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We examine the growth properties of second-order mappings which are integrable by linearisation and which
generically exhibit a linear growth of the homogeneous degree of initial conditions. We show that for Gambier-
type mappings for which the growth proceeds generically with a step of 1 there exist cases where the degree
increase by unity every two steps. We examine also mappings belonging to the family known as “of third
kind” in relation to the approach of Diller and Favre concerning the regularisable or not character of mappings
and show that the anticonfined singularities of these mappings exhibit a linear growth with step 1. (The term
anticonfined is used for singularities where the singular values extend all the way to infinity on both sides with
just a few regular values in the middle). Moreover we construct specific examples of Gambier-type mappings
which have anticonfined singularities and where the degree of the singularity increases linearly but where the
average slope can be adjusted so as to be arbitrarily small.
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1. Introduction

Linearisable systems are a special case of integrable ones. Calogero [1] has coined the term C-
integrable in order to distinguish systems linearisable by a Change of dependent variables from
those integrable by Spectral methods, designated as S-integrable. While linearisable systems are
simpler than their S-integrable brethren when it comes to the precise methods of their integration,
they are also richer in a certain sense. In fact, a feature that characterises most linearisable systems,
be they continuous or discrete, is the presence of free functions of the independent variable in their
non-autonomous forms, to the point that this feature may be considered as an indication of linearis-
ability. The latter is not the only point on which S- and C-integrable systems differ. Another impor-
tant difference resides in their singularity structure. While the solutions of continuous S-integrable
systems possess the Painlevé property [2], the latter is not necessary for C-integrability [3]. The
same sentence can be repeated almost verbatim for discrete systems replacing just “Painlevé prop-
erty” by “singularity confinement” [4].

In this paper we shall revisit discrete lineariable systems, concentrating on mappings of the
plane. Before proceeding further it is useful to present the three families of second-order mappings
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which can be linearised through birational transformations. (As we have showed in [5], this is not
the only possibility: when the limitations of the authorised transformations are lifted, one can obtain
substantially richer results). The simplest case of linearisablity is that of the projective mappings
[6] which have the general, canonical [7], form

xn+1xnxn−1 +anxnxn−1 +bnxn−1 + cn = 0 (1)

where an,bn,cn are functions of the independent variable. The linearisation of (1) is obtained
through a Cole-Hopf transformation xn = wn+1/wn resulting to the linear equation

wn+2 +anwn+1 +bnwn + cnwn−1 = 0 (2)

The second case is that of the Gambier mappings [8] which are two coupled homographic mappings
in cascade. Their generic form is

anxnxn−1 +bnxn + cnxn−1 +dn

enxnxn−1 + fnxn +gnxn−1 +hn
= yn (3)

where, without loss of generality, the equation for y can assume the simplest possible form
yn+1 = yn, i.e. yn is constant. The interpretation of (3) is now simple: the Gambier mapping can
be considered as the derivative of the discrete Riccati equation. The third case comprises the map-
pings known under the moniker of “third kind”. They were first discovered in [9] where we have
given the general framework for their linearisation. In this case we have a nonlinear mapping and
an associated linear equation

F(xn+1,xn,xn−1) = m (4a)

and

anxn+1 +bnxn + cnxn−1 +dn

enxn+1 + fnxn +gnxn−1 +hn
= k (4b)

where m,k are constant and F is a ratio of two polynomials linear separately in xn+1,xn−1 with
coefficients depending on xn. Taking the discrete derivatives of (4a) and (4b) we require that the
third-order mappings to which they lead be the same up to nonessential factors. In [10] we have
examined all known third-kind mappings which belong to the QRT family [11] and showed that
they can be explicitly integrated in analogy to what happens at the autonomous limit (where the
solution of all linearisable QRT mappings can be given in terms of an exponential function).

In what follows we shall first review the growth properties of linearisable mappings concentrat-
ing on the case of Gambier and third-kind mappings. (The case of projective mappings is almost
trivial: the homogeneous degree of their iterates does not present any growth). Moreover, given that
the linearisable mappings possess anticonfined singularities, we are going to study the growth of
these singularities as well and the variety of their behaviour.

