
 

 
 

Journal of Nonlinear Mathematical 
Physics 

 
ISSN (Online): 1776-0852 ISSN (Print): 1402-9251 
Journal Home Page: https://www.atlantis-press.com/journals/jnmp  

 

On the well-posedness of the Holm-Staley b-family of equations 

Hasan Inci 

To cite this article: Hasan Inci (2016) On the well-posedness of the Holm-Staley b-family 
of equations, Journal of Nonlinear Mathematical Physics 23:2, 213–233, DOI: 
https://doi.org/10.1080/14029251.2016.1161261 

To link to this article: https://doi.org/10.1080/14029251.2016.1161261 

 

Published online: 04 January 2021 



Journal of Nonlinear Mathematical Physics, Vol. 23, No. 2 (2016) 213–233

On the well-posedness of the Holm-Staley b-family of equations

Hasan Inci

EPFL SB MATHAA PDE
MA C1 627 (Bâtiment MA)

Station 8
CH-1015 Lausanne

Switzerland
hasan.inci@epfl.ch

Received 4 January 2016

Accepted 26 January 2016

In this paper we consider the Holm-Staley b-family of equations in the Sobolev spaces Hs(R) for s> 3/2. Using
a geometric approach we show that, for any value of the parameter b, the corresponding solution map,u(0) 7→
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1. Introduction

Holm and Staley introduced in [22] the following family of equations

ut −uxxt +(b+1)uux = buxuxx +uuxxx (1.1)

or rewritten

ut +uux = (1−∂
2
x )
−1(−buux +(b−3)uxuxx) (1.2)

related to shallow water, where

u(t,x) ∈ R, (t,x) ∈ R2

denotes the velocity field and b ∈ R is a parameter. For b = 2 we get the Camassa-Holm equation
(see e.g. [5]) and for b = 3 the Degasperis-Procesi equation (see e.g. [14]). Both equations arise as
integrable model equations for the propagation of shallow water waves of moderate amplitude. For
the physical aspects see [9] and for the integrability aspects see [10, 11]. In his seminal paper [3],
Arnold showed that the Euler equation can be interpreted as an equation for a flow on groups of
diffeomorphisms of the underlying space. It turns out that quite a few nonlinear evolution equations
such as the KdV (see [30]), the Camassa-Holm equation (see [12, 28]) or various other equations
of mathematical physics (see [16, 18, 19]) can be treated by such a geometric approach. Recently,
in [17], it has been shown that this is also the case for the Holm-Staley b-family. In [7], Constantin
used such a geometric approach to get local well-posedness and blow-up results for the Camassa-
Holm equation on R. In this paper we will use these methods to prove our results.
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The Cauchy problem for (1.1) in Hs(R), s > 3/2, with initial value u0 ∈ Hs(R), is to find u ∈
C0([0,T ],Hs(R)) for some T > 0, such that we have the following identity in Hs−1(R)

u(t) = u0 +
∫ t

0
(1−∂

2
x )
−1(−buux +(b−3)uuxx)−uux ds (1.3)

for all t ∈ [0,T ]. Here we regard uxuxx as an element of Hs−2(R) even if 3/2 < s < 2 – see
Appendix A. With this in mind and the fact that Hs−1(R) is a Banachalgebra we see that the inte-
grand in (1.3) is an element of C0([0,T ],Hs−1(R)). Hence (1.3) makes sense and we have actually
u ∈C1([0,T ],Hs−1(R)).

Concerning the well-posedness of (1.1) we have the following result – see also [29]

Theorem 1.1. Let s > 3/2. For any given u0 ∈ Hs(R) there is a T > 0 and a unique solution
u ∈C0([0,T ],Hs(R) to the Cauchy problem (1.1) with initial value u(0) = u0. The T can be chosen
to be the same in a neighborhood U ⊆ Hs(R) of u0. Moreover the map

U →C0([0,T ],Hs(R)), u0 7→ u

is continuous.

Now one asks whether the map mentionned in the above theorem is more than continuous, e.g.
C1 or at least locally lipschitz. We have the following negative answer.

Theorem 1.2. Denote by UT ⊆ Hs(R) the set of initial values for which we have existence up to at
least T . Then the map UT → Hs(R), u0 7→ u(T ), mapping the initial value to the time T value of
the solution, is nowhere locally uniformly continuous.

Results saying that the solution map u0 7→ u(T ) has not the property to be uniformly continuous on
bounded sets is known. On the circle this was proved in the case b = 2 (Camassa-Holm equation)
in [20] and in the case b = 3 (Degasperis-Procesi equation) in [13] for s ≥ 2. For the b-family on
the line this was proved in [32].

2. The geometric framework

In [23] we considered for s ∈ R, s > 3/2, the space D s(R) (cf M. Cantor [6]) given by

D s(R) :=
{

ϕ : R→ R C1−diffeomorphism
∣∣ ϕx > 0 and ϕ(x)− x ∈ Hs(R)

}
=
{

ϕ(x) = x+ f (x)
∣∣ f ∈ Hs(R) and ϕx > 0

}
where Hs(R) denotes the space of Sobolev functions on R of class s. In terms of the Fourier trans-
form this reads as (see e.g. [2])

Hs(R) =
{

f ∈ L2(R)
∣∣ (1+ξ

2)s/2 f̂ (ξ ) ∈ L2(R;C)
}

where f̂ is the Fourier transform of f . Equipped with the scalar product (taking the real part)

〈 f ,g〉s = ℜ

∫
R
(1+ξ

2)s f̂ (ξ )ĝ(ξ )dξ
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it becomes a Hilbert space. Then

D s(R)− id =
{

ϕ(x)− x
∣∣ ϕ ∈D s(R)

}
⊆ Hs(R)

is open and thus has naturally the structure of a analytic Hilbert manifold (cf e.g. [23]). Moreover
D s(R) is a topological group under composition. More precisely, for any k ∈ Z≥0,

Hs+k(R)×D s(R)→ Hs(R),( f ,ϕ) 7→ f ◦ϕ

is a Ck-map. In the literature the partial maps of the compostion map are referred to as the α- resp.
the ω-lemma – see [15].
In the following we need the notion of sprays. These are special vectorfields on the tangent bundle
– see e.g. [27]. In our case we have the following identification for the tangent bundle of D s(R)

TD s(R) = D s(R)×Hs(R).

