36a) for [μ2]1, then substituting the result into (2.36b) and

(2.36c), we find

[M3]2 =
m33(s)

s11
[μ2]2 +

m23(s)
s11

[μ2]3 +
m33(s)M21(S)−m23(s)M31(S)

˙(sT SA)11s11

e−2θ [M3]1, (2.37a)

[M3]3 =
m32(s)

s11
[μ2]2 +

m22(s)
s11

[μ2]3 +
m32(s)M21(S)−m22(s)M31(S)

˙(sT SA)11s11

e−2θ [M3]1. (2.37b)

Taking the residue of this equation at k j, we find the condition (2.32c) in the case when k j ∈ D3.
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2.8. The global relation

The spectral functions S(k) and s(k) are not independent but satisfy an important relation. Indeed,

it follows from (2.24) that

μ1(x, t,k)e(ikx+2ik2t)Λ̂S−1(k)s(k) = μ3(x, t,k), k ∈ (D3 ∪D4,D3 ∪D4,D1 ∪D2). (2.38)

Since μ1(0,T,k) = I, evaluation at (0,T ) yields the following global relation:

S−1(k)s(k) = e−2ik2T Λ̂c(T,k), k ∈ (D3 ∪D4,D3 ∪D4,D1 ∪D2). (2.39)

where c(T,k) = μ3(0,T,k).

3. The Riemann-Hilbert problem

In this section, we state our main result that the solutions q1(x, t) and q2(x, t) of (1.2) can be recov-

ered from a 3×3 Riemann-Hilbert problem.

Theorem 3.1. Suppose that q1(x, t) and q2(x, t) are a pair of solutions of (1.2) in the half-line

domain Ω with sufficient smoothness and decays as x → ∞. Then q1(x, t) and q2(x, t) can be recon-

structed from the initial value {q10(x),q20(x)} and boundary values {g01(t),g02(t),g11(t),g12(t)}
defined as follows,

q10(x) = q1(x,0), q20(x) = q2(x,0), g01(t) = q1(0, t),

g02(t) = q2(0, t), g11(t) = q1x(0, t), g12(t) = q2x(0, t).
(3.1)

Use the initial and boundary data to define the jump matrices Jm,n(x, t,k) as well as the

spectral s(k) and S(k) by equation (2.24). Assume that the possible zeros {k j}N
1 of the functions

m11(s)(k),(ST sA)11(k),(sT SA)11(k) and s11(k) are as in assumption 2.3.

Then the solution {q1(x, t),q2(x, t)} is given by

q1(x, t) = 2i lim
k→∞

(kM(x, t,k))12, q2(x, t) = 2i lim
k→∞

(kM(x, t,k))13. (3.2)

where M(x, t,k) satisfies the following 3×3 matrix Riemann-Hilbert problem:

• M is sectionally meromorphic on the Riemann k−sphere with jumps across the contours

D̄n ∩ D̄m,n,m = 1, · · · ,4, see Figure 2.

• Across the contours D̄n ∩ D̄m, M satisfies the jump condition

Mn(x, t,k) = Mm(x, t,k)Jm,n(x, t,k), k ∈ D̄n ∩ D̄m,n,m = 1,2,3,4. (3.3)

• M(x, t,k) = I+O( 1
k ), k → ∞.

• The residue condition of M is showed in Proposition 2.3.
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Proof. It only remains to prove (3.2) and this equation follows from the large k asymptotics of the

eigenfunctions.

4. Non-linearizable Boundary Conditions

As we state in the introduction, the most difficulty of initial-boundary value problems is that some

of the boundary values are unkown for a well-posed problem. All boundary values are needed for

the definition of S(k), and hence for the formulation of the Riemann-Hilbert problem. Our main

result in this section expresses the spectral function S(k) in terms of the prescribed boundary data

and the initial data via the solution of a system of nonlinear integral equations.

