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The symmetry constraint for dispersionless Harry Dym (dHD) hierarchy is derived for the first time by taking
dispersionless limit of that for 2+1 dimensional Harry Dym hierarchy. Then, the dHD is extended by means
of the symmetry constraint which we derived. From the zero-curvature equation of the new extended dHD
hierarchy, two types of dHD equations with self-consistent sources (dHDESCS) together with their associated
conservation equations are obtained. Moreover, the hodograph solutions to the first type of dHDESCS are
given. Finally, Bäcklund transformation between the extended dispersionless mKP hierarchy and extended
dHD Hierarchy are also constructed.
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1. Introduction

Dispersionless integrable systems (DIS) can be viewed as quasi-classical limit of the ordinary
integrable systems, in which the dispersion effect had been dropped. It is shown that these sys-
tems have important applications in conformal maps, hydrodynamics, topological field theory
[1,8,9,11,12,13,17,20,21,22]. In the Lax equations, the operators are replaced by phase space func-
tions for dispersionless hierarchies. In addition, the commutator is replaced by the Poisson bracket
and the role of Lax pair equations by the conservation equations. Note that these dispersionless
systems can be solved by using twistorial method [21,22], hodograph reduction method [12], and
the quasi-classical ∂ -method [13].

It is well known that dispersionless KP (dKP) hierarchy, dispersioness modified KP (dmKP)
hierarchy and dHD hierarchy are three important classes of DIS within the Sato approach. These
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three systems have been widely investigated in the past twenty years. In 1999, the dHD hierarchy
was defined by a given classical r-matrix on a Poisson algebra[16]. Some progresses have been made
for the dHD hierarchy such as hodograph solutions [6], Miura map and bi-Hamiltonian formulation
[7], additional symmetries and Bäcklund transformation [5] and Hydrodynamic reduction [4]. We
notice that the Miura map between the dmKP hierarchy and the dHD hierarchy is triggered by the
”eigenfunctions ”of the dmKP hierarchy and depends on a transformation of independent variables.

As a kind of generalization of integrable soliton hierarchies, soliton equations with self-
consistent sources (SESCS) have been one of hot topics in mathematical physics [10,15,18,23].
There are two types of SESCS. The first type of SESCS consist of a soliton equation with some addi-
tional terms and eigenvalue problem, while the second type consist of a soliton equation with some
additional terms and time evolution equations of eigenfunction of the soliton equation. In 2006, the
first types of dKP, dmKP hierarchies with self-consistent sources (dKPHSCS, dmKPHSCS) were
investigated by treating the constrained integrable hierarchy as the stationary system of the cor-
responding hierarchy, and their hodograph solutions were given as well [25,26]. In addition, the
Bäcklund transformation between dKPHSCS and dmKPHSCS was constructed in [27]. However,
we can easily find that the construction of dHD hierarchy with self-consistent sources (dHDHSCS)
and the Bäcklund transformation between dmKPHSCS and dHDHSCS still remain unsolved. In the
present paper, we focus on the new extension of dHD hierarchy and the construction of Bäcklund
transformation between dmKPHSCS and dHDHSCS. We find that the zero curvature representation
of this new extended dKP hierarchy gives rise to dHDHSCS. Our research results will fill the gap
of the mentioned above and give an important supplement to dispersionless Sato theory.

The outline of this paper is as follows. In section 2, the 2+1 dimensional Harry Dym hierarchy
and the dHD hierarchy are briefly reviewed. In section 3, the symmetry constraint for dHD hierar-
chy is derived by taking dispersionless limit of that for 2+1 dimensional Harry Dym hierarchy. In
section 4, based on the symmetry constraint for dHD hierarchy, a new extended dHD hierarchy is
constructed. And two types of dHDESCS together with their associated conservation equations are
obtained. In section 5, the hodograph solutions to the first type of dHDESCS are given. In section
6, the Bäcklund transformation between the extended dmKP hierarchy (exdmKPH) and extended
dHD hierarchy (exdHDH) is constructed. As its byproduct, the Bäcklund transformation between
dmKPHSCS and dHDHSCS is also obtained. Section 7 is devoted to a brief summary.