Thus a spray can be defined by a map S with the following structure

S : D s(R)×Hs(R)→ Hs(R)×Hs(R)
(ϕ,v) 7→

(
v,Γϕ(v,v)

)
where Γ, called the Christoffel map of the spray S, is a map

Γ : D s(R)→ L
(
Hs(R),Hs(R);Hs(R)

)
ϕ 7→ Γϕ(·, ·)

with values in the continuous Hs(R)-valued bilinear forms on Hs(R). Since we are just interested
in the quadratic form Γϕ(v,v) we assume Γϕ to be symmetric. The integral curves of S projected on
D s(R) are called the geodesics of S. Like in the case of a Riemannian manifold we have also here
the notion of an exponential map – see e.g. [27]. More precisely, the equation of the geodesics reads
as

ϕtt = Γϕ(ϕt ,ϕt) (2.1)

where the subscript t denotes differentiation with respect to t. For analytic S the Picard iteration
gives local solutions of (2.1) with initial data ϕ(0) = id ∈D s(R) and ϕt(0) = v ∈ Hs(R). Because
of the scaling properties of (2.1) there exists a neighborhood V of 0 ∈ Hs(R) such that the initial
value problem {

ϕtt = Γϕ(ϕt ,ϕt)

ϕ(0) = id,ϕt(0) = v
(2.2)

admits a solution on the time interval [0,1] for all v ∈ V . This allows us to define the exponential
map exp as

exp : V → D s(R)
v 7→ ϕv(1)

where ϕv is the solution of (2.2). Because of the analytic dependence of solutions of (2.2) on the
initial values, see [27], we know that exp is a smooth map. Moreover the derivative of exp at 0 ∈
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Hs(R) is the identity, i.e.

d0 exp : Hs(R)→ Hs(R), v 7→ v

where we have identified TidD
s(R) with Hs(R). By the inverse function theorem for Banach spaces,

see [27]), exp is an analytic diffeomorphism between a neighborhood U of 0 ∈ Hs(R) and a neigh-
borhood V of id ∈D s(R), i.e.

exp : U →V

is an analytic diffeomorphism.
For our purpose we define Γ at id ∈D s(R) for v ∈ Hs(R) with s > 3/2 by

Γid(v,v) = (1−∂
2
x )
−1(−bvvx +(b−3)vxvxx) (2.3)

which is a continuous Hs(R)-valued quadratic form on Hs(R). For ϕ ∈ D s(R) arbitrary, Γϕ is
defined by

Γϕ(v,v) =
(
Γid(v◦ϕ

−1,v◦ϕ
−1)
)
◦ϕ. (2.4)

In view of the poor regularity properties of the composition map, apriori it is not clear if Γ defines a
smooth spray. In the next section we verify that this is indeed the case. In the following we will make
some formal computations to show how the geodesics of S and solutions to (1.1) are related. Assume
that ϕ : [0,T ]→D s(R) solves the initial value problem (2.2). Then we have for u := ϕt ◦ϕ−1

ϕtt = (u◦ϕ)t = ut ◦ϕ +ux ◦ϕ ·ϕt

= ut ◦ϕ +ux ◦ϕ ·u◦ϕ.

Substituting this expression into equation (2.1) we get

ut ◦ϕ +ux ◦ϕ ·u◦ϕ = Γϕ(ϕt ,ϕt)

= Γid(ϕt ◦ϕ
−1,ϕt ◦ϕ

−1)◦ϕ

or by (2.3) equivalently

ut +uux = (1−∂
2
x )
−1(−buux +(b−3)uxuxx)

which is equation (1.2). In the next section we show that by this approach one gets local well-
posedness results for equation (1.1).

3. Local wellposedness of the b-family of equations

In this section we establish local existence and uniqueness for the Cauchy problem

ut +uux = (1−∂
2
x )
−1(−buux +(b−3)uuxx), u(0) = u0 ∈ Hs(R) (3.1)

in Hs(R), s > 3/2.
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Theorem 3.1. The spray S given by

S : D s(R)×Hs(R)→ Hs(R)×Hs(R), (ϕ,u) 7→
(
v,Γϕ(u,u)

)
where

Γϕ(u,u) = Rϕ(1−∂
2
x )
−1(−b(Rϕ−1u) · (Rϕ−1u)x +(b−3)(Rϕ−1u)x · (Rϕ−1u)xx

)
is analytic.

Recall that we use the notation Rϕ for right translation Hs(R)→Hs(R), f 7→ f ◦ϕ . Before proving
Theorem 3.1 we show the following lemma.

Lemma 3.1. Let s > 3/2. For k = 1,2 the map

δ
(k) : D s(R)×Hs(R)→ Hs−k(R), (ϕ, f ) 7→ Rϕ∂

k
x Rϕ−1 f

is analytic.

Proof. Consider first the case k = 1. Then we have

δ
(1)(ϕ, f ) = Rϕ∂xRϕ−1 f =

fx

ϕx

and this is an analytic expression in ϕ and f . Similarly for k = 2 we have we have

δ
(2)(ϕ, f ) = Rϕ∂

2
x Rϕ−1 f =

fxx

ϕx
− fx ·ϕxx

(ϕx)3

which also holds in the case s < 2 – see Appendix A for the conventions in this case. We see from
the expressions for δ (2)(ϕ, f ) that it is indeed analytic.

Now we can give the proof Theorem 3.1.

Proof of Theorem 3.1. Consider the continuous symmetric bilinear map

B : Hs(R)×Hs(R)→ Hs−2(R)

(u,v) 7→ 1
2
(
−buvx−bvux

)
+

1
2
(
(b−3)uvxx +(b−3)vuxx

)
.

That the range of this expression is in Hs−2(R) and its continuity follow from the Banach algebra
properties of Hs(R) – see e.g. [2] (for s < 2 see Appendix A). From Lemma 3.1 we know that the
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map

D s(R)→ L
(
Hs(R),Hs(R);Hs−2(R)

)
ϕ 7→

[
(u,v) 7→ RϕB(Rϕ−1u,Rϕ−1v)

]
is analytic. Again using Lemma 3.1 we get that

D s(R)→ L
(
Hs(R);Hs−2(R)

)
ϕ 7→

[
u 7→ Rϕ(1−∂

2
x )Rϕ−1u

]
is analytic. Hence

D s(R)→ L
(
Hs(R),Hs−2(R)

)
ϕ 7→

[
u 7→ Rϕ(1−∂

2
x )Rϕ−1u

]
is analytic. Note that u 7→ Rϕ(1− ∂ 2

x )Rϕ−1u is invertible with inverse given by v 7→ Rϕ(1−
∂ 2

x )
−1Rϕ−1v. Now as inversion of linear operators is an analyitc process we see that the map

D s(R)→ L
(
Hs−2(R),Hs(R)

)
ϕ 7→

[
v 7→ Rϕ(1−∂

2
x )
−1Rϕ−1v

]
is analytic. Piecing the maps together we get from the identity

Γϕ(u,v) = Rϕ(1−∂
2
x )
−1B(Rϕ−1u,Rϕ−1v)

= Rϕ(1−∂
2
x )
−1Rϕ−1RϕB(Rϕ−1u,Rϕ−1u)

that Γ : D s(R)→ L(Hs(R),Hs(R);Hs(R)) is analytic. This completes the proof of the theorem.