4.1. Asymptotics

An analysis of (2.7) shows that the eigenfunctions {μ j}3
1 have the following asymptotics as k → ∞:

μ j(x, t,k) = I+ 1
k

⎛
⎜⎜⎝

μ(1)
11 μ(1)

12 μ(1)
13

μ(1)
21 μ(1)

22 μ(1)
23

μ(1)
31 μ(1)

32 μ(1)
33

⎞
⎟⎟⎠+ 1

k2

⎛
⎜⎜⎝

μ(2)
11 μ(2)

12 μ(2)
13

μ(2)
21 μ(2)

22 μ(2)
23

μ(2)
31 μ(2)

32 μ(2)
33

⎞
⎟⎟⎠+O( 1

k3 )

= I+ 1
k

⎛
⎜⎜⎝
∫ (x,t)
(x j,t j)

Δ11
q1

2i
q2

2i

− q̄1

2i

∫ (x,t)
(x j,t j)

Δ(1)
22

∫ (x,t)
(x j,t j)

Δ(1)
23

− q̄2

2i

∫ (x,t)
(x j,t j)

Δ(1)
32

∫ (x,t)
(x j,t j)

Δ(1)
33

⎞
⎟⎟⎠

+ 1
k2

⎛
⎜⎜⎜⎝
∫ (x,t)
(x j,t j)

η j
q1μ(1)

22 −q2μ(1)
32 −μ(1)

12x
2i

q1μ(1)
23 −q2μ(1)

33 −μ(1)
13x

2i
μ(1)

21x−q̄1μ(1)
11

2i

∫ (x,t)
(x j,t j)

Δ(2)
22

∫ (x,t)
(x j,t j)

Δ(2)
23

μ(1)
31x−q̄2μ(1)

11

2i

∫ (x,t)
(x j,t j)

Δ(2)
32

∫ (x,t)
(x j,t j)

Δ(2)
33

⎞
⎟⎟⎟⎠+O( 1

k3 ).

(4.1a)

where

Δ11 =
i
2
(|q1|2 + |q2|2)dx+ 1

2
(q1q̄1x − q̄1q1x +q2q̄2x − q̄2q2x)dt

Δ(1)
22 =− i

2
|q1|2dx− 1

2
(q̄1xq1 − q̄1q1x)dt

Δ(1)
23 =− i

2
q̄1q2dx− 1

2
(q̄1xq2 − q̄1q2x)dt

Δ(1)
32 =− i

2
q̄2q1dx− 1

2
(q̄2xq1 − q̄2q1x)dt

Δ(1)
33 =− i

2
|q2|2dx− 1

2
(q̄2xq2 − q̄2q2x)dt

(4.2a)

η j = d
(

1
2

(∫ (x,t)
(x j,t j)

