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New solvable dynamical systems are identified and the properties of their solutions are tersely discussed.

1. Introduction

We call solvable a dynamical system if its solution can be explicitly exhibited in terms of ele-
mentary functions or obtained by algebraic operations, typically by finding the N zeros zn (t) of a
time-dependent polynomial pN (z; t) of degree N in z which is known—again, possibly via alge-
braic operations—in terms of the initial data of the dynamical system. Recently a somewhat novel
technique to identify such models has been introduced [1], and quite a few such models have been
identified and investigated [2–8].

In the following Section 2 new solvable models are presented and their solutions are tersely
discussed. Proofs of these findings are provided in Section 3.

Let us end this introductory section by mentioning that all these models generally belong to the
class of so-called ”goldfish-type” dynamical systems and many-body problems, the solvability of
which generally emerges from the relations among the N coefficients and the N zeros of a time-
dependent (monic) polynomial of degree N in the (complex) variable z: an approach introduced
almost four decades ago [9], to which the term ”goldfish” was appended about 15 years ago [10],
and which has been rather extensively investigated in the following years, see for instance [11–22].

Since a Referee kindly suggested that the above outline of our approach was a bit too terse, let
us add here an overview of the general context in which the results reported in the present paper
should be situated. The modern interest in solvable/integrable models can be traced—of course,
somewhat arbitrarily: there always are precursors of precursors—to the discovery/invention in 1967
of the Inverse Spectral Transform technique to solve the KdV equation, which is an evolution Partial
Differential Equation in one-plus-one dimensions: time t and space x. [23] This major achievement
was soon followed by another major achievement: the discovery/invention in 1968 of the Lax pair
method to identify solvable/integrable models [24]. Let us hereafter focus on dynamical systems,
i. e. on nonlinear systems of Ordinary Differential Equations, which are the topic treated in the
present paper. In this context the Lax pair technique allows to reformulate certain dynamical sys-
tem in terms of two (N×N)-matrices (defined in terms of the variables of the dynamical system),
with one of these two matrices evolving in time in a simple manner implying that its N eigenvalues
are constants of motion. In the special case when the dynamical system so identified is Hamilto-
nian, this generally implies that it is integrable. More generally, the Lax breakthrough opened the

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

486



F. Calogero / New solvable dynamical systems

way to the identification of solvable dynamical systems (as defined above): which therefore evolve
nonchaotically and indeed, in some cases, remarkably simply, for instance periodically or even
isochronously. Two general techniques emerged over time to identify the equations of motion of
such systems. The first one takes as starting point a solvable (N×N)-matrix evolution equation and
then focusses on the evolution of its N eigenvalues, which are then interpreted as the dynamical
variables: its origin can be traced to a seminal 1976 paper which introduced a convenient tech-
nique to compute the corresponding equations of motion [25]. It was thereby shown that even a
trivially solvable linear evolution of the matrix leads to an interesting nonlinear evolution of its
eigenvalues, such as that described by the so-called Calogero-Moser many-body problem; opening
thereby a line of investigation that has been extensively pursued during the last few decades (see
for instance [10] and [20] and references therein; but there are also may other books covering this
material, and thousands of papers...). An alternative technique (1978) focussed on the connection
among the N coefficients cm (t) and the N zeros zn (t) of a time-dependent (monic) polynomial of
degree N in its argument z (generally, a complex number), relying on the observation that a solvable
evolution of the N coefficients cm (t) implies of course that the corresponding evolution of the N
zeros zn (t) is as well solvable [9]. As mentioned above, a recent observation [1] has significantly
facilitated the identification of solvable systems via this approach, leading to the investigation of
several such models, each of course with its own distinctive features (see references above). The
present paper fits into this development. Let us finally mention—again, in connection with an issue
raised by the Referee—that the two technologies to identify and investigate solvable dynamical sys-
tems outlined above have some common features—for instance, the computation of the eigenvalues
of an (N×N)-matrix entails of course the solution of a polynomial equation of degree N—but they
are quite different, so that in each specific case it is less than obvious how a model whose solvabil-
ity has been identified within one approach—allowing a detailed study of its behavior—can also be
investigated via the other approach. And since both approaches eventually involve the solution of a
polynomial equation of degree N it is of course plain that only for N ≤ 4 the solution of almost all
solvable dynamical systems featuring N dynamical variables can be explicitly expressed in terms of
elementary functions.