Now consider the initial value problem (IVP){
ϕtt = Γϕ(ϕt ,ϕt)

ϕ(0) = id ∈D s(R), ϕt(0) = u0 ∈ Hs(R). (3.2)

The Picard theorem gives us local solutions to the IVP (3.2). With this and the discussion at the and
of section 2 we get the following local existence result.

Lemma 3.2. Let s > 3/2. Given u0 ∈ Hs(R), there exists u ∈ C0
(
[0,T ],Hs(R)

)
, for some T > 0,

such that

u(t) = u0 +
∫ t

0
(1−∂

2
x )
−1(−buux +(b−3)uxuxx)−uux (3.3)

holds for all t ∈ [0,T ].

Proof. Consider the IVP (3.2). Since Γ is smooth, there exists T > 0, such that we have a

ϕ ∈C∞
(
[0,T ],D s(R)

)
solving (3.2). We claim that u := ϕt ◦ ϕ−1 is a solution to (3.3). From [23] we know that u ∈
C0([0,T ],Hs(R)). We also have u(0) = ϕt(0) = u0. From the Sobolev imbedding theorem we see
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that u resp. ϕ are in C1([0,T ]×R). Taking the t-derivative of u◦ϕ we get

ut ◦ϕ +ux ◦ϕ ·ϕt = ut ◦ϕ +ux ◦ϕ ·u◦ϕ.

On the other hand we have

(u◦ϕ)t = ϕtt = Γϕ(ϕt ,ϕt)

as functions on [0,T ]×R. Thus we get

ut ◦ϕ +ux ◦ϕ ·u◦ϕ = Γϕ(ϕt ,ϕt)

or

ut = Γϕ(ϕt ,ϕt)◦ϕ
−1−uux

= (1−∂
2
x )
−1(−buux +(b−3)uxuxx)−uux

as functions on [0,T ]×R. As both sides are continuous functions, we get by the fundamental lemma
of calculus for t ∈ [0,T ]

u(t) = u0 +
∫ t

0
(1−∂

2
x )
−1(−buux +(b−3)uxuxx)−uux. (3.4)

But as the integrand is in C0([0,T ],Hs−1(R)), the identity (3.4) holds also in Hs−1(R).

To get uniqueness we use the fact that for u ∈ C ([0,T ];Hs(R)) there is a unique flow ϕ ∈
C1 ([0,T ];D s(R)), i.e. ϕ solving

ϕt = u◦ϕ, ϕ(0) = id

– see [24]. With this we will prove

Lemma 3.3. Let s> 3/2. Assume that we have two solutions u,w∈C0
(
[0,T ],Hs(R)

)
to the Cauchy

problem (1.3) with u(0) = w(0) = u0 ∈ Hs(R). Then we have actually u = w on [0,T ].

Proof. Consider the flows ϕ resp. ψ in C1
(
[0,T ],D s(R)

)
corresponding to u resp. w as discussed

above. We will show that ϕ resp. ψ are geodesics. By the uniqueness of geodesics with the same
initial condition we will get ϕ = ψ resp. ϕt ◦ϕ−1 = ψt ◦ψ−1 or equivalently u = w. Now consider
u◦ϕ which is C1 in [0,T ]×R. Taking the t-derivative we get pointwise

d
dt
(u◦ϕ) = ut ◦ϕ +ux ◦ϕ ·u◦ϕ.

Since u is a solution of the Cauchy problem we have

d
dt
(u◦ϕ) = Rϕ

(
(1−∂

2
x )
−1(−buux +(b−3)uxuxx)

)
= Γϕ(ϕt ◦ϕ

−1,ϕt ◦ϕ
−1)

where Γ is as in (2.4). From the fundamental lemma of calculus we get

ϕt(t) = u0 +
∫ t

0
Γϕ(ϕt ◦ϕ

−1,ϕt ◦ϕ
−1).

But as the integrand is in C0
(
[0,T ],Hs(R)

)
we see that ϕ ∈ C2

(
[0,T ],D s(R)

)
and that it is a

geodesic. Hence the claim.
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Using Lemma 3.2 and Lemma 3.3 we get

Theorem 3.2. Let s > 3/2. The Cauchy problem (1.3) is locally well-posed in Hs(R), i.e. given
u0 ∈ Hs(R) there exists a solution u ∈ C0

(
[0,T ],Hs(R)

)
for some T > 0. Further u is unique on

[0,T ] and the correspondence u0→ u is continuous.

Remark 3.1. The correspondence u0→ u is meant as a map

UT →C0([0,T ],Hs(R)
)
, u0 7→ u

This result is not new. This was e.g. done in [29]. They looked at a regularized version of (3.1)
and took the limit. Also in [31] there is a similar result. They use Kato’s abstract semigroup method.
The same method is also used in [13] for the periodic case. We used the geometric setting as was
e.g. done in [7] to achieve local well-posedness via the Picard theorem.

4. Non-uniform dependence of the solution map

In this section we will prove the non-uniform dependence of the solution map, i.e. we will prove
Theorem 1.2. Recall that we denoted for T > 0 the set UT ⊆ Hs(R) to be those u0 for which we
have existence beyond T . Note also that we have the following scaling property for equation (1.1):
If u is a solution then for λ > 0

v(x, t) := λu(x,λ t)

is also a solution and UλT = 1
λ

UT . Therefore it suffices to consider the case T = 1 to prove Theorem
1.2. Hence the theorem will follow from

Proposition 4.1. Let s > 3/2 and U := UT |T=1. Denote by Φ the time-one map Φ : U →
Hs(R),u0 7→ u(1) for the Cauchy problem (1.1). Then Φ is nowhere locally uniformly continuous,
i.e. for any non-empty V ⊆U the restriction Φ|V is not uniformly continuous.

To prove Proposition 4.1 we will use a conserved quantity (cf [17], Proposition 9). Consider
equation (1.2) and let u be a solution, ϕ its corresponding flow. Then we have, omitting the argu-
ments (t,x),

Lemma 4.2. Let y := (1−∂ 2
x )u. Then we have for all t the following identity in Hs−2(R)

y◦ϕ · (ϕx)
b = y(t = 0) (4.1)

Proof. Taking the t-derivate of y◦ϕ we get

d
dt

y◦ϕ = ϕtt −
ϕttxx

ϕ2
x

+2
ϕtxx ·ϕtx

ϕ3
x

+
ϕttx ·ϕxx

ϕ3
x

+
ϕtx ·ϕtxx

ϕ3
x
−3

ϕtx ·ϕxx ·ϕtx

ϕ4
x

(4.2)