2. The 2+1 dimensional Harry Dym hierarchy and the dispersionless Harry Dym
hierarchy

Let’s briefly review the 2+1 dimensional Harry Dym hierarchy and the dHD hierarchy. The 2+1
dimensional Harry Dym hierarchy is defined by the Lax equation [2, 14]

Ltn = [Bn,L] , n≥ 1, (2.1)

in which the Lax operator is given by

L = u1∂ +u0 +u−1∂
−1 +u−2∂

−2 + · · · , (2.2)

where ∂ denotes ∂

∂x , the coefficient functions ui depend on t = (t1, t2, t3, · · ·) with t1 = x, i =
0,1,2, · · · , and Bn = (Ln)≥2 .
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By taking the dispersionless limit of (2.1), the dHD hierarchy is obtained as follows [16]

∂TnL = {Bn,L }, (2.3)

where the sato function L is given by

L =
∞

∑
i=−1

U−i(T )p−i, (2.4)

The commutativity of (2.3) leads to

∂TmBn−∂TnBm +{Bn,Bm}= 0, (2.5a)

The associated conservation equation of (2.5a) reads

∂Tn p = ∂XBn(p) , ∂Tm p = ∂XBm(p), (2.5b)

where Bn = (L n)≥2 denotes the polynomial part of L n as a function of p and the Poisson bracket
is defined as

{A(p,X),B(p,X)}= ∂A
∂ p

∂B
∂X
− ∂A

∂X
∂B
∂ p

,

Note that when m = 3,n = 2, (2.5a) becomes the dHD equation [3, 6]

UT =
3
4

U−1[U2
∂
−1
X (

UY

U2 )]Y , (2.6a)

The conservation equation of (2.6a) is

pY = (U2 p2)X ,

pT = (U3 p3)X +3(U2V p2)X ,
(2.6b)

where U0 =V,U1 =U,T2 = Y,T3 = T .

3. The symmetry constraint of dispersionless Harry Dym hierarchy

In order to get the exdHDH, we firstly derive the symmetry constraint for dHD hierarchy by taking
the dispersionless limit of that for 2+1 dimensional Harry Dym hierarchy.
It is known that the symmetry constraint for Harry Dym hierarchy is given by [20]

Ln = Bn +
N

∑
i=1

qi∂
−1ri∂

2 , Bn = (Ln)≥2 , n≥ 1, (3.1)

where qi and ri satisfy

qi,tn = Bn(qi),ri,tn =−∂
−2B∗n∂

2(ri),

where B∗n is the adjoint operator of Bn. Following the standard procedure of dispersionless limit, we
take Tn = εtn and think of un(

T
ε
) =Un(T )+O(ε) as ε −→ 0, then L in (2.2) changes into

Lε =
∞

∑
i=−1

u−i(
T
ε
)(ε∂ )−i =

∞

∑
i=−1

(U−i(T )+O(ε))(ε∂ )−i,∂ = ∂X ,X = εx, (3.2)
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and constraint (3.1) becomes

Ln
ε = Bεn +

N

∑
i=1

qi(
T
ε
)(ε∂ )−1ri(

T
ε
)(ε∂ )2,Bεn = (Ln

ε)≥2, (3.3)

where qi(
T
ε
) and ri(

T
ε
) satisfy

ε[qi(
T
ε
)]Tn = Bεnqi(

T
ε
) , ε[ri(

T
ε
)]Tn =−(ε∂ )−2B∗εn(ε∂ )2ri(

T
ε
) (3.4)

It is easy to prove that

L = σ
ε(Lε) =

∞

∑
i=−1

U−i(T )p−i, (3.5)

is a solution of the dHD hierarchy, i.e., satisfies

∂TnL = {Bn,L },

where σ ε denotes the principal symbol [21] , and Bn = (L n)≥2 refers to powers of p.
Regarding

qi(
T
ε
)v exp[

S(T,λi)

ε
+αi1 +O(ε)] , ε −→ 0,

[ε2ri(
T
ε
)]XX v exp[−S(T,λi)

ε
+αi2 +O(ε)] , ε −→ 0 , i = 1 · · ·N,

(3.6)

and noticing that

qi(
T
ε
)(ε∂ )−1ri(

T
ε
)(ε∂ )2

= qi(
T
ε
)(ε∂ )−1

ε
2{∂ 2ri(

T
ε
)−2∂ [ri(

T
ε
)]X +[ri(

T
ε
)]XX}

= qi(
T
ε
)ri(

T
ε
)(ε∂ )−qi(

T
ε
)ε[ri(

T
ε
)]X +qi(

T
ε
)(ε∂ )−1[ε2ri(

T
ε
)]XX ,

(3.7)

by a tedious computation, we will find that when ε −→ 0

qi(
T
ε
)(ε∂ )−1ri(

T
ε
)(ε∂ )2 =

exp(αi1 +αi2)(ε∂ )

[ ∂S(T,λi)
∂X ]2

+
exp(αi1 +αi2)

∂S(T,λi)
∂X

+ exp(αi1 +αi2){(ε∂ )−1

+
∂S(T,λi)

∂X
(ε∂ )−2 + · · ·}.