2. Growth properties of linearisable mappings

As we showed in [12], linearisability is intimately related to low-growth properties. The standard
procedure for computing the degree growth for second degree rational mappings is to introduce
homogeneous coordinates for the inital conditions with the additional simplification that x0 is a
constant with homogeneity 0 while x1 is of the form p/q where p,q have homogeneity 1. Iterating
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the mapping one obtains the degrees of the (numerator or denominator of the) successive irreducible
fractions xn. For linearisable mappings one finds that this growth is either zero or linear in n.

Let us illustrate this with examples chosen among all three families of linearisable second-order
mappings. We start with the projective case, the canonical form of which is

xn+1 =
αxnxn−1 +βxn−1 + γ

xnxn−1
(5)

We find the following succession of degrees, 0,1,1,1,· · · , i.e. zero degree growth.
Next we turn to the mapping

(xn+1 + xn)(xn + xn−1) = α(x2
n−1) (6)

with α 6= 1, which belongs to the Gambier family while being of QRT type. Here the degree growth
we obtain is 0,1,2,2,· · · , i.e. again zero degree growth after the second iteration. However this is not
true for all Gambier mappings. Suppose we consider the mapping, already analysed in [13].

xn+1 =
xn−1xn(1+ γ2β 2 +αβxn)−β (βγ4 +αγ2xn +βx2

n)

xn−1β 2(1+αβxn + x2
n)−β 2(αβγ2 +(γ2 +β 2)xn)

(7)

We find that the degree grows as 0,1,2,3,4,· · · , i.e. the growth is linear but does never saturate.
Finally we examine the case of a mapping of the third kind

xn+1xn−1 = (xn−α)(xn−β ) (8)

We find the following succession of degrees: 0,1,2,4,6,8,· · · , i.e. the degree grows indefinitely (albeit
linearly).

An important remark is in order here. Given the different rates of growth of the various families
of linearisable mappings one can use the rate obtained by direct calculation in order to identify the
family the mapping belongs to. A total absence of growth signals a projective mapping, a growth
with step 1 is characteristic of Gambier mappings while for third-kind mappings the growth step is 2.
It goes without saying that the precise values of the steps, 1 and 2 respectively, are due to the special
choice of initial conditions. Had we expressed not only x1 but also x0 as a ratio of two quantities,
say r/s, of homogeneity 1, we would have found for the Gambier mapping a growth with step 2,
in all four homogeneous coordinates, while for the third-kind mappings we would have obtained a
step of 4. What is important is that the step of the linear growth of the third-kind mappings is twice
as large as that of the Gambier ones.

At this point one can wonder whether the growths we obtained above are the only possible ones.
It turns out that while for the two extreme cases, projective and third-kind, the growth is indeed zero
and a step-2 one, for the Gambier mappings one can have a greater variety. We illustrate this with a
few selected examples. We start with a very simple linearisable mapping of the form

xn+1 + xn−1 =
θ

xn
(9)

Defining yn = xn+1xn we obtain a linear mapping yn + yn−1 = θ and thu s (9) is a mapping of
Gambier type. Starting from initial conditions x0 and x1 = p/q we find that the homogeneity degree
in p,q of the successive iterates is 0,1,1,2,2,3,3,4,4,,5,· · · . The mean step is thus 1/2.
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The second example is based on a generalisation of a mapping introduced in [14].

xn+1 =
αxn−1(xn +β )+(α−β )xn

xn +1
(10)

We define yn = xn−1xn+xn+βxn−1 and find for y the linear equation yn+1 = αyn. Thus the mapping
is indeed of Gambier type. Iterating from initial conditions x0 and x1 = p/q we find exacly the same
succession of degrees as in the case of mapping (9). So, here again the mean step of growth is 1/2.
(The mapping studied in [14] corresponds to α = β and leads exactly to the same results as far as
the degree growth is concerned).