On the other hand equation (3.2) gives

Rϕ(1−∂
2
x )(ϕtt ◦ϕ

−1) = Rϕ

(
−b(ϕt ◦ϕ

−1) · (ϕt ◦ϕ
−1)x +(b−3)(ϕt ◦ϕ

−1)x · (ϕt ◦ϕ
−1)xx

)
Expanding this equation we get

ϕtt −
ϕttxx

ϕ2
x

+
ϕttx ·ϕxx

ϕ3
x

=−b
ϕt ·ϕtx

ϕx
+(b−3)

ϕtx

ϕx

(
ϕtxx

ϕ2
x
− ϕtx ·ϕxx

ϕ3
x

)
(4.3)
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Hence from (4.2)

d
dt

[
(Rϕy) ·ϕb

x

]
=
[
ϕtt −

ϕttxx

ϕ2
x

+3
ϕtxx ·ϕtx

ϕ3
x

+
ϕttx ·ϕxx

ϕ3
x
−3

ϕ2
tx ·ϕxx

ϕ4
x

]
·ϕb

x

+
[
ϕt −

ϕtxx

ϕ2
x
+

ϕtx ·ϕxx

ϕ3
x

]
·bϕ

b−1
x ϕtx (4.4)

Combining (4.4) and (4.3) we get

d
dt

[
(Rϕy) ·ϕb

x

]
= 0

hence [0,T ]→ Hs−2(R), t 7→ y◦ϕ ·ϕb
x is constant, i.e. (4.1) holds.

As 1−∂ 2
x : Hs(R)→ Hs−2(R) is an isomorphism, it will be enough to establish that y0 7→ y(1)

is nowhere locally uniformly continuous in order to show Proposition 4.1. We will use (4.1) in the
form

y(1) =
(

y0

ϕx(1)b

)
◦ϕ(1)−1 (4.5)

The approach is as in [26]. The idea is to produce a slight change ϕ̃(1) so that ỹ0 doesn’t change
much, but ỹ(1) does. Since composition behaves bad this works. To make such perturbations we
will employ the properties of the exponential map. But first we have to establish some preleminary
lemmas.

Lemma 4.3. Given ϕ• ∈D s(R) there exists a neighborhood W of ϕ• in D s(R), such that for some
constant C > 0 we have

1
C
||y||s−2 ≤ ||R−1

ϕ (y/ϕ
b
x )||s−2 ≤C||y||s−2

for all y ∈ Hs−2(R) and ϕ ∈W.

Proof. First we establish the second inequality. For ϕn→ ϕ• in D s(R) we have (see Remark A.2)
R−1

ϕn
(y/ϕb

x ) converges weakly to y in Hs−2(R). By the uniform boundedness principle we get a
neighborhood W1 of ϕ• in D s(R) and C1 > 0 such that

||R−1
ϕ (y/ϕ

b
x )||s−2 ≤C||y||s−2

for all ϕ ∈W1 and y ∈ Hs−2(R). Now consider the first inequality. As in the first part we get a W2

and C2 > 0 with

||ϕb
x Rϕy||s−2 ≤C2||y||s−2

for all ϕ ∈W2 and y∈Hs−2(R). Taking for y the expression R−1
ϕ (y/ϕb

x ) gives the first inequalty.

Lemma 4.4. Let s > 3/2. The set of u0 ∈U ∩Hs+1 with du0 exp 6= 0 is dense in U.

Proof. As d0 exp is the identity map and u0 7→ du0 exp is analytic the claim follows immediately.

Now we can give a proof for Proposition 4.1
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Proof of Proposition 4.1. Take u0 ∈U . We will show that Φ is not uniformly continuous on any
neighborhood of u0. As easily seen we can restrict ourselves to a dense subset of U . So we can
assume u0 ∈ Hs+1 and du0 exp 6= 0 by Lemma 4.4. In particular we can fix v ∈ Hs(R)r {0} and
x0 ∈ R with

(du0 exp(v))(x0)> m||v||s, m > 0

First we choose R1 > 0 such that Lemma 4.3 holds for ϕ• = exp(u0) in the ball BR1(u0), i.e.

1
C1
||y||s−2 ≤ ||R−1

ϕ (y/ϕ
b
x )||s−2 ≤C1||y||s−2 (4.6)

for all y ∈ Hs−2(R) and ϕ ∈ BR1(u0). Taking R2 ≤ R1 we can ensure additionally

||R−1
ϕ y||s−2 ≤C2||y||s−2

for all y ∈ Hs−2(R) and ϕ ∈ BR2(u0). By choosing R3 ≤ R2 we can establish the conditions of
Lemma A.5 and A.6 for all ϕ ∈ BR3 where in the following we denote the constant appearing in
both lemmas by C3. Further we denote by C > 0 the constant from the Sobolev imbedding

|| f ||∞ ≤C|| f ||s

Take arbitrary w,h ∈ Hs(R) with w,w+h ∈ BR3(u0) and consider the Taylor expansion

exp(w+h) = exp(w)+dw exp(w)+
∫ 1

0
(1− t)d2

w+th exp(h,h)dt

Choosing 0 < R4 ≤ R3 we can garantuee

||d2
w exp(h,h)||s ≤ K||h||2s

||d2
w1

exp(h,h)−d2
w2

exp(h,h)||s ≤ K||w1−w2||s||h||2s

for all w,w1,w2 ∈ BR4(u0) and some constant K > 0. By further decreasing R5 ≤ R4 we can ensure
max{C ·K ·R5,C ·K ·R2

5}< m/2. Finally by choosing R∗ ≤ R5 we can ensure

|ϕ(x)−ϕ(y)| ≤ L|x− y|

for all ϕ ∈ exp(BR∗(u0)). The goal is now to prove that Φ is not uniformly continuous on BR(u0)

for 0 < R ≤ R∗. So we fix R ≤ R∗. In order to apply Lemma B.2 resp. Lemma B.3 we define the
sequence of numbers

rn =
m
8n
||v||s, n≥ 1

and choose wn ∈C∞
c (R) with support in (x0− 1

L rn,x0 +
1
L rn) and ||wn||s = R/4. Further we define

vn := v/n and let N ≥ 1 such that ||vn||s ≤ R/4 for n≥ N. With this preliminary work we define for
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n≥ N two sequences of initial data:

xn = u0 +wn and x̃n = xn + vn = u0 +wn + vn

We clearly have xn,yn ∈ BR(u0) for n ≥ N and ||xn− x̃n||s → 0 for n→ ∞. Correspondingly we
define

ϕn = exp(xn) and ϕ̃n = exp(x̃n)

We claim that limsupn→∞ ||Φ(xn)−Φ(x̃n)||s > 0. With yn = (1− ∂ 2
x )xn and ỹn = (1− ∂ 2

x )x̃n and
using the conservation law (4.5) it is enough to prove

limsup
n→∞

||R−1
ϕn

(
yn/(ϕn)

b
x

)
−R−1

ϕ̃n

(
ỹn/(ϕ̃n)

b
x

)
||s−2 > 0

We consider the parts of yn, ỹn seperately

yn = (1−∂
2
x )(u0 +wn) and ỹn = (1−∂

2
x )(u0 +wn + vn)