(3.8)

Setting

ai = exp(αi1 +αi2), pi =
∂S(T,λi)

∂X
, p =

∂S(T,λ )
∂X

,

and substituting (3.8) into (3.3), then we have by taking the principal symbol of the both sides of
(3.3)

L n =Bn+
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

1
p
+

pi

p2 + ...) =Bn+
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
) , Bn = (L n)≥2. (3.9)
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From (3.4), (3.6) and (3.9b), a direct tedious computation leads to the following the equations of
hydrodynamical type

pi,Tn = (Bn(pi))X , ai,Tn = [ai(
∂Bn(pi)

∂ pi
)]X , i = 1 · · ·N.

Remark 3.1. The symmetry constraints of the dKP, dmKP hierarchy was obtained by dispersion-
less limit method [25, 26]. But up to now, the symmetry constraint for the dHD hierarchy has never
been investigated. So here the constraint symmetry of the dHD hierarchy we obtained is given for
the first time.

4. New extension of dispersionless Harry Dym hierarchy

In this section, based on the symmetry constraint for dHD hierarchy, the new extension of dHD
hierarchy is considered by introducing a new time evolution of L given by

Lτk = {Bk +
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
),L }, (4.1a)

where

pi,Tn = (Bn(pi))X , ai,Tn = [ai(
∂Bn(pi)

∂ pi
)]X , i = 1 · · ·N, (4.1b)

Definition 4.1. The new extended dHD hierarchy (exdHDH) is defined by

Lτk = {Bk +
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
),L }, (4.2a)

LTn = {Bn,L },n 6= k, (4.2b)

pi,Tn = [Bn(p)|p=pi ]X , i = 1,2 · · ·N, (4.2c)

ai,Tn = [ai(
∂Bn(p)

∂ p
)|p=pi ]X . (4.2d)

In order to verify the commutativity of (4.2a) and (4.2b) under (4.2c) and (4.2d), we need to
show the following lemma.

Lemma 4.1. There holds the identity

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
)Tn = {Bn,

ai p
p2

i
+

ai

pi
+

ai

p− pi
}≤1 , i = 1 · · ·N.

Proof. Noting that the proof of Lemma 4.1 is similar to [24], so we omit the details here.

Next, we will use Lemma 4.1 to show the following theorem . We can easily find from The-
orem 4.1 that the zero-curvature representation of the new exdHDH (4.2) is dHD hierarchy with
self-consistent sources.
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Theorem 4.1. Under (4.2c, d), the commutativity of (4.2a) and (4.2b) leads to the zero-curvature
equation of the extended dHD hierarchy (4.2).

Bn,τk − [Bk +
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
)]Tn +{Bn,Bk +

N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
)}= 0, (4.4a)

or equivalently

Bn,τk−Bk,Tn +{Bn,Bk}+
N

∑
i=1

[{Bn,(
ai p
p2

i
+

ai

pi
+

ai

p− pi
)}− (

ai p
p2

i
+

ai

pi
+

ai

p− pi
)Tn ] = 0, (4.4a′)

pi,Tn = [Bn(pi)]X , ai,Tn = [ai(
∂Bn(pi)

∂ pi
)]X , i = 1 · · ·N. (4.4b)

Under(4.4b), the conservation equation associated with (4.4a) or (4.4a′)

pTn = [Bn(p)]X , pτk = [Bk(p)+
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
)]X . (4.5)

Proof. We will show under (4.4b), (4.2a) and (4.2b) gives rise to (4.4a). By (4.2a),(4.2b) and lemma
4.1,we have

Bn,τk = (L n
τk
)≥2 = {Bk +

N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
),L n}≥2

= {Bk +
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
),Bn}≥2 +{Bk +

N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
),(L n)≤1}≥2

= {Bk +
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
),Bn}−{Bk +

N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
),Bn}≤1 +{Bk,(L

n)≤1}≥2

= {Bk +
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
),Bn}+{Bn,

N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
)}≤1 +{Bk,(L

k)≤1}≥2

= {Bk +
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
),Bn}+{Bn,

N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
)}≤1 +Bk,τn

= {Bk +
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
),Bn}+(Bk +

N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
))Tn

This completes the proof.