Δ11

)2
)
+ 1

4
(q1q̄1x +q2q̄2x)dx

+[ i
4
(|q1|2 + |q2|2)2 + i

4
(q1xq̄1x −q1q̄1xx +q2xq̄2x −q2q̄2xx)]dt

(4.2b)
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Δ(2)
22 = (− i

2 |q1|2μ(1)
22 − i

2 q̄1q2μ(1)
32 + 1

4 q̄1q1x)dx

+[− 1
2 (q̄1xq1 − q̄1q1x)μ

(1)
22 − 1

2 (q̄1xq2 − q̄1q2x)μ
(1)
32 − i

4 (|q1|4 + |q1|2|q2|2)+ i
4 (q̄1q1xx − q̄1xq1x)]dt

Δ(2)
23 = (− i

2 |q1|2μ(1)
23 − i

2 q̄1q2μ(1)
33 + 1

4 q̄1q2x)dx

+[− 1
2 (q̄1xq1 − q̄1q1x)μ

(1)
23 − 1

2 (q̄1xq2 − q̄1q2x)μ
(1)
33 − i

4 (|q1|2q̄1q2 + q̄1q2|q2|2)+ i
4 (q̄1q2xx − q̄1xq2x)]dt

Δ(2)
32 = (− i

2 q̄2q1μ(1)
22 − i

2 |q2|2μ(1)
32 + 1

4 q̄2q1x)dx

+[− 1
2 (q̄2xq1 − q̄2q1x)μ

(1)
22 − 1

2 (q̄2xq2 − q̄2q2x)μ
(1)
32 − i

4 (|q1|2q̄2q1 + |q2|2q̄2q1)+
i
4 (q̄2q1xx − q̄2xq1x)]dt

Δ(2)
33 = (− i

2 q̄2q1μ(1)
23 − i

2 |q2|2μ(1)
33 + 1

4 q̄2q2x)dx

+[− 1
2 (q̄2xq1 − q̄2q1x)μ

(1)
23 − 1

2 (q̄2xq2 − q̄2q2x)μ
(1)
33 − i

4 (|q1|2|q2|2 + |q2|4)+ i
4 (q̄2q2xx − q̄2xq2x)]dt.

(4.2c)

We define functions {Φi j(t,k)}3
i, j=1 by:

μ2(0, t,k) =

⎛
⎜⎜⎝

Φ11(t,k) Φ12(t,k) Φ13(t,k)

Φ21(t,k) Φ22(t,k) Φ23(t,k)

Φ31(t,k) Φ32(t,k) Φ33(t,k)

⎞
⎟⎟⎠ . (4.3)

From the global relation (2.39)and replacing T by t, we find

μ2(0, t,k)e2ik2tΛ̂s(k) = c(t,k), k ∈ (D3 ∪D4,D1 ∪D2,D1 ∪D2). (4.4)

We partition matrix as following,

μ2(0, t,k) =

(
Φ11 Φ1 j

Φ j1 Φ2×2

)
, j = 2,3, (4.5)

where Φ2×2 denotes a 2× 2 matrix, Φ1 j denotes a 1× 2 vector, Φ j1 denotes a 2× 1 vector. Then,

we can write the second column of the global relation, undering the matrix partitioned as (4.5), as

Φ11(t,k)s1 j(k)s−1
2×2(k)e

−4ik2t +Φ1 j(t,k) = c1 j(t,k), k ∈ D1 ∪D2, (4.6a)

Φ j1(t,k)s1 j(k)s−1
2×2(k)e

−4ik2t +Φ2×2(t,k) = c2×2(t,k), k ∈ D1 ∪D2, (4.6b)

The functions c1 j(t,k),c2×2(t,k) are analytic and bounded in D1 ∪D2 away from the possible zeros

of m11(k) and of order O(1
k ) as k → ∞.

From the asymptotic of μ j(x, t,k) in (4.1a) we have

μ2(0, t,k) = I+ 1
k

⎛
⎝∫ (0,t)(0,0) Δ11

1
2i Q

− 1
2i Q̄

T ∫ (0,t)
(0,0) Δ(1)

⎞
⎠

+ 1
k2

⎛
⎝ ∫ (0,t)

(0,0) η2 − i
2
Q
∫ (0,t)
(0,0) Δ(1) + 1

4
Qx

i
2
Q̄T ∫ (0,t)

(0,0) Δ11 +
1
4
Q̄T

x
∫ (0,t)
(0,0) Δ(2)

⎞
⎠+O( 1

k3 )

(4.7)
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where Q = (q1,q2), Δ11 is defined by first identities of (4.2a), η2 is defined by (4.2b), Δ(1) and Δ(2)

are 2×2 matrices defined as following,

Δ( j) =

(
Δ( j)

22 Δ( j)
23

Δ( j)
32 Δ( j)

33

)
, j = 1,2, (4.8)

here, {Δ( j)
kl }k,l=2,3, j = 1,2 are defined as (4.2a) and (4.2c). Also, we have

Φ1 j(t,k) =
Φ(1)

1 j (t)

k
+

Φ(2)
1 j (t)

k2
+O(

1

k3
), k → ∞,k ∈ D1 ∪D2 (4.9a)

Φ2×2(t,k) = I2×2 +
Φ(1)