For the u0-part we have, denoting y0 = (1−∂ 2
x )u0 ∈ Hs−1,

||R−1
ϕn
(y0/(ϕn)

b
x)−R−1

ϕ̃n
(y0/(ϕ̃n)

b
x ||s−2 ≤ ||R−1

ϕn
(y0/(ϕn)

b
x)−R−1

ϕn
(y0/(ϕ̃n)

b
x)||s−2

+ ||R−1
ϕn
(y0/(ϕ̃n)

b
x)−R−1

ϕ̃n
(y0/(ϕ̃n)

b
x)||s−2

The first term on the right can be estimated by

||R−1
ϕn
(y0/(ϕn)

b
x)−R−1

ϕn
(y0/(ϕ̃n)

b
x)||s−2 ≤C2||y0/(ϕn)

b
x− y0/(ϕ̃n)

b
x ||s−2

The latter goes to 0 as n→ ∞ as dividing by ϕb
x is an analytic process. For the second term we have

||R−1
ϕn
(y0/(ϕ̃n)

b
x)−R−1

ϕ̃n
(y0/(ϕ̃n)

b
x ||s−2 ≤ C3||y0/(ϕ̃n)

b
x ||s−1||ϕ−1

n − ϕ̃
−1
n ||s−1

≤ C2
3 ||y0/(ϕ̃n)

b
x ||s−1||ϕn− ϕ̃n||s

which goes to 0 as y0/(ϕ̃n)
b
x is bounded in Hs−1. For the vn-term we have

||R−1
ϕ̃n
((1−∂

2
x )vn/(ϕ̃n)

b
x)||s−2 ≤C2||(1−∂

2
x )vn/(ϕ̃n)

b
x ||s−2

which by the definition of vn goes to zero. Hence we conclude

limsup
n→∞

||R−1
ϕn

(
yn/(ϕn)

b
x

)
−R−1

ϕ̃n

(
ỹn/(ϕ̃n)

b
x

)
||s−2

= limsup
n→∞

||R−1
ϕn

(
(1−∂

2
x )wn/(ϕn)

b
x

)
−R−1

ϕ̃n

(
(1−∂

2
x )wn/(ϕ̃n)

b
x

)
||s−2

The claim is now that the latter two terms have disjoint support. To establish this we estimate
|ϕn(x0)− ϕ̃n(x0)|. By the Taylor expansion we have

ϕn = exp(u0)+du0 exp(wn)+
∫ 1

0
(1− t)d2

u0+twn
(wn,wn)dt

and similarly

ϕ̃n = exp(u0)+du0 exp(wn + vn)+
∫ 1

0
(1− t)d2

u0+t(wn+vn)
(wn + vn,wn + vn)dt
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For the latter quadratic term we have

d2
u0+t(wn+vn)

(wn + vn,wn + vn) = d2
u0+t(wn+vn)

(wn,wn)+2d2
u0+t(wn+vn)

(wn,vn)+d2
u0+t(wn+vn)

(vn,vn)

Thus we can write

ϕn− ϕ̃n = du0 exp(vn)+R1 +R2 +R3

where

R1 =
∫ 1

0
(1− t)

(
d2

u0+t(wn+vn)
(wn,wn)−d2

u0+t(wn+vn)
(wn,wn)

)
dt

and

R2 = 2
∫ 1

0
(1− t)d2

u0+t(wn+vn)
(wn,vn)dt

and

R3 =
∫ 1

0
(1− t)d2

u0+t(wn+vn)
(vn,vn)dt

For these we have

||R1||∞ ≤C||R1||s ≤CK||vn||s||wn||2s ≤
1
n

CK||v||s(R/4)2 ≤ 1
4n

CKR2||v||s

and

||R2||∞ ≤C||R2||s ≤ 2CK||vn||s||wn||s ≤
1
n

CK||v||s(R/4)≤ 2
4n

CKR||v||s

and

||R3||∞ ≤C||R3||s ≤CK||vn||2s ≤
1
n

CK||v||s(R/4)≤ 1
4n

CKR||v||s

Therefore

|ϕ(x0)− ϕ̃(x0)| ≥ |du0 exp(vn)|− ||R1||∞−||R2||∞−||R3||∞

≥ 1
n

m||v||s−
1
n

m
2
||v||s =

m
2n
||v||s

The support of R−1
ϕn

(
(1−∂ 2

x )wn/(ϕn)
b
x
)

is contained in (ϕn(x0)−rn,ϕn(x0)+rn) taking into account
the lipschitz property of ϕn with lipschitz constant L and the definition of wn. Analogously the sup-
port of R−1

ϕ̃n

(
(1−∂ 2

x )wn/(ϕ̃n)
b
x
)

is contained in (ϕ̃n(x0)− rn, ϕ̃n(x0)+ rn). Note that the conditions
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of Lemma B.2 resp. B.3 are fullfilled (with s−2 playing the role of s in the Lemma) as

rn ≤ |ϕn(x0)− ϕ̃n(x0)|/4

Thus we have

limsup
n→∞

||R−1
ϕn

(
(1−∂

2
x )wn/(ϕn)

b
x

)
−R−1

ϕ̃n

(
(1−∂

2
x )wn/(ϕ̃n)

b
x

)
||2s−2

≥ limsup
n→∞

C̃(||R−1
ϕn

(
(1−∂

2
x )wn/(ϕn)

b
x

)
||2s−2 + ||R−1

ϕ̃n

(
(1−∂

2
x )wn/(ϕ̃n)

b
x

)
||2s−2)

≥ limsup
n→∞

C̃
2

C2 ||(1−∂
2
x )wn||2s−2 ≥ limsup

n→∞

K̃||wn||2s = K̃R2/4

So for any R ≤ R∗ we have constructed (xn)n≥1,(x̃n)n≥1 ⊆ BR(u0) with limn→∞ ||xn− x̃n||s = 0 and
limsupn→∞ ||Φ(xn)−Φ(x̃n)||s ≥C ·R for some constant C > 0 independent of R showing the claim.

Appendix A. Sobolev spaces with negative indices

In this section we derive the formulas for the expressions which involve Sobolev spaces with nega-
tive indices.

Lemma A.1. Let 1/2 < s1 < 1 and −1/2 < s2 < 0. Then multiplication

Hs1(R)×Hs1(R)→ Hs1(R), ( f ,g) 7→ f ·g

extends to a continuous map

Hs1(R)×Hs2(R)→ Hs2(R)

where Hs2(R) denotes the dual of H−s2(R).