Next we derive some important equations from (4.4). When n = 2,k = 3, (4.4) yields the first
type of dHD equation with self-consistent sources (dHDESCS)

UT −
3
4

U−1[U2
∂
−1
X (

UY

U2 )]Y +2U
N

∑
i=1

(
ai

pi
)X −2UX

N

∑
i=1

ai

pi
= 0, (4.6a)

pi,Y = (U2 p2
i )X , ai,Y = (2aiU2 pi)X , i = 1 · · ·N, (4.6b)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

388



Hongxia Wu et al. / New extension of dispersionless Harry-Dym hierarchy

where T2 = Y,τ3 = T , U =U1, and U0 is eliminated by 2U2
1 U0,X =U1,Y .

The associated conservation equation of (4.6) reads

pY = (U2 p2)X ,

pT = [U3 p3− 3
2

U2 p2
∂
−1
X (

1
U
)Y +

N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
)]X .

(4.7)

When n = 3,k = 2, (4.4) becomes the second type of dHDESCS

2VUY +UVY −
2
3

UT +U2
N

∑
i=1

(
ai

pi
)X +2UV

N

∑
i=1

(
ai

p2
i
)X − (2VUX +VXU)

N

∑
i=1

(
ai

p2
i
) = 0,

pi,T = (U3 p3
i +3VU2 p2

i )X , ai,T = [ai(3U3 p2
i +6VU2 pi)]X , i = 1, · · · ,N. (4.8)

The associated conservation equation of (4.8) is given by

pY = [U2 p2 +
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
)]X ,

pT = [U3 p3 +3U2V p2]X ,

(4.9)

where τ2 = Y,T3 = T , U1 =U,U0 =V , and U0 is determined by

U0 =−
1
2

∂
−1
X (

1
U
)Y +

1
2

∂
−1
X (

1
U

N

∑
i=1

(
ai

p2
i
)X)−

1
2

∂
−1
X (

UX

U

N

∑
i=1

ai

p2
i
). (4.10)

5. The Hodograph solution for the first type dHDESCS

In this section, using M-reduction method together with the hodograph transformation, we derive
the hodograph solutions to the first type of dHDESCS (4.6). Following [12] , one can consider
the M-reduction of the conservation equation (4.7) so that the momentum function p, the auxiliary
potentials ai and pi , i = 1 · · ·N only depend on a set of functions W = (W1, · · · ,WM) with W1 =U ,
and (W1, · · · ,WM) satisfy commuting flows

∂W
∂Tn

= An(W )
∂W
∂X

, n≥ 2, (5.1)

where the N×N matrice An are only the functions of (W1 · · ·WM). In the following, we will take the
first type of dHDESCS (4.6) for example and show its hodograph solutions in the case of M = 1
and M = 2.

1. M = 1

In this case, we will get

p = p(U,L ) , ai = ai(U) , pi = pi(U), (5.2)

and

UY = A(U)UX , UT = B(U)UX . (5.3)
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(5.3) together with (4.6b) and (4.7) imply that

(A−2U2 pi)
d pi

dU
= 2U p2

i ,

(A−2U2 p)
∂ p
∂U

= 2U p2,

(A−2U2 pi)
dai

dU
= 4ai piU +2aiU2 d pi

dU
, (5.4)

(B−3U2 p2−6U2V p)
∂ p
∂U

= 3U2 p3 +6UV p2 +3U2 dV
dU

p2 +(
N

∑
i=1

ai

p2
i
−U2

N

∑
i=1

ai

p4
i
(
d pi

dU
)2)

∂ p
∂U

.

Eqs. (5.4) implies

A = 2U2 dV
dU

, B = 3VA+
3
4

U−1A2 +
N

∑
i=1

ai

p2
i
−U2

N

∑
i=1

ai

p4
i
(
d pi

dU
)2, (5.5)

where U0 = V . It is very easy to verify that with (5.5) and (5.4), (5.3) are compatible. Making the
hodograph transformations with the change of variables (X ,Y,T )→ (U,Y,T ) with X = X(U,Y,T ).
The hodograph equations for X are given by