2×2(t)
k

+
Φ(2)

2×2(t)
k2

+O(
1

k3
), k → ∞,k ∈ D1 ∪D2. (4.9b)

where

Φ(1)
1 j (t) =

1
2i g0(t), Φ(2)

1 j (t) =
1
4
g1(t)− i

2
g0

∫ (0,t)
(0,0) Δ(1)

Φ(1)
2×2(t) =

∫ (0,t)
(0,0) Δ(1), Φ(2)

2×2(t) =
∫ (0,t)
(0,0) Δ(2),

here g0(t) and g1(t) are vector boundary functions defined by the boundary data of (1.3) as g0(t) =

(g01(t),g02(t)) and g1(t) = (g11(t),g12(t)).

In particular, we find the following expressions for the boudary values:

g0 = 2iΦ(1)
1 j (t), (4.10a)

g1 = 2ig0Φ(1)
2×2(t)+4Φ(2)

1 j (t), (4.10b)

We will also need the asymptotic of c1 j(t,k),

Lemma 4.1. The global relation (4.6) implies that the large k behavior of c1 j(t,k),c2×2(t,k) satis-

fies

c1 j(t,k) =
Φ(1)

1 j (t)

k
+

Φ(2)
1 j (t)

k2
+O(

1

k3
), k → ∞,k ∈ D1. (4.11)

Proof. Let

μ2(0, t,k) =

(
Φ11 Φ1 j

Φ j1 Φ2×2

)
, j = 2,3.

The global relation shows that

Φ11(t,k)s1 j(k)s−1
2×2(k)e

−4ik2t +Φ1 j(t,k) = c1 j(t,k). (4.12)
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And from equation

μt −2ik2[Λ,μ] =V2μ. (4.13)

From the second column of the equation (4.13) we get⎧⎨
⎩ Φ1 jt +4ik2Φ1 j = 2kQΦ2×2 − ikQQ̄T Φ1 j + iQxΦ2×2

Φ2×2t = 2kQ̄Φ1 j + iQ̄T QΦ2×2 − iQ̄T
x Φ1 j.

(4.14)

where Q = (q1,q2) is a 1×2 vector function.

Suppose

(
Φ1 j

Φ2×2

)
= (α0(t)+

α1(t)
k

+
α2(t)

k2
+ · · ·)+(β0(t)+

β1(t)
k

+
β2(t)

k2
+ · · ·)e−4ik2t (4.15)

where the coefficients αl(t) and βl(t), l ≥ 0, are independent of k. To determine these coefficients,we

substitute the above equation into equation (4.14) and use the initial conditions

α0(0)+β0(0) = (01×2,I2×2)
T , α1(0)+β1(0) = (01×2,02×2)

T .

Then we get

(
Φ1 j

Φ2×2

)
=

(
01×2

I2×2

)
+ 1

k

(
Φ(1)

1 j

Φ(1)
2×2

)
+O( 1

k2 )

+

[
1
k

( −Q(0)
2i

0

)
+O( 1

k2 )

]
e−4ik2t

(4.16)

From the first column of the equation (4.13) we get⎧⎨
⎩ Φ11t = 2kQΦ j1 − iQQ̄T Φ11 + iQxΦ j1

Φ j1t −4ik2Φ j1 = 2kQ̄T Φ11 + iQ̄T QΦ j1 − iQ̄T
x Φ11.