2. Results

A first, rather trivial, dynamical system is characterized by the following simple system of N Ordi-
nary Differential Equations (ODEs):

γ
′
1 (τ) = a1 [γ1 (τ)]

1−1/r , (2.1a)

γ
′
m (τ) = am γm−1 (τ) , m = 2, ...,N . (2.1b)

Notation 2.1. Here and hereafter N is an arbitrary positive integer (N ≥ 2), the N functions
γm ≡ γm (τ) with m = 1,2, ...,N are the dependent variables, τ is the independent variable, the
number r in the exponent in the right-hand side of (2.1a) is hereafter assumed to be an arbitrary
real rational number—r = p/q with p and q two nonvanishing coprime integers (q > 0 for defi-
niteness, and p 6= 0 so that r 6= 0), and the N parameters am are N arbitrarily assigned (generally
complex, nonvanishing) numbers. The N dependent variables γm ≡ γm (τ) should as well be gen-
erally considered complex numbers, and in the following the independent variable τ shall also be
complex, although when considering this system of ODEs as a dynamical system one might prefer
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to consider τ as a real variable (”time”). Note that in the following the explicit indication of the
dependence on the independent variable τ will be occasionally omitted. Primes denote of course
differentiations with respect to the argument of the function they are appended to. Indices such as
m and n generally take integer values in the range from 1 to N (unless otherwise indicated, see
for instance (2.1b)). And let us finally recall—for their relevance to formulas written below—the
standard convention according to which an empty sum vanishes and an empty product equals unity:
∑

S+
s=S− = 0 if S− > S+, ∏

J+
j=J− = 1 if J− > J+.

As shown in the following Section 3 the solution of the initial-values problem of this dynamical
system—with the N initial values γm (0) assigned, and of course γ1 (0) 6= 0 if 1/r > 1 (see (2.1a))—
is provided by the following formula:

γm (τ) =
m−2

∑
`=0

{
τ`

`!
[Am,m−`+1 γm−` (0)−Am,2 βm−` γ1 (0)]

}
+Am,2 βm γ1 (0) (1+ρ τ)r+m−1 , m = 1,2, ...,N , (2.2a)

with, above and hereafter (see Notation 2.1),

Am,` =
m

∏
s=`

(as) , βm = ρ
1−m

m−1

∏
j=1

[
(r+ j)−1

]
, (2.2b)

ρ =
a1

r
[γ1 (0)]

−1/r . (2.2c)

A, perhaps more interesting, dynamical system obtains by introducing new independent and
dependent variables via the positions

τ ≡ τ (t) =
exp(i ω t)−1

i ω
, (2.3a)

implying

τ̇ (t) = exp(i ω t) , (2.3b)

and

cm ≡ cm (t) = exp [(−i λm ω t)] γm (τ) , m = 1,2, ...,N , (2.4a)

with, above and hereafter,

λm = r+m−1 . (2.4b)

Notation 2.2. Here and hereafter t (”time”) is a real variable, ω is an arbitrary real (nonvanishing)
parameter to which the basic period

T0 = 2π/ |ω| (2.5)

is associated, and note that in (2.3b) we used—and we will do so hereafter—the standard notation
according to which superimposed dots denote differentiations with respect to the real variable t
(”time”).
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It is then plain that the time-dependent variables cm (t) evolve according to the autonomous
dynamical system

ċ1 (τ) =−i λ1 ω c1 (t)+a1 [c1 (t)]
1−1/r , (2.6a)

ċm (τ) =−i λm ω cm (t)+am cm−1 (t) , m = 2, ...,N , (2.6b)

and that the solution of this dynamical system is provided by the formula

cm (t) = exp(−i λm ω t)

{
m−2

∑
`=0

(

{
[exp(i ω t)−1]`

(i ω)` `!