∂X
∂Y

=−A ,
∂X
∂T

=−B =−3VA− 3A2

4U
−

N

∑
i=1

ai

p2
i
+U2

N

∑
i=1

ai

p4
i
(
d pi

dU
)2, (5.6)

which can be easily integrated as

X +A(U)Y +(3VA+
3A2

4U
+

N

∑
i=1

ai

p2
i
−U2

N

∑
i=1

ai

p4
i
(
d pi

dU
)2)T = F(U), (5.7)

where F(U) is an arbitrary function of U .
If we chose A(U) =−1,F(U) = 0, we can get from (5.4)

pi =−
1

U2 ,ai =C0 (5.8a)

where C0 is an arbitrary non-zero constant. Combining (5.7) and (5.8a), we obtain

12NC0TU5 +4(Y −X)U +3T = 0 (5.8b)

We find that (5.8b) is a quintic equation of u. It is well known that a general quintic equation with
one unknown has no radical solution, but elliptic modular function solution. Thus, we can obtain
the hodograph solution of dHDESCS (4.6), in which pi,ai,U are determined by (5.8a) and (5.8b),
respectively.

2. M = 2

In the case, we denote W1 =U,W2 =W , then ai = ai(U,W ), pi = pi(U,W ), p = p(U,W ), with
the commuting flow

(
U
W

)
Y
= A

(
U
W

)
X

,

(
U
W

)
T
= B

(
U
W

)
X
, (5.9)

where A = (A)i j and B = (B)i j are 2×2 matrix functions of U and W . By requiring that UX and WX

are in dependent, (4.6b) and (4.7) give rise to the following equations for ai(U,W ), pi(U,W ) and
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p(U,W ),

(
∂ pi

∂U
,

∂ pi

∂W
)A = 2U p2

i (1,0)+2U2 pi(
∂ pi

∂U
,

∂ pi

∂W
),

(
∂ p
∂U

,
∂ p
∂W

)A = 2U p2(1,0)+2U2 pi(
∂ p
∂U

,
∂ p
∂W

),

(
∂ai

∂U
,

∂ai

∂W
)A = 2U2 pi(

∂ai

∂U
,

∂ai

∂W
)+4aiU pi(1,0)+2aiU2(

∂ pi

∂U
,

∂ pi

∂W
), (5.10)

(
∂ p
∂U

,
∂ p
∂W

)B = (3U2 p3 +6UV p2)(1,0)+3U3 p2(
∂ p
∂U

,
∂ p
∂W

)+3U2 p2(
∂V
∂U

,
∂V
∂W

)+

6U2V p(
∂ p
∂U

,
∂ p
∂W

)+
N

∑
i=1

[(
p
p2

i
+

1
pi
+

1
p− pi

)(
∂ai

∂U
,

∂ai

∂W
)−

2ai p
p3

i
(
∂ pi

∂U
,

∂ pi

∂W
)+(

ai

p2
i
− ai

(p− pi)2 )(
∂ p
∂U
− ∂ pi

∂U
,

∂ p
∂W
− ∂ pi

∂W
)].

We can easily find from (5.10) that A(U,W ) and B(U,W ) must satisfy

B =3VA+
3A2

4U
+

N

∑
i=1

(
ai

p2
i
− U

p2
i

∂ai

∂U
+

2Uai

p3
i

∂ pi

∂U
)I+

(
U
p2

i

∂ai

∂W
− 2Uai

p3
i

∂ pi

∂W
)

[
0 1
−A21

A12

A22−A11
A12

.

] (5.11)

where U0 =V , and I is the 2×2 identity matrix, A11 = 2U2 ∂V
∂U and A12 = 2U2 ∂V

∂W .

For simplicity, we assume U
p2

i

∂ai
∂W = 2Uai

p3
i

∂ pi
∂W , i = 1, · · · ,N. By using the formula

A2 = (trA)A− (detA)I, (5.12)

we have

B = (3V +
3trA
4U

)A− [
3detA

4U
−

N

∑
i=1

(
ai

p2
i
− U

p2
i

∂ai

∂U
+

2Uai

p3
i

∂ pi

∂U
)]I, (5.13)

where detA = A11A22−A12A21 and trA = A11 +A22.
With (5.13), the compatibility condition for (5.9) requires A to satisfy

(− ∂

∂W
(
3detA

4U
)+

N

∑
i=1

∂

∂W
(

ai

p2
i
− U

p2
i

∂ai

∂U
+

2Uai

p3
i

∂ pi

∂U
)

∂

∂U
(
3detA

4U
)−

N

∑
i=1

∂

∂U
(

ai

p2
i
− U

p2
i

∂ai

∂U
+

2Uai

p3
i

∂ pi

∂U
)

)
= A

(− ∂

∂W
(3V +

3trA
4U

)