Finally we turn to the case of (7). Putting yn = β (γ2− xnxn+1)/(β
2xn+1− xn) we find that y

obeys the equation yn− 1/yn−1 = α . It is straightforward to verify that when α,β ,γ satisfy the
relations α =±(γ +1/γ) and β 2 = 1 the growth of the degree stops at 1, while a degree saturating
at 2 necessitates the constraints (αγ±1)(α± γ)+ γ = 0 and β 4 = 1. Taking now α = γ−1/γ and
β = i we obtain exactly the same sequence of degrees as for mapping (9), i.e. again a growth with
mean step 1/2.

Thus a growth rate smaller than one is possible for Gambier mappings. Whether rates different
from 1/2 are possible is an open question but, although we do not know of any such case, their
existence is not a priori impossible.

3. Singularity properties and the anticonfinement notion

Having examined the growth of the homogeneous degree of the various mappings we turn now to
the study of the their singularities. The projective mappings have a very simple confined singularity
pattern, {0,∞}. For the Gambier mappings the situation is more complicated. In some cases the
singularity is confined as in the case of mapping (6) where we have the pattern {1,−1}. In other
cases, like that of mapping (7), the singularity is unconfined, unless special relations of parameters
do hold. In fact the constraints leading to a saturating homogeneous degree growth are precisely
those that lead to a singularity confined after one, two, three, etc. steps. This is a general result that
can be understood in the light of a theorem due to Diller and Favre [15], who have shown that if a
linearisable mapping has confined singularities its degree growth is nil. This explains the behaviour
of the three mappings above.

A remark is in order here. In the case of the Gambier mapping (7) when the confinement condi-
tions are satisfied at the very first step, we obtain the sequence of degrees 0,1,1,1,· · · , i.e. the same as
the one obtained in the case of projective mappings. This is no mere coincidence and one can show
in fact that the mapping under the appropriate confinement conditions is indeed projective. Given
that the mapping (6), which has also zero growth after an initial growth spurt, was also shown to be
equivalent to a projective one [16], one could be tempted to conjecture that the Gambier mappings
with confined singularities can indeed be transformed into projective ones.

Third-kind mappings are special in the sense that all examples of mappings of this type known
to date belong to the QRT family when autonomous. This is the case indeed for (8). Being a QRT
mapping ensures that its singularities are confined the patterns being {α,0,β} and {β ,0,α}. How-
ever a word of caution is necessary here. In our singularity confinement approach we focus only
on what we call “movable” singularities, which means singularities which appear at some iteration
due to specific initial conditions. Our tacit conjecture from the outset has been that the confine-
ment constraints are linked to these movable singularities. However a mapping may also possess
singularities which extend all the way to infinity on both sides which we have been simply ignoring
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in our singularity analysis. For Diller and Favre these singularities and their behaviour do play an
important role when one attempts to regularise the mapping by a succession of blow-ups. It is the
presence of such singularities that explains why for third-kind mappings the homogeneous degree
grows indefinitely while the degree growth does saturate for the QRT-Gambier mapping (6).

We shall not go here into the algebro-geometric analysis of the linearisable mappings but
just show how by performing a standard singularity analysis one can find a significant difference
between Gambier and third-kind mappings. This difference is to be found in singularities of a type
that we have dubbed “anticonfined” [16]. A confined singularity is a sequence of singular values
bracketed by regular ones extending all the way to infinity on both sides. An anticonfined singular-
ity is a sequence of regular values bracketed by singular ones which extend all the way to infinity
on both sides.