(4.17)

Suppose

(
Φ2×2

Φ3 j

)
= (ξ0(t)+

ξ1(t)
k

+
ξ2(t)

k2
+ · · ·)+(ν0(t)+

ν1(t)
k

+
ν2(t)

k2
+ · · ·)e8ik3t (4.18)

where the coefficients ξl(t) and νl(t), l ≥ 0, are independent of k. To determine these coefficients,we

substitute the above equation into equation (4.17) and use the initial conditions

ξ0(0)+ν0(0) = (1,02×1)
T ,
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Then we get

(
Φ11

Φ j1

)
=

(
1

02×1

)
+ 1

k

(
Φ(1)

11

Φ(1)
j1

)
+O( 1

k2 )

+

[
1
k

(
0
Q̄T (0)

2i

)
+O( 1

k2 )

]
e4ik2t

(4.19)

So, from the equation (4.12) and the asymptotic of s j3(k) and s33(k), we get the asymptotic behavior

of c j(t,k) as k → ∞,

c j(t,k) =
Φ(1)

j3

k
+

Φ(2)
j3

k2
+

Φ(3)
j3

k3
+ · · · . (4.20)

4.2. The Dirichlet and Neumann problems

We can now derive effective characterizations of spectral function S(k) for the Dirichlet (g0 pre-

scribed), the Neumann (g1 prescribed) problems.

Define functions as

Ω(t,k) = Φ1 j(t,k)−Φ1 j(t,−k), Ω̂(t,k) = Φ2×2(t,k)−Φ2×2(t,−k), (4.21a)

and

ω(t,k) = Φ1 j(t,k)+Φ1 j(t,−k), ω̃(t,k) = Φ2×2(t,k)+Φ2×2(t,−k) (4.21b)

Theorem 4.1. Let T <∞. Let q0(x) = (q10(x),q20(x)),x≥ 0, be a vector function of Schwartz class.

For the Dirichlet problem it is assumed that the function g0(t),0 ≤ t < T , has sufficient smooth-

ness and is compatible with q0(x) at x = t = 0.

For the Neumann problem it is assumed that the function g1(t),0 ≤ t < T , has sufficient smooth-

ness and is compatible with q0(x) at x = t = 0.

Suppose that m11(k) has a finite number of simple zeros in D1.

Then the spectral function S(k) is given by

S(k) =

⎛
⎜⎜⎝

A(k) e−4ik2T B(k) e−4ik2TC(k)

e4ik2T D(k) E(k) F(k)

e4ik2T G(k) H(k) I(k)

⎞
⎟⎟⎠ (4.22)
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where

A(k) = Φ22(k)Φ33(k)−Φ23(k)Φ32(k) B(k) = Φ13(k)Φ22(k)−Φ12(k)Φ33(k)

C(k) = Φ12(k)Φ23(k)−Φ13(k)Φ22(k) D(k) = Φ23(k)Φ31(k)−Φ21(k)Φ33(k)

E(k) = Φ11(k)Φ33(k)−Φ13(k)Φ31(k) F(k) = Φ21(k)Φ13(k)−Φ11(k)Φ23(k)

G(k) = Φ21(k)Φ32(k)−Φ22(k)Φ31(k) H(k) = Φ12(k)Φ31(k)−Φ11(k)Φ32(k)

I(k) = Φ11(k)Φ22(k)−Φ12(k)Φ21(k)

and the complex-value functions {Φl3(t,k)}3
l=1 satisfy the following system of integral equations:

Φ13(t,k) =
∫ t

0 e4ik2(t−t ′) [−i(|g01|2 + |g02|2)Φ13

+(2kg01 + ig11)Φ23 +(2kg02 + ig12)Φ33] (t ′,k)dt ′
(4.23a)

Φ23(t,k) =
∫ t

0

[
(2kḡ01 − iḡ11)Φ13 + i|g01|2Φ23 + iḡ01g02Φ33

]
(t ′,k)dt ′ (4.23b)

Φ33(t,k) = 1+
∫ t

0

[
(2kḡ02 − iḡ12)Φ13 + ig01ḡ02Φ23 + i|g02|2Φ33

]
(t ′,k)dt ′ (4.23c)

and {Φl1(t,k)}3
l=1,{Φl2(t,k)}3

l=1 satisfy the following system of integral equations:

Φ11(t,k) = 1+
∫ t

0

[−i(|g01|2 + |g02|2)Φ11

+(2kg01 + ig11)Φ21 +(2kg02 + ig12)Φ31] (t ′,k)dt ′
(4.24a)