∂

∂U
(3V +

3trA
4U

)

)
. (5.14)

To solve (5.9), we use the hodograph transformation by changing the independent variables (X ,Y,T )
to (U,W,T ) with the dependent variables X = X(U,W,T ) and Y =Y (U,W,T ). In terms of the new
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variables, (5.9) becomes(
−XW

XU

)
= A

(
YW

−YU

)
,

(
∂ (X ,Y )/∂ (W,T )
−∂ (X ,Y )/∂ (U,T )

)
= B

(
YW

−YU

)
, (5.15)

where ∂ (X ,Y )/∂ (W,T ) = XWYT −XTYW . It can be easily find that (5.15) has solutions in the form

X− [
3detA

4U
−

N

∑
i=1

(
ai

p2
i
− U

p2
i

∂ai

∂U
+

2Uai

p2
i

∂ pi

∂U
]T = F(U,W ),

Y +(3V +
3trA
4U

)T = G(U,W ).

(5.16)

where YU and YW are required to be independent, and F and G are two arbitrary functions satisfying
the linear equations (

−FW

FU

)
= A

(
GW

−GU

)
, (5.17)

An example of solution is given by

A =

[
2U2W 2U3 +2U2

2UW 2 2U2W

]
, (5.18a)

and

pi =W , ai = ci(U +1)W 2 , i = 1, · · · ,N, (5.18b)

where ci , i = 1, · · · ,N are constants.
It can be found that (5.18a) implies V = (U +1)W . Then (5.16) becomes

X +(3U2W 2 +
N

∑
i=1

ci)T = F(U,W ),

Y +(6U +3)WT = G(U,W ).

(5.19)

From (5.17) and FUW = FWU , G must satisfy

(4U +2)GU +(U2 +U)GUU −4WGW −W 2GWW = 0. (5.20)

We notice that G = 1
W 3 is a particular solution of (5.20). From (5.17), we get F =−3U2

W 2 .

When we choose G = 1
W 3 and F =−3U2

W 2 , we obtain from (5.17)

X +(3U2W 2 +
N

∑
i=1

ci)T =−3U2

W 2 ,

Y +(6U +3)WT =
1

W 3 .

(5.21)

By solving the equation set (5.21) of U and W , we obtain an implicit solution of (4.6), in which
pi =W,ai = ci(U +1)W 2 , i = 1, · · · ,N, and U,W are determined by (5.21).
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6. Bäcklund transformation between exdmKPH and exdHDH

It is known that the exdmKPH is defined by [24]

Lτk = {Qk−
N

∑
i=1

(
αi

βi
+

αi

p′−βi
),L}, (6.1a)

LT n
= {Qn,L},n 6= k, (6.1b)

βi,T n
= [Qn(p′) |p′=βi ]X , (6.1c)

αi,T n
= [αi(

∂Qn(p′)
∂ p′

) |p′=βi ]X , (6.1d)

with Qn = (Ln
)≥1.

We now explore the Bäcklund transformation between exdmKPH and exdHDH, which is given
by the following theorem.

Theorem 6.1. Suppose that L,αi,βi satisfy the exdmKPH. If φ is function of T satisfying

φτk = {Qk,φ}[0]+
N

∑
i=1

αi

β 2
i

φX ,

φT n
= {Qn,φ}[0],n 6= K,

then L (X , tn) = L(X , tn),X = φ(X , t), tn = tn,ai = −φ
−1
X αi, pi = φ

−1
X βi satisfy the exdHDH (4.2).

Here we use a notation: (Λ)[0] = a0, Λ = ∑i ai pi.

Proof. Using the same method as in [7], we can show that L (X , tn) = L(X , tn) satisfy (4.2b).
Therefore,we only need to prove L (X , tn),ai, pi defined above satisfy (4.2a),(4.2c) and (4.2d). The
detailed proofs can be found in the Appendix A.

Remark 6.1. Theorem 6.1 presents the Bäcklund transformation between exdmKPH (6.1) and exd-
HDH (4.2). In addition, noting that the Bäcklund transformation between exdKPH and exdmKPH
was given in [24], we attain the Bäcklund transformation between exdKPH and exdHDH.

Remark 6.2. As the byproduct of theorem 6.1, we get the the Bäcklund transformation between
the first type of dmKPESCS and of dHDESCS. Let

L (X , t) =U p+U0 +U−1 p−1 + · · ·+U−m p−m + · · · ,

L(X , t) = p′+V0 +V−1 p′−1
+V−2 p′−2

+ · · ·+V−m p′−m
+ · · · ,

from p′ = φX p and L(X , t) = L (X , t), we can get

U−m(X , t) =V−m(X , t)φ−m
X , m =−1,0,1, · · · ,U1 =U.