For the Gambier-QRT mapping (xn+1 + xn)(xn + xn−1) = α(x2
n − 1) we introduce the initial

conditions xn = κ , xn+1 =−κ + ε and we find the following succession of values

· · · ,ε−1,ε−1,ε−1,ε−1,κ,−κ + ε,ε−1,ε−1,ε−1,ε−1, · · ·

where the symbol ε−1 is a shorthand designating terms proportional to ε−1 with coefficients depend-
ing on α and κ . We remark that the power of the singular term remains the same throughout. For
Diller and Favre this signals a singularity that can be regularised, something that in our terminology
should be considered as confined. This means that according to their theorem the Gambier-QRT
mapping (6) should have zero degree growth, which indeed it has (after the second iteration step,
which is necessary for the “standard” singularity x = 1 to be confined).

We turn now to the third-kind-QRT mapping xn+1xn−1 = (xn−α)(xn− β ) and introduce the
initial conditions xn = κ , xn+1 = ε . Iterating we find the succession of values

· · · ,ε−4,ε−3,ε−2,ε−1,κ,ε,κ−1,ε−1,ε−2,ε−3,ε−4, · · · ,

with the same convention as in the previous paragraph. Here the singularities extending to infinity
in both ways become more and more singular. Thus according to Diller and Favre this singularity
should be considered as unconfined and no regularisation is possible.

It thus appears that whenever one studies linearisable systems it is important to consider not only
the usual, confined, singularities but also the anticonfined, ones. (This statement has an even wider
stature. Our recent work [17] on the justification of the singularity confinement approach by alge-
brogeometric methods shows that one must not neglect the study of the antoconfined singularities
contrary to what have been till now the standard practice).

Next we examine the mapping xn+1+xn−1 = θ/xn. In our standard singularity analysis approach
the mapping does present a problem since one cannot enter the singular value x = 0 coming from
finite values. However concluding that the mapping does not possess unconfined singularities would
be a hasty conclusion. In fact introducing the initial conditions xn = κ , xn+1 = ε and obtain, iterating
forwards and backwards the values (with the same conventions as in the previous paragraphs)

· · · ,ε−3,ε3,ε−2,ε2,ε−1,ε,κ−1,κ,ε,ε−1,ε2,ε−2,ε3,ε−3, · · ·

i.e. the singularities extend to infinity in both directions while becoming more and more singular,
increasing by a unit every two steps. Thus the singularity of the mapping is not confined and given
that the degree grows we can conclude that the mapping cannot be regularised.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

470



B. Grammaticos et al. / Linearisable mappings, revisited

The mapping just examined is not an isolated occurence. It belongs to a larger family of map-
pings written as a system

xnxn+1 = yn +1, yn = ayn−1 (11)

(and the mapping (9) for θ = −2 is revovered when a = −1). When a is generic a choice of inital
conditions x0 and x1 = p/q leads to an homogeneity degree in p,q for the successive iterates of
0,1,1,2,2,3,3,4,4,5,· · · , i.e. again a mean step of 1/2. For generic a the singularity x = 0 of (11) is not
confined, in agreement with the unsaturated growth of the homogeneity degree. Moreover starting
from xn = κ , xn+1 = 1/ε we obtain an anticonfined singularity where a finite value alternates with
a singular one proportional to ε−1.

Things become more interesting when a is a root of −1. For instance if we take a = i we find
that the homogeneity degree growth is still the same but now an anticonfined singularity has made
its appearance. We start from xn = κ , xn+1 = ε and obtain the following sequence

· · · ,ε2,ε−1,ε,ε−1,ε,−κ
−1,(1− i)κ,(i−1)κ−1,κ,ε,ε−1,ε,ε−1,ε2,ε−2,ε2,ε−2,ε3 · · ·

The singularities extend to infinity forwards and backwards with degrees increasing by a unit every
4 steps. Taking a3 =−1 we find similar results with an anticonfined singularity the degree of which
increases by a unit every 6 steps. We surmise that similar results will hold for higher roots of −1
i.e. if ak =−1, with integer k, we expect the degree of the anticonfined singularity to increase by a
unit every 2k steps.

