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We study the possibility of collision of a δ -wave with a stationary δ ′-wave in a model ruled by equation
f (t)ut +[u2−β (x−γ(t))u]x = 0, where f , β and γ are given real functions and u = u(x, t) is the state variable.
We adopt a solution concept which is a consistent extension of the classical solution concept. This concept is
defined in the setting of a distributional product, which is not constructed by approximation processes. By a
convenient choice of f , β and γ , we are able to distinguish three distinct dynamics for that collision, to which
correspond phenomena of solitonic behaviour, scattering, and merging. Also, as a particular case, taking f = 2
and β = 0 we prove that the referred collision is impossible to arise in the setting of the inviscid Burgers
equation. To show how this framework can be applied to other physical models, we included several results
already obtained.

Keywords: Products of distributions; Collisions of δ -waves with δ ′-waves; Delta-solitons; inviscid Burgers
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1. Introduction and contents

Let I be an interval of R with more than one point and let us consider the nonlinear equation

f (t)ut +[u2−β (x− γ(t))u]x = 0, (1.1)

where t ∈ I is the time variable, x ∈R is the space variable, f ∈C0(I), γ ∈C1(I) and β ∈C1(R) are
real functions, and u = u(x, t) stands for the unknown state variable.

In a generalized sense, we can consider this equation as a conservation law with flux φ =
u2(x,t)−β (x−γ(t))u(x,t)

f (t) (eventually singular, if f (t) = 0 for some value of t), and we study the pos-
sibility of propagation of the wave

u(x, t) = δ (x− γ(t))+δ
′(x), (1.2)

where δ stands for the Dirac measure concentrated at the origin. The goal is to investigate the
collision of the δ -wave u1(x, t)= δ (x−γ(t)) with the stationary wave u2(x, t)= δ ′(x) and to analyze
the dynamic of this collision. A necessary and sufficient condition for the propagation of the wave
(1.2) is presented and, using this condition, we will prove that:

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

381



C.O.R. Sarrico and A. Paiva / δ , δ ′-wave collision in a turbulent model

(a) for f = 2 and β = 0, (1.2) may be a solution of inviscid Burgers equation

ut +

(
u2

2

)
x
= 0, (1.3)

but in this case, if t ∈ I = [t0,+∞[, t0 ∈ R and γ(t0) 6= 0, then γ(t) 6= 0 for all t ∈ I; this
means that in models ruled by this equation a collision of u1 with u2 cannot happen;

(b) it is possible to choose f , β and γ in such a way that (1.2) is a solution of (1.1) and a
collision of u1 with u2, takes place;

(c) three distinct collision dynamics can be explicitly provided:

• u1 passes through u2 and recovers its initial profile: a solitonic phenomenon;
• after the collision, u1 turns back as if it has been repelled by u2: a scattering phe-

nomenon;
• u1 collides with u2 and both remain stationary after the instant of collision: a merging

phenomenon.

Collisions of δ -waves were already studied in several models ruled by nonlinear equations [5,
6, 12, 17]. As far as we know, collisions of δ -waves with δ ′-waves have not been addressed in the
literature. Regarding δ ′-waves, we must remember that they were first introduced by E. Yu. Panov
and V. M. Shelkovich for certain systems of conservation laws [13, 25]. The results show that these
systems subjected to piecewise continuous initial data may develop not only δ -waves, but also δ ′-
waves (see also [19, 26, 27]).

For equation (1.1), we will adopt a solution concept (defined within the framework of a distribu-
tional product) which is a consistent extension of the classical solution concept. In this framework,
the product of two distributions is a distribution which depends on the choice of a certain func-
tion α that encodes the indeterminacy inherent to such products. This indeterminacy generally is
not avoidable and in many cases it also has a physical meaning; concerning this point let us men-
tion [1, 2, 10, 15]. We stress that our solution concept does not depend on approximation processes;
however the solutions of differential equations containing such products may depend (or not) of
α . We call such solutions α-solutions. The possibility of their occurrence depends on the physical
system: in certain cases we cannot previously know the behavior of the system, possibly due to
physical features omitted in the formulation of the model with the goal of simplifying it. Thus, the
mathematical indetermination sometimes observed may have this origin.

To introduce the reader into the realm of distributional waves and to show how this framework
can be applied to other physical models, let us recall some results we have obtained.

For the conservation law

ut +[φ(u)]x = ψ(u), (1.4)

where φ ,ψ are entire functions taking real values on the real axis, we have established [18] nec-
essary and sufficient conditions for the propagation of a travelling wave with a given distributional
profile and we also have computed its speed. For example, for LeVeque and Yee equation

ut +ux = µu(1−u)(u− 1
2
), (1.5)

where µ 6= 0, we have proved that there exist six travelling waves with profile c1 + (c2− c1)H
(c1,c2 are constants and H stands for the Heaviside function), all of them with speed 1. When
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ψ = 0 and φ ′′ 6= 0 in (1.4), we were able to conclude that the only continuous travelling waves are
the constant states. Thus, if we ask for nonconstant travelling waves for the conservative equation
ut + [φ(u)]x = 0, with φ ′′ 6= 0, we have to seek them among distributions that are not continuous
functions; for C1-wave profiles with one jump discontinuity, our methods easily lead to the well
known Rankine-Hugoniot conditions.

Conditions for the propagation of travelling waves with profiles β +mδ and β +mδ ′ (where β

is a continuous function, m ∈ R and m 6= 0) were also obtained, as well as their speeds [19]. For
example, for the diffusionless Burgers-Fischer equation

ut +a
(

1
2

u2
)

x
= ru

(
1− u

k

)
,

where a > 0, r > 0, and k > 0, the profiles mδ and k+mδ may arise as travelling waves with speed
ak
2 in both cases. For LeVeque and Yee equation (1.5), the profile 1

2 +mδ ′ may also propagate as a
travelling wave with speed 1.

Gas dynamics phenomena, known as “infinitely narrow soliton solutions”, discovered by
Maslov and his collaborators [3, 7–9], can be obtained directly in distributional form [16].

In a Riemann problem for the 2×2 system of conservation laws

ut +[φ(u)]x = 0,

vt +[ψ(u