Φ21(t,k) =
∫ t

0
e−4ik2(t−t ′) [(2kḡ01 − iḡ11)Φ11 + i|g01|2Φ21 + iḡ01g02Φ31

]
(t ′,k)dt ′ (4.24b)

Φ31(t,k) =
∫ t

0
e−4ik2(t−t ′) [(2kḡ02 − iḡ12)Φ11 + ig01ḡ02Φ21 + i|g02|2Φ31

]
(t ′,k)dt ′ (4.24c)

Φ12(t,k) =
∫ t

0 e4ik2(t−t ′) [−i(|g01|2 + |g02|2)Φ12

+(2kg01 + ig11)Φ22 +(2kg02 + ig12)Φ32] (t ′,k)dt ′
(4.25a)

Φ22(t,k) = 1+
∫ t

0

[
(2kḡ01 − iḡ11)Φ12 + i|g01|2Φ22 + iḡ01g02Φ32

]
(t ′,k)dt ′ (4.25b)

Φ32(t,k) =
∫ t

0

[
(2kḡ02 − iḡ12)Φ12 + ig01ḡ02Φ22 + i|g02|2Φ32

]
(t ′,k)dt ′ (4.25c)

(i) For the Dirichlet problem, the unknown Neumann boundary value g1(t) is given by
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g1(t) = 2
πi

∫
∂D3

(kΩ(t,k)+ ig0(t))dk+ 2g0(t)
π
∫

∂D3
Ω̂(t,k)dk

− 4
πi

∫
∂D3

ke−4ik2tΦ11(−k)s1 j(−k)s−1
2×2(−k)dk

+8∑k j∈D1
k je−4ik2

j tRes(Φ11s1 js−1
2×2)(k j).

(4.26)

(ii) For the Neumann problem, the unknown boundary values g0(t) is given by

g0(t) = 1
π
∫

∂D3
ω(t,k)dk+ 2

π
∫

∂D3
e−4ik2tΦ11(−k)s1 j(−k)s−1

2×2(−k)dk

+4i∑k j∈D1
e−4ik2

j tRes(Φ11s1 js−1
2×2)(k j).

(4.27)

Proof. The representations (4.22) follow from the relation S(k) = e4ik2T μA
2 (0,T,k)

T . And the sys-

tem (4.23) is the direct result of the Volteral integral equations of μ2(0, t,k).

(i) In order to derive (4.26) we note that equation (4.10b) expresses g1 in terms of Φ(1)
2×2 and

Φ(2)
1 j . Furthermore, equation (4.9) and Cauchy theorem imply

−πi
2

Φ(1)
2×2(t) =

∫
∂D2

[Φ2×2(t,k)− I2×2]dk =
∫

∂D4

[Φ2×2(t,k)− I2×2]dk

and

−πi
2

Φ(2)
1 j (t) =

∫
∂D2

[
kΦ1 j(t,k)− g0(t)

2i

]
dk =

∫
∂D4

[
kΦ1 j(t,k)− g0(t)

2i

]
dk.

Thus,

iπΦ(1)
2×2(t) =−(∫∂D2

+
∫

∂D4

)
[Φ2×2(t,k)− I2×2]dk

=
(∫

∂D1
+
∫

∂D3

)
[Φ2×2(t,k)− I2×2]dk

=
∫

∂D3
[Φ2×2(t,k)− I2×2]dk− ∫∂D3

[Φ2×2(t,−k)− I2×2]dk

=
∫

∂D3
(Φ2×2(t,k)−Φ2×2(t,−k))dk.

(4.28)

Similarly,

iπΦ(2)
1 j (t) =

(∫
∂D3

+
∫

∂D1

)[
kΦ1 j(t,k)− g0(t)

2i

]
dk

=
(∫

∂D3
−∫∂D1

)[
kΦ1 j(t,−k)− g0(t)

2i

]
dk+ I(t)

=
∫

∂D3
[k(Φ1 j(t,k)−Φ1 j(t,−k))+ ig0(t)]dk+ I(t).