Finally we extend the mapping (11) to

xnxn+1 =
yn−b
yn−1

, yn = ayn−1 (12)

Quite expectedly, when both a and b are generic the homogeneity degree grows with steps of 1 and
the singularities x = 0 and x = ∞ of the mapping do not confine. Thus the mapping behaves like a
typical Gambier one. Still when a is a root of −1 anticonfined singularities do exist. For instance
when a =−1 starting from xn = κ , xn+1 = 1/ε we obtain

· · · ,ε3,ε−3,ε2,ε−2,ε,ε−1,
b+1
2κ

,κ,ε−1,ε,ε−2,ε2,ε−3,ε3, · · ·

i.e. the degree of the singularity increases by one unit every two steps. Similarly if we take a = i we
find the sequence

· · · ,ε−2,ε,ε−1,ε,ε−1,
b2 +1

κ(b+1)
,κ

1+ i+b+ ib
2(b+ i)

,
1+ i+b− ib

2κ
,κ,ε−1,ε,ε−1,ε,ε−2,ε2,ε−2,ε2,ε−3 · · ·

and thus the degree of the singularity increases by a unit every four steps. Again we surmise that for
higher roots of −1 the degree of the anticonfined singularity will increase slower just as in the case
of mapping (11).

The upshot of this analysis is that there exist mappings belonging to the Gambier family with
anticonfined singularities of increasing degree, although the growth of this degree is slower than in
the case of the third-kind mappings. Be that as it may, all those mappings are not regularisable.
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4. Conclusion

In this paper we have revisited the question of the growth properties of linearisable mappings con-
centrating on rational mappings of the plane. As we have shown in [12] second-order linearisable
mappings have a growth slower than that of mappings of the same order integrable through spectral
methods. In fact while for the latter the homogeneous degree of xn grows like n2, in the case of lin-
earisable mappings the growth is at most linear in n. This is an important result in itself, since this
property is a handy detector of linearisability, something which, at least to the authors’ knowledge,
does not exist in the case of differential systems. However the degree growth of linearisable sys-
tems encapsulates even more information since it gives an indication as to which family the system
belongs.

Projective systems have zero homogeneous degree growth. The mappings belonging to the Gam-
bier family have generically a linear growth with step 1 (with the initial conditions we specified in
Section 2) but their growth is arrested if and when their singularities are confined. However, as we
have shown here, there may exist Gambier-type mappings where the growth is even slower. In the
examples we constructed we have found a linear growth with step 1/2 by which we mean that the
homogeneous degree grows by a full unit every two steps. The possibility of existence of linear
growth with even smaller step cannot be discarded although no such examples were found. The
mappings we have dubbed “of third kind” grow linearly with a step of 2 (again with the appro-
priate initial conditions as explained in Section 2). Thus the details of the growth give a reliable
information as to which family the linearisable mapping belongs.

The third-kind mappings pose a particular problem. In fact all known examples of such map-
pings belong, when autonomous, to the QRT family. As such, and according to our definitions, they
have confined singularities and from a theorem by Diller and Favre we would expect the homo-
geneous degree growth to saturate at some step. The fact that for third-kind mappings the homo-
geneous degree grows indefinitely would present a paradox. However this is not the case and the
explanation is to be found in the singularity analysis. In our approach we focused on singularities
where a sequence of singular values is bracketed by regular ones extending all the way to infinity in
both directions. However, the theorem of Diller and Favre covers also singularities which extend all
the way to infinity both forwards and backwards. We were thus led to examine singularities consist-
ing of a sequence of regular values bracketed by singular ones which extend all the way to infinity.
We have dubbed these singularities “anticonfined”. For the homogeneous degree of a mapping to
saturate the degree of the singularity in the anticonfined pattern must not grow. We have illustrated
this by several examples from the Gambier family and have shown that it is possible to tune the
degree of the anticonfined singularity so as to present an arbitrarily small growth leading invariably
to an non-saturating homogeneous degree growth.

The present work had focused on mappings of second-order. The case of mappings of higher
order remains essentially open despite the existence of specific examples. It would be interesting to
extend the approach presented in this paper to higher-order discrete systems and we hope to be able
to do so in some future work of ours.
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