Proof. For f ∈ Hs1(R), g ∈ Hs2(R) we define f ·g ∈ Hs2(R) by its action on a testfunction ψ as

〈 f ·g,ψ〉 := 〈g, f ·ψ〉

where 〈·, ·〉 denotes the duality pairing of Hs2(R) and H−s2(R). As f ·ψ ∈ H−s2(R) this definition
makes sense. Further we have

|〈g, f ·ψ〉| ≤ ||g||s2 || f ·ψ||−s2 ≤C||g||s2 || f ||s1 ||ψ||−s2

where we have used that multiplication

Hs1(R)×H−s2(R)→ H−s2(R)

is continuous – see e.g. [23]. This shows that f ·g ∈ Hs2(R). But it also shows that

|| f ·g||s2 ≤C|| f ||s1 ||g||s2 .

Hence the claim.
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For the product we have the following Leibniz rule.

Lemma A.2. Let 1/2 < s̃ < 1 and f ,g ∈ H s̃(R). Then f ·g ∈ H s̃(R) with

∂x( f ·g) = fx ·g+ f ·gx

where the subscript refers to differentiation.

Proof. We just have to prove the formula for the derivative. For test functions ψ,φ we have

〈∂x( f ·φ),ψ〉 = −〈 f ·φ ,ψx〉=−〈 f ,φ ·ψx〉=−〈 f ,(φ ·ψ)x−φx ·ψ〉
= 〈φ · fx,ψ〉+ 〈 f ·φx,ψ〉.

Therefore we have the following identity in H s̃−1(R)

∂x( f ·φ) = fx ·φ + f ·φx.

Now letting φ tend to g in H1−s̃(R) we get by Lemma A.1

∂x( f ·g) = fx ·g+ f ·gx

as elements in H s̃−1(R).

Now we extend right translation Rϕ to negative Sobolev spaces

Lemma A.3. Let s > 3/2 and −1/2 < s̃ < 0. For ϕ ∈D s(R) the map

Rϕ : Hs(R)→ Hs(R), f 7→ f ◦ϕ

extends to a continuous map H s̃(R)→ H s̃(R).

Proof. Let f ∈ H s̃(R) ans ψ a testfunction. We define

〈Rϕ f ,ψ〉 := 〈 f , ψ ◦ϕ−1

ϕx ◦ϕ−1 〉. (A.1)

We know – see e.g. [23] – that ∣∣∣∣∣∣∣∣ ψ ◦ϕ−1

ϕx ◦ϕ−1

∣∣∣∣∣∣∣∣
−s̃
≤C||ψ||−s̃

holds. Therefore Rϕ f ∈ H s̃(R) and further

|〈Rϕ f ,ψ〉|=
∣∣∣∣〈 f , ψ ◦ϕ−1

ϕx ◦ϕ−1 〉
∣∣∣∣≤C|| f ||s̃ ||ψ||−s̃

which shows that Rϕ : H s̃(R)→ H s̃(R) is a continuous linear map.

Remark A.1. We will sometimes write f ◦ϕ instead of Rϕ f even if f is in a negative Sobolev
space.
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Remark A.2. The composition map

H s̃(R)×D s(R)→ H s̃(R), ( f ,ϕ) 7→ f ◦ϕ

is not continuous. But as can be seen from (A.1) it is weakly continuous, i.e

H s̃(R)×D s(R)→ R, ( f ,ϕ) 7→ 〈 f ◦ϕ,ψ〉

is continuous for any testfunction ψ .

There is also the following chain rule

Lemma A.4. Let s > 3/2 and 1/2 < s̃ < 1. For ϕ ∈D s(R) and f ∈ H s̃(R) we have

∂x( f ◦ϕ) = fx ◦ϕ ·ϕx.

as an identity in H s̃−1(R).

Proof. Let ψ be a testfunction. Then we have

〈∂x( f ◦ϕ),ψ〉 = −〈 f ◦ϕ,ψx〉=−〈 f ,
ψx ◦ϕ−1

ϕx ◦ϕ−1 〉=−〈 f ,∂x(ψ ◦ϕ
−1)〉

= 〈 fx,ψ ◦ϕ
−1〉= 〈 fx ◦ϕ,ψ ·ϕx〉= 〈 fx ◦ϕ ·ϕx,ψ〉

which shows the claim.

We will also need the following Lipschitz type estimate.

Lemma A.5. Let s > 3/2 and ϕ• ∈ D s(R). There is a neighborhood W ⊆ D s(R) of ϕ• and a
constant C > 0 with

|| f ◦ϕ1− f ◦ϕ2||s−2 ≤C|| f ||s−1||ϕ1−ϕ2||s−1

for all ϕ1,ϕ2 ∈W and for all f ∈ Hs−1(R).

Proof. Let f ∈C∞
c (R). We have from the fundamental lemma of calculus

f (ϕ2(x)) = f (ϕ1(x))+
∫ 1

0
f ′ (ϕ1(x)+ t(ϕ2(x)−ϕ1(x)))(ϕ2(x)−ϕ1(x))dt

Taking W small enough we can ensure that ϕ1+ t(ϕ2−ϕ1) ∈D s(R) for 0≤ t ≤ 1. We thus see that

t→
(

f ′ ◦ (ϕ1 + t(ϕ2−ϕ1))
)
· (ϕ2−ϕ1)

is continuous from [0,1] to Hs(R). As evaluation at x ∈ R is a continuous linear map on Hs(R) we
have the identity in Hs(R)

f ◦ϕ2− f ◦ϕ1 =
∫ 1

0

(
f ′ ◦ (ϕ1 + t(ϕ2−ϕ1))

)
· (ϕ2−ϕ1)dt

where the integral is understood as a Riemann integral. We thus have

|| f ◦ϕ2− f ◦ϕ1||s−2 ≤
∫ 1

0
|| f ′ ◦ (ϕ1 + t(ϕ2−ϕ1))||s−2||ϕ2−ϕ1||s−1dt
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For W small enough we can ensure that

|| f ′ ◦ (ϕ1 + t(ϕ2−ϕ1))||s−2 ≤C|| f ′||s−2

Thus we get

|| f ◦ϕ2− f ◦ϕ1||s−2 ≤C|| f ||s−1||ϕ2−ϕ1||s−1

For general f ∈ Hs−1(R) we get the inequality by taking approximations fn because f 7→ f ◦ϕ is
continuous in Hs−1(R).

For the inversion map ϕ 7→ ϕ−1 we have

Lemma A.6. Let s > 3/2 and ϕ• ∈ D s(R). There is a neighborhood W ⊆ D s(R) of ϕ• and a
constant C > 0 with

||ϕ−1
2 −ϕ

−1
1 ||s−1 ≤C||ϕ2−ϕ1||s

for all ϕ1,ϕ2 ∈W.