(4.29)

where I(t) is defined by

I(t) = 2

∫
∂D1

[
kΦ1 j(t,k)− g0(t)

2i

]
dk

The last step involves using the global relation to compute I(t)

I(t) =
∫

∂D1

[
k(μ3,1 js−1

2×2 −Φ11s1 je−4ik2t s−1
2×2)− g0(t)

2i

]
dk (4.30)
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Using the asymptotic (4.11) and Cauchy theorem to compute the first term on the right-hand

side of equation (4.30), we find

I(t) =−iπΦ(2)
1 j −2

∫
ptD3

kΦ11(−k)s1 j(−k)s−1
2×2(−k)e−4ik2tdk

+4πi∑k j∈D1
k je−4ik2

j tRes(Φ11s1 js−1
2×2)(k j).

(4.31)

Equations (4.29) and (4.31) imply

Φ(2)
1 j (t) =

1
2πi

∫
∂D3

[k(Φ1 j(t,k)−Φ1 j(t,−k))+ ig0(t)]dk

− 1
πi

∫
ptD3

kΦ11(−k)s1 j(−k)s−1
2×2(−k)e−4ik2tdk

+2∑k j∈D1
k je−4ik2

j tRes(Φ11s1 js−1
2×2)(k j).

This equation together with (4.10b) and (4.28) yields (4.26).

(ii) In order to derive the representations (4.27) relevant for the Neumann problem, we note that

equation (4.10a) expresses g0 in terms of Φ(1)
1 j . Furthermore, equation (4.9a) and Cauchy’s

theorem imply

−πi
2

Φ(1)
1 j (t) =

∫
∂D2

Φ1 j(t,k)dk =
∫

∂D4
Φ1 j(t,k)dk, (4.32)

Thus,

iπΦ(1)
1 j (t) =

(∫
∂D3

+
∫

∂D1

)
Φ1 j(t,k)dk

=
(∫

∂D3
−∫∂D1

)
Φ1 j(t,k)dk+2

∫
∂D1

Φ1 j(t,k)dk

=
∫

∂D3
(Φ1 j(t,k)+Φ1 j(t,−k))dk+2

∫
∂D1

Φ1 j(t,k)dk,

(4.33)

and using the global relation, we have

2
∫

∂D1
Φ1 j(t,k)dk = 2

∫
∂D1

(μ3,1 js−1
2×2 −Φ11s1 js−1

2×2e−4ik2t)dk

=−iπΦ(1)
1 j (t)+2

∫
∂D3

Φ11(−k)s1 j(−k)s−1
2×2(−k)e−4ik2tdk

+4πi∑k j∈D1
e−4ik2

j tRes(Φ11s1 js−1
2×2)(k j)

(4.34)

Equations (4.10a), (4.33) and (4.34) yields (4.27).

4.3. Effective characterizations

Substituting into the system (4.23) the expressions

Φi j = Φi j,0 + εΦi j,1 + ε2Φi j,2 + · · · , i, j = 1,2,3. (4.35a)

g01 = εg(1)01 + ε2g(2)01 + · · · , g02 = εg(1)02 + ε2g(2)02 + · · · , (4.35b)
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g11 = εg(1)11 + ε2g(2)11 + · · · , g12 = εg(1)12 + ε2g(2)12 + · · · , (4.35c)

where ε > 0 is a small parameter, we find that the terms of O(1) give

O(1) :

⎧⎪⎪⎨
⎪⎪⎩

Φ13,0 = 0 Φ23,0 = 0 Φ33,0 = 1,

Φ11,0 = 1 Φ21,0 = 0 Φ31,0 = 0,

Φ12,0 = 0 Φ22,0 = 1 Φ32,0 = 0.