}
·

· [Am,m−`+1 cm−` (0)−Am,2 βm−` c1 (0)] )

+Am,2 βm c1 (0)
[

1+ρ
exp(i ω t)−1

i ω

]λm
}

, m = 1,2, ...,N , (2.7a)

with Am,`, βm and λm defined again by (2.2b) and (2.4b), but now of course with

ρ =
a1

r
[c1 (0)]

−1/r . (2.7b)

Remark 2.1. It is plain that this solution—for arbitrary initial data—is nonsingular and periodic
with period T0, see (2.5), if r is a nonnegative integer, i. e. if q = 1 and p ≥ 0 (see Notation 2.1),
implying that all the numbers λm are as well nonnegative integers. Otherwise the solution might
become singular, but only for the nongeneric initial datum c1 (0) such that there hold the equality
|(i ω/ρ)−1|= 1 (see (2.7b) and (2.3a)) namely∣∣∣∣( i ω r

a1

)
[c1 (0)]

1/r−1
∣∣∣∣−1 = 0 . (2.8a)

It is moreover plain from (2.7) that if there holds instead the inequality∣∣∣∣( i ω r
a1

)
[c1 (0)]

1/r−1
∣∣∣∣−1 6= 0 (2.8b)

all the functions cm (t) are (nonsingular and) periodic with period T = qT0,

cm (t +T ) = cm (t) , T =
2 q π

|ω|
, m = 1,2, ...,N , (2.9)

of course with q the denominator of the rational number r, see Notation 2.1 and the definition (2.4b)
of λm. Note that this outcome holds in spite of the fact that the time evolution of (1+ρτ)λm with
(2.3a) is somewhat different—due to the rational branch point at τ =−1/ρ—depending on the sign
of the left-hand side of (2.8b).
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Proposition 2.1. The following set of N nonlinearly coupled ODEs characterizing the time-
evolution of the N time-dependent variables zn ≡ zn (t),

żn =−

[
N

∏
`=1, 6̀=n

(zn− z`)
−1

]
[
{
−i λ1 ω c1 (t)+a1 [c1 (t)]

1−1/r
}
(zn)

N−1

+
N

∑
m=2

{
[−i λm ω cm (t)+am cm−1 (t)] (zn)

N−m
}
] , (2.10)

—where λm is defined by (2.4b) and

c1 (t) =−
N

∑
n=1

[zn (t)] , (2.11a)

cm (t) = (−1)m
N

∑
n1,n2,...,nm=1;
n1<n2<...<nm

[zn1 (t) zn2 (t) · · · znm (t)] ,

m = 2,3, ...,N , (2.11b)

—is a new example of solvable dynamical system: indeed its solution is provided by the N zeros
zn (t) of the polynomial (see (3.2))

pN (z; ~c(t) ; z(t)) = zN +
N

∑
m=1

[
cm (t) zN−m] , (2.12)

the coefficients cm (t) of which are provided by the formulas (2.7), with the N initial data cm (0)
expressed of course in terms of the N initial data zn (0) by the formulas (2.11) at t = 0.

Remark 2.2. This dynamical system, (2.10), is isochronous, all its generic (hence nonsingular)
solutions being periodic with period

T̃ = N! T = N!
2 q π

|ω|
, (2.13a)

zn
(
t + T̃

)
= zn (t) , n = 1, ,2, ...,N . (2.13b)

The (nongeneric) singular solutions are those characterized by the nongeneric set of initial data
zn (0) such that the equality (2.8a) hold with c1 (0) = −∑

N
n=1 [zn (0)], or such that the polynomial

(2.12) feature at least one multiple zero (in which case the time-derivative żn (t) eventually blows
up, see (2.10)).

We trust the reader to consider this Remark 2.2 obvious on the basis of the developments
reported above: see in particular the right-hand side of (2.10)), and the well-known fact that, if a
time-dependent polynomial pN (z; t) of degree N in z is periodic in t, pN (z; t +T ) = pN (z; t) , the
unordered set z(t) of its N zeros is of course as well periodic with the same period, z(t +T ) = z(t) ,
while each of the N zeros zn (t) , considered as a continuous function of t, is also periodic but
possibly with a larger period νT (with ν a positive integer, ν ≤ N!) due to the possibility that the
zeros, as it were, exchange their roles over their time evolution. Of course the genericity of the initial
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data zn (0) is in the context of evolutions of the dynamical system (2.10) taking place in the complex
z-plane, corresponding to the fact that a generic polynomial of degree N in the complex variable z
features N distinct zeros zn. And it is also clear that the set of initial data z(0) can be partitioned
in the complex z-plane into N! different ensembles of initial data yielding solutions periodic with
periods T̃/ν with ν a positive integer, ν ≤ N!, these ensembles being separated from each other by
special (i. e., nongeneric) sets of initial data z(0) yielding solutions of the dynamical system which
are singular due to ”particle collisions”, i. e. such that, at some time t = tc mod(T ), two, or more,
different coordinates zn ≡ zn (t) coincide, say zn (tc) = z` (tc) with ` 6= n.