Proof. If s > 5/2 then the lemma follows from [23] where it was shown that D s+1(R) 7→D s(R) is
C1. So it remains to check the case s≤ 5/2. Consider first the case 3/2 < s < 2. We have∫

R
|ϕ−1− ϕ̃

−1|2dx =
∫
R
|ϕ−1−ϕ

−1 ◦ϕ ◦ ϕ̃
−1|2dx

As by the Sobolev imbedding the C1-norm is bounded by the Hs-norm we have

|ϕ−1(x)−ϕ
−1(y)| ≤C|x− y|

with a uniform C in a neighborhood of ϕ•. Hence∫
R
|ϕ−1− ϕ̃

−1|2dx≤C
∫

R
|x−ϕ(ϕ̃−1(x)|2dx

By a change of variables we can bound the latter by

C
∫
R
|ϕ̃(x)−ϕ(x)|2ϕ̃x(x)dx

As ϕx is uniformly bounded in a neighborhood of ϕ• we get

||ϕ−1− ϕ̃
−1||L2 ≤C||ϕ− ϕ̃||s−1

Let us estimate the fractional part. Using the Sobolev-Slobodecki [ϕ−1− ϕ̃−1]λ norm with λ = s−1
we have∫

R×R

|[ϕ−1(x)− ϕ̃−1(x)]− [ϕ−1(y)− ϕ̃−1(y)]|2

|x− y|1+2λ
dxdy =

∫
R×R

|Φ(ϕ̃−1(x))−Φ(ϕ̃−1(y))|2

|x− y|1+2λ
dxdy

where

Φ(x) = ϕ
−1(ϕ̃(x))−ϕ

−1(ϕ(x))
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Change of variables gives

∫
R×R

|Φ(x)−Φ(y)|2

|ϕ̃(x)− ϕ̃(y)|1+2λ
ϕ̃x(x)ϕ̃x(y)dxdy≤C

∫
R×R

|Φ(x)−Φ(y)|2

|x− y|1+2λ

|x− y|1+2λ

|ϕ̃(x)− ϕ̃(y)|1+2λ
dxdy

which by the fact that K|ϕ̃(x)− ϕ̃(y)| ≥ |x− y| holds is bounded by

C
∫
R×R

|Φ(x)−Φ(y)|2

|x− y|1+2λ
dxdy

By the fundamental lemma of calculus

Φ(x) =
(∫ 1

0

dt
ϕx ◦ϕ−1(ϕ(x)+ t(ϕ̃(x)−ϕ(x)))

)
· (ϕ̃(x)−ϕ(x)) = Ψ(x) · (ϕ̃(x)−ϕ(x))

Writing

Φ(x)−Φ(y) = Ψ(x)([ϕ̃(x)−ϕ(x)]− [ϕ̃(y)−ϕ(y)])+(Ψ(x)−Ψ(y))(ϕ̃(y)−ϕ(y))

Thus we can estimate

[Φ]λ ≤ sup
x∈R
|Ψ(x)|[ϕ̃−ϕ]λ + sup

x∈R
|ϕ̃(x)−ϕ(x)|[Ψ]λ

Note that [Ψ]λ < ∞ as

t 7→ 1
ϕx ◦ϕ−1(ϕ(x)+ t(ϕ̃(x)−ϕ(x)))

−1

is a continuous path in Hs−1(R). Therefore we get

[ϕ−1− ϕ̃
−1]λ ≤C||ϕ− ϕ̃||s−1

Now consider the case 2≤ s≤ 5/2. Taking the derivative we get

(ϕ−1− ϕ̃
−1)′ = ϕx ◦ϕ

−1− ϕ̃x ◦ ϕ̃
−1

which rewritten is

ϕx ◦ϕ
−1−ϕx ◦ ϕ̃

−1 +ϕx ◦ ϕ̃
−1− ϕ̃x ◦ ϕ̃

−1

For the last two terms we have

||ϕx ◦ ϕ̃
−1− ϕ̃x ◦ ϕ̃

−1||s−2 ≤C||ϕx− ϕ̃x||s−2 ≤C||ϕ− ϕ̃||s−1

For the first two terms we can argue as in the proof of Lemma A.5 and write

||ϕx ◦ϕ
−1−ϕx ◦ ϕ̃

−1||s−2 ≤C||ϕx−1||s−1||ϕ−1− ϕ̃
−1||s−2

Hence using the estimate from above for ||ϕ−1− ϕ̃−1||s−2 as 0≤ s−2 < 1 we get the claim.
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Appendix B. Inequalities for fractional Sobolev functions

In this section we will establish inequalities of the form

|| f +g|| ≥C(|| f ||s + ||g||s)

for functions f ,g with disjoint support. For fractional s this causes some difficulties as the norm
|| · ||s is defined in a non-local way. For fixed supports we have

Lemma B.1. Let s ∈ R. There is a constant C > 0 such that for all f ,g ∈ C∞
c (R) with supp f ⊆

(−3,−1) and suppg⊆ (1,3) we have

|| f +g||2s ≥C(|| f ||2s + ||g||2s )

Proof. We take ϕ,ψ ∈ C∞
c (R) with suppϕ ⊆ (−3.5,−0.5) and suppψ ⊆ (0.5,3.5) such that

ϕ|(−3,−1) ≡ 1 and ψ|(1,3) ≡ 1. We then have

|| f ||s = ||ϕ( f +g)||s ≤C1|| f +g||s

and similarly

||g||s = ||ψ( f +g)||s ≤C2|| f +g||s

giving the desired result.

In the following we will use the fact that the Hs-norm is equivalent to the homogeneous Ḣs-
norm if we restrict ourselves to functions with support in a fixed compact K ⊆R (see e.g. [4] p. 39).
Recall

|| f ||2Ḣs =
∫
R
|ξ |2s| f̂ (ξ )|2dξ

We often also use f λ (x) := f (x/λ ) for which we have the following scaling property

|| f λ ||2Ḣs = λ
1−2s|| f ||2Ḣs

We have

Lemma B.2. Let s ≥ 0. Then there is a constant C > 0 with the following property: For x,y in R
with 0 < r := |x− y|/4 < 1 we have

|| f +g||2s ≥C(|| f ||2s + ||g||2s )

for all functions f ,g ∈C∞
c (R) with supp f ⊆ (x− r,x+ r), suppg⊆ (y− r,y+ r)
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Proof. We use the homogeneous norm. Now scaling with λ = (4r)−1 gives a situation as in Lemma
B.1. We have

|| f +g||2Ḣs = λ
2s−1
n || f λ +gλ ||2Ḣs

Now by Lemma B.1 we then get

|| f +g||2Ḣs ≥Cλ
2s−1

(
|| f λ ||2Ḣs + ||gλ ||2Ḣs

)
Scaling back gives

|| f +g||2Ḣs ≥C(|| f ||2Ḣs + ||g||2Ḣs)

This establishes the lemma.