Specially, we get U = φX when m =−1.
When n = 2,k = 3, from theorem 6.1, the Bäcklund transformation between the first type of
dmKPESCS and dHDESCS is given by
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U = φX , ai =−φ
−1
X αi , pi = φ

−1
X βi , i = 1,2, · · ·N,

in which φ satisfies that

φT 2
= {Q2,φ}[0] = {p′2 +2p′V,φ}[0]

= [
∂ (p′2 +2p′V )

∂ p′
· ∂φ

∂X
][0]−

∂ (p′2 +2p′V )

∂X
· ∂φ

∂ p′
= 2V φX ,

φτ3 = {Q3,φ}[0]+
N

∑
i=1

αi

β 2
i

φX

= (
3
2

∂
−1
X (VY )+

3
2

V 2)φX +
N

∑
i=1

αi

β 2
i

φX ,

(6.2)

with V0 =V.
Similarly, we can also derive the Bäcklund transformation between the second type of

dmKPESCS and dHDHESCS. But we omit the details here.

7. Summary

In this article, the symmetry constraint of dHD hierarchy is derived for the first time by taking dis-
persionless limit of that for 2+1 dimensional Harry Dym hierarchy. In addition, the new extension
of the dHD hierarchy is considered. We can easily find that the new exdHDH is Lax integrable, and
that its the zero-curvature equation contains two types of dHDESCS. The hodograph solutions to
the first type of dHDESCS are obtained by the reduction method together with hodograph transfor-
mation. The Bäcklund transformation between the exdmKPH and exdHDH are finally constructed.
Our results give a supplement to the previous studies about the dHD hierarchy.
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Appendix A. The proof of Theorem 6.1

Proof. Step 1: We firstly show L (X , tn),ai, pi satisfy (4.2a).
Noting that

∂

∂τk
=

∂

∂τk
+φT n

∂

∂X
⇒ ∂

∂τk
=

∂

∂τk
−φT n

∂

∂X
,
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we have

Lτk =
∂L

∂τk
=

∂L
∂τk
−φT n

∂L

∂X
= Lτk −φT n

{p,L }

= Lτk −{φT n
p,L }= {Qk−

N

∑
i=1

(
αi

βi
+

αi

p′−βi
),L}−{φT n

p,L }

= {Qk,L}−{
N

∑
i=1

(
αi

βi
+

αi

p′−βi
),L}−{φT n

p,L }.

(A.1)

Noting that

Bk = (L k)≥2 = Qk−{Qk,φ}[0]p,

we obtain

{Bk +
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
,L }

= {Qk,L }−{{Qk,φ}[0]p,L }+{
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
),L }.

(A.2)

Combining (A.1)and (A.2), we have

Lτk −{Bk +
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
),L }

= {(φτk −{Qk,φ}[0]+
N

∑
i=1

ai

p2
i
)p,L }+

N

∑
i=1
{(ai

pi
+

αi

βi
+(

ai

p− pi
+

αi

p′−βi
),L }.

Since

φτk = {Qk,φ}[0]+
N

∑
i=1

αi

β 2
i

φX = {Qk,φ}[0]−
N

∑
i=1

aiφ
2
X

p2
i φ 2

X

= {Qk,φ}[0]−
N

∑
i=1

ai

p2
i
,

and

ai

pi
+

αi

βi
=−

φ
−1
X αi

φ
−1
X βi

+
αi

βi
=−αi

βi
+

αi

βi
= 0,

ai

p− pi
+

αi

p′−βi
=

−φ
−1
X αi

φ
−1
X

p′−φ
−1
X

βi
+

αi

p′−βi
= 0,

with p = φ
−1
X p′, we have

Lτk −{Bk +
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
),L }= 0⇒

Lτk = {Bk +
N

∑
i=1

(
ai p
p2

i
+

ai

pi
+

ai

p− pi
),L }.
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Step 2. Then we show L (X , tn),ai, pi satisfy (4.2c).

Noticing that when p = pi = φ
−1
X βi, we have

φ
−1
X p′ = φ

−1
X βi⇒ p′ = βi.