(4.36)

Moreover, the terms of O(ε) give

O(ε) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ33,1 = 0 Φ23,1 = 0,

Φ13,1(t,k) =
∫ t

0 e4ik2(t−t ′)(2kg(1)02 + ig(1)12 )(t
′)dt ′,

Φ11,1 = 0,

Φ21,1 =
∫ t

0 e−4ik2(t−t ′)(2kḡ(1)01 − iḡ(1)11 )(t
′)dt ′,

Φ31,1 =
∫ t

0 e−4ik2(t−t ′)(2kḡ(1)02 − iḡ(1)12 )(t
′)dt ′,

Φ12,1 =
∫ t

0 e4ik2(t−t ′)(2kg(1)01 + ig(1)11 )(t
′)dt ′,

Φ22,1 = 0, Φ32,1 = 0.

(4.37)

and the terms of O(ε2) give

O(ε2) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ13,2 =
∫ t

0 e4ik2(t−t ′)(2kg(2)02 + ig(2)12 )(t
′)dt ′,

Φ23,2 =
∫ t

0 [(2kḡ(1)01 − iḡ(1)11 )(t
′)Φ13,1(t ′,k)+ iḡ(1)01 (t

′)g(1)02 (t
′)]dt ′,

Φ33,2 =
∫ t

0 [(2kḡ(1)02 − iḡ(1)12 )(t
′)Φ13,1(t ′,k)+ i|g(1)02 (t

′)|2]dt ′,

Φ11,2 =
∫ t

0

[
−i(|g(2)01 |2 + |g(2)02 |2)(t ′)+(2kg(1)01 + ig(1)11 )(t

′)Φ21,1(t ′,k)

+(2kg(1)02 + ig(1)12 )(t
′)Φ31,1(t ′,k)

]
dt ′,

Φ21,2 =
∫ t

0 e−4ik2(t−t ′)(2kḡ(2)01 − iḡ(2)11 )(t
′)dt ′,

Φ31,2 =
∫ t

0 e−4ik2(t−t ′)(2kḡ(2)02 − iḡ(2)12 )(t
′)dt ′,

Φ12,2 =
∫ t

0 e4ik2(t−t ′)(2kg(2)01 + ig(2)11 )(t
′)dt ′,

Φ22,2 =
∫ t

0

[
(2kḡ(1)01 − iḡ(1)11 )(t

′)Φ12,1(t ′,k)+ i|g(1)01 (t
′)|2
]

dt ′,

Φ32,2 =
∫ t

0

[
(2kḡ(1)02 − iḡ(1)12 )(t

′)Φ12,1(t ′,k)+ ig(1)01 (t
′)ḡ(1)02 (t

′)
]

dt ′.

(4.38)

On the other hand, expanding (4.26) and assuming for simplicity that m11(k) has no zeros, we

find

g(1)1 (t) =
1

πi

∫
∂D3

(kΩ(1)(t,k)+ ig(1)0 )dk− 4

πi

∫
∂D3

ke−4ik2t s(1)1 j (−k)s(1)−1
2×2 (−k)dk (4.39)

where Ω = εΩ(1) + ε2Ω(2) +O(ε3) and s1 js−1
2×2 = εs(1)1 j s(1)−1

2×2 +O(ε2).
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We also find that

Ω(1) = 4k
∫ t

0
e4ik2(t−t ′)g(1)01 (t

′)dt ′. (4.40)

The Dirichlet problem can now be solved perturbatively as follows: assuming for simplicity that

m11(k) has no zeros and given g(1)01 and g(1)02 , we can use equation (4.40) to determine Ω(1). We

can then compute g(1)1 from (4.39) and then Φ1 j,1, j = 2,3 from (4.37). In the same way we can

determine Ω(2) and Ω̂(2) by g(2)0 , then compute g(2)1 . And these arguments can be extended to the

higher order and also can be extended to the systems (4.24a), (4.25a) and (4.23a), thus yields a

constructive scheme for computing S(k) to all orders.

Similarly, these arguments also can be used to the Neumann problem. That is to say, in all cases,

the system can be solved perturbatively to all orders.
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