Let us end this section by suggesting that assignments for interested researchers might be: (i) to
write out more explicitly than we did above the equations of motion (2.10) for N = 2, N = 3 and
perhaps also N = 4, and their explicit solutions as detailed in Proposition 2.1; (ii) to make graphs—
for various assignments of the parameters and of the initial data zn (0)—of the real and imaginary
parts of the coordinates zn (t) as functions of time and of the trajectories of these coordinates in the
complex z-plane; (iii) to compare these data with analogous data obtained via numerical solutions of
the equations of motion (2.10). Note that for N = 2, 3, 4 the zeros of a polynomial of degree N can be
explicitly expressed in terms of the coefficients of the polynomial, although the resulting expressions
are somewhat cumbersome for N = 3 and especially for N = 4. And it is of course always possible
to manufacture additional solvable dynamical systems by iterating the technique that has allowed
the transition from the solvable model (2.6) to the solvable model (2.10)—as generally described
in [2].

3. Proofs

In this Section 3 we prove the results reported without their proofs in the preceding Section 2.
Our first task is to prove that the formula (2.2) provides the solution of the dynamical system

(2.1).
The first step to this end is to integrate from 0 to τ the ODE (2.1a), or equivalently the ODE

γ
′
1 (τ) [γ1 (τ)]

−1+1/r = a1 . (3.1a)

This clearly yields (see (2.2c))

γ1 (τ) = γ1 (0) (1+ρ τ)r , (3.1b)

which coincides with the m = 1 case of (2.2) (see Notation 2.1).
A proof by recursion of the formula (2.2) is then achieved by showing—as the diligent reader

will easily verify—that the assumed validity of this formula (with m replaced by m−1) to replace
γm−1 (τ) in the right-hand side of the ODE (2.1b) implies, by a standard integration of this ODE
from 0 to τ , the validity of the solution (2.2) for m.

Next, let us derive the equations of motion of the dynamical system (2.10) in order to prove
Proposition 2.1.

To this end it is convenient to introduce the following time-dependent (monic) polynomial of
degree N in z,

pN (z; ~c(t) ; z(t)) = zN +
N

∑
m=1

[
cm (t) zN−m]= N

∏
n=1

[z− zn (t)] , (3.2)
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where clearly the N coefficients cm (t) of this polynomial are the N components of the time-
dependent N-vector ~c(t) and the N zeros zn (t) of this polynomial are the N components of the
unordered set z(t): see the left-hand side of (3.2), and note that the notation pN (z; ~c(t) ; z(t)) is
somewhat redundant, since this monic polynomial is equally well defined by assigning either its
N coefficients cm (t) or its N zeros zn (t) (indeed the N coefficients cm (t) are themselves defined in
terms of the N zeros zn (t) by the well-known formulas (2.11)).

Let us now assume that the N coefficients cm (t) of the polynomial pN (z; ~c(t) ; z(t)) evolve
according to the dynamical system (2.6); it is then plain that—as implied by the formula

żn =−

[
N

∏
`=1, 6̀=n

(zn− z`)

]−1 N

∑
m=1

[
ċm zN−m

n
]

(3.3)

which relates the time evolution of the N zeros zn ≡ zn (t) of any time-dependent polynomial such
as (3.2) to the time evolution of its N coefficients cm (t) (if need be see [1] for a proof)—the cor-
responding evolution of the N zeros zn (t) is characterized just by the set of N coupled nonlinear
ODEs (2.10). The rest of Proposition 2.1 clearly follows.
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