In addition, we also find that Bn(p) = Qn(p′)−{Qn(p′),φ}[0]p, so we have

[Bn(p) |p=pi ]X = [Qn(p′)−{Qn(p′),φ}[0]p |p=pi ]X

= φ
−1
X [Qn(p′) |p′=βi ]X − piφ

−2
X {Qn(p′),φ}[0],X −φ

−1
X pi,X{Qn(p′),φ}[0]

+φ
−3
X {Qn(p′),φ}[0]piφX ,X .

(A.3)

Noting that

pi,Tn = (∂T n
−φT n

∂X)(pi) = (∂T n
−φ

−1
X φT n

∂X)(βiφ
−1
X )

= βi,T n
φ
−1
X −βiφ

−2
X φX ,Tn

−φ
−1
X φT n

βi,X +φT n
φ
−3
X βiφX ,X ,

(A.4)

we have

pi,Tn− [Bn(p) |p=pi ]X = φ
−1
X [βi,T n

− (Qn(p′) |p′=βi)X ]−βiφ
−2
X [φT n

−{Qn(p′),φ}[0]]X+
βi,X φ

−1
X (φT n

−{Qn(p′),φ}[0])+φ
−3
X βiφX ,X [φT n

−{Qn(p′),φ}[0]].

Since βi,T n
= [Qn(p′) |p′=βi ]X and φT n

= {Qn,φ}[0], we have

pi,Tn− [Bn(p) |p=pi ]X = 0⇒ pi,Tn = [Bn(p) |p=pi ]X .

Step 3. We finally show L (X , tn),ai, pi satisfy (4.2d).

We have shown in 2 that when p = pi, we have p′ = βi.
Since

∂Bn(p)
∂ p

|p=pi= φX
∂Qn(p′)

∂ (p′)
|p′=βi −{Qn,φ}[0],

and

∂X = φ
−1
X ∂X ,

accordingly

[ai(
∂Bn(p)

∂ p
) |p=pi ]X = φ

−1
X [−φ

−1
X αi(φX(

∂Qn(p′)
∂ p′

) |p′=βi −{Qn,φ}[0])]X

=−φ
−1
X (αi(

∂Qn(p′)
∂ p′

) |p′=βi)X +φ
−1
X (φ−1

X αi{Qn,φ}[0])X

=−φ
−1
X (αi(

∂Qn(p′)
∂ p′

) |p′=βi)X −φ
−3
X αi{Qn,φ}[0]φX ,X+

φ
−2
X αi,X{Qn,φ}[0]+φ

−2
X αi{Qn,φ}[0],X ,

(A.5)
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and

ai,Tn = (∂T n
−φT n

∂X)ai = (∂T n
−φT n

∂X)(−αiφ
−1
X )

=−αi,T n
φ
−1
X +αiφ

−2
X φX ,T n

+φ
−2
X αi,X φT n

−φT n
φ
−3
X αiφXX .

(A.6)

From (A.5) and (A.6), we have

ai,Tn− [ai(
∂Bn(p)

∂ p
) |p=pi ]X

=−φ
−1
X [αi,T n

− (αi(
∂Qn(p′)

∂ p
) |p′=βi)X ]−φ

−3
X αiφXX(φT n

−{Qn,φ}[0])

+φ
−2
X αi,X(φT n

−{Qn,φ}[0])+φ
−2
X αi(φT n

−{Qn,φ}[0])X .

Since αi,T n
= [αi(

∂Qn(p′)
∂ p ) |p′=βi ]X and φT n

= {Qn,φ}[0] , respectively,

ai,Tn− [ai(
∂Bn(p)

∂ p
) |p=pi ]X = 0⇒ ai,Tn = [ai(

∂Bn(p)
∂ p

) |p=pi ]X .

This completes the proof.

References
[1] S. Aoyama and Y. Kodama, Topological Landau-Ginzburg theory with a rational potential and the

dispersionless KP equation, Commun. Math. Phys. 182 (1996) 185–219.
[2] H. Aratyn and E. Nissimov, R-matrix formulation of KP hierarchy and their gauge equivalence, Phys.

Lett. B. 249 (1992) 167–176.
[3] M. Blaszak, Classical R-matrices on Poisson algebras and related dispersionless systems, Phys. lett. A.

297 (2002)191–195.
[4] J. H. Chang, Hydrodynamic reduction of the dispersionless Dym equation, J. Phy. A. Math. Gen. 29

(2005) 6505–6515.
[5] Y. T. Chen , J. H. Chang and M. H. Tu, Additional symmetries and Bäcklund transformation for the
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