We will encounter Lemma B.2 also for some negative values of s. In these cases we will use

Lemma B.3. Let s < 0 and the same situation as in Lemma B.2. Then we have

|| f +g||2s ≥C(|| f ||2s + ||g||2s )

for all functions f ,g ∈C∞
c (R) with supp f ⊆ (x− r,x+ r), suppg⊆ (y− r,y+ r)

Proof. We claim that for functions with support in some fixed compact set K ⊆R the homogeneous
norm

|| f ||2Ḣs =
∫
R
|ξ |2s| f̂ (ξ )|2dξ

is equivalent to the non-homegeneous norm || · ||s. One then can argues as in Lemma B.2 by scaling
to a fixed situation as in Lemma B.1. So it remains to show the equivalence of the norms. We clearly
have || · ||s ≤ || · ||Ḣs since ∫

R
(1+ξ

2)s| f̂ (ξ )|2dξ ≤
∫
R

ξ
2s| f̂ (ξ )|2dξ

For the other direction we use the dual definition of the Sobolev norm

|| f ||s = sup
||g||−s≤1

|〈 f ,g〉|

and analogously for the homogeneous norm. Taking ψ ∈ C∞
c (R) with ψ = 1 on K we have for f

with support in K

|| f ||Ḣs = sup
||g||Ḣ−s≤1

|〈 f ,ψ ·g〉|

Now note that we have equivalence of the norms || · ||−s and || · ||Ḣ−s for functions with support in
some fixed compact. Therefore

|| f ||Ḣs = sup
||g||Ḣs≤1

|〈 f ,ψ ·g〉| ≤ sup
g,||ψ·g||−s≤C1

|〈 f ,ψ ·g〉|

≤ C1 sup
||g||−s≤1

|〈 f ,g〉|= || f ||−s

showing the equivalence.
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à l’hydrodynamique des fluids parfaits, Ann. Inst. Fourier, 16, 1(1966), 319-361.
[4] H. Bahouri, J-Y. Chemin, R. Danchin: Fourier analysis and nonlinear partial differential equa-

tions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], 343. Springer, Heidelberg, 2011

[5] R. Camassa, D. Holm: An integrable shallow water equation with peaked solitons, Phys. Rev. Lett,
71(1993), 1661-1664.

[6] M. Cantor: Groups of diffeomorphisms of Rn and the flow of a perfect fluid, Bull. Am. Math. Soc. 81,
205-208 (1975)

[7] A. Constantin:Existence of permanent and breaking waves for a shallow water equation: a geometric
approach, Ann. Inst. Fourier 50, No.2, 321-362 (2000)

[8] A. Constantin, J. Escher: Well-posedness, global existence, and blow-up phenomena for a periodic
quasi-linear hyperbolic equation, Commun. Pure Appl. Math., 51(1998), 475-504.

[9] A. Constantin, D. Lannes: The hydrodynamical relevance of the Camassa-Holm and Degasperis-
Procesi equations, Arch. Ration. Mech. Anal. 192 (2009), no. 1, 165186.

[10] A. Constantin, H. P. McKean: A shallow water equation on the circle., Comm. Pure Appl. Math. 52
(1999), no. 8, 949982.

[11] A. Constantin, R. I. Ivanov, J. Lenells: Inverse scattering transform for the Degasperis-Procesi equa-
tion., Nonlinearity 23 (2010), no. 10, 25592575.

[12] A. Constantin, T. Kappeler, B. Kolev, P. Topalov: On geodesic exponential maps of the Virasoro group,
Ann. Glob. Anal. Geom. 31(2007), 155 - 180.

[13] O. Christov, S. Hakkaev: On the Cauchy problem for the periodic b-family of equations and of the non-
uniform continuity of Degasperis-Procesi equation, J. Math. Anal. Appl. 360, No. 1, 47-56 (2009).

[14] A. Degasperis, M. Procesi: Asymptotic integrability, in Symmetry and Perturbation Theory, Rome,
World Sci. Publ., River Edge, NJ, 1999

[15] D. Ebin, J. Marsden: Groups of diffeomorphisms and the motion of an incompressible fluid, Ann.
Math., 92(1970), 102-163.

[16] J. Escher, D. Henry, B. Kolev, T. Lyons: Two-component equations modelling water waves with con-
stant vorticity, Annali Mat. Pura Appl. (http://link.springer.com/article/10.1007/s10231-014-0461-z)

[17] J. Escher, B. Kolev: The Degasperis-Procesi equation as a non-metric Euler equation, Math. Z. 269
(2011), no. 3-4, 11371153.

[18] J. Escher, B. Kolev: Geometrical methods for equations of hydrodynamical type., J. Nonlinear Math.
Phys. 19 (2012), suppl. 1

[19] J. Escher, T. Lyons: Two-component higher order Camassa-Holm systems with fractional inertia oper-
ator: a geometric approach., J. Geom. Mech. 7 (2015), no. 3, 281293.

[20] A. Himonas, C. Kenig, G. Misiolek: Non-uniform dependence for the periodic CH equation, Commun.
Partial Differ. Equations 35, No. 6, 1145-1162 (2010)

[21] A. Himonas, G. Misiolek: The Cauchy problem for an integrable shallow-water equation., Differ.
Integral Equ. 14, No.7, 821-831 (2001)

[22] D. Holm, M. Staley:Nonlinear balance and exchange of stability in dynamics of solitons, peakons,
ramps/cliffs and leftons in a 1+1 nonlinear evolutionary PDE, Phys. Lett., A 308, No.5-6, 437-444
(2003).

[23] H. Inci, T. Kappeler, P. Topalov: On the regularity of the composition of diffeomorphisms, Mem. Amer.
Math. Soc. 226 (2013), no. 1062

[24] H. Inci: On the well-posedness of the incompressible Euler Equation, thesis, arXiv:1301.5997 (2013)
[25] H. Inci: On a Lagrangian formulation of the incompressible Euler equation, arXiv:1301.5994 (2013)
[26] H. Inci: On the regularity of the solution map of the incompressible Euler equation, Dyn. Partial Differ.

Equ. 12 (2015), no. 2, 97113
[27] S. Lang: Fundamentals of Differential Geometry, Springer, 1999.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

232



H. Inci / The Holm-Staley b-family of equations

[28] G.Misiolek:A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys.
24, No.3, 203-208 (1998).

[29] Y. Li, P. Olver: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model
wave equation, J. Differential Equations 162 (2000), 27-63.

[30] V.Yu. Ovsienko, B.A. Khesin:The Korteweg-de Vries superequation as Euler equation, Funkts. Anal.
Prilozh. 21, No.4, 81-82 (1987).

[31] G. Rodriguez-Blanco: On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal. 14
(2001), 309-327.

[32] L. Yan: Nonuniform dependence for the Cauchy problem of the general b-equation, J. Math. Phys. 52,
033101 (2011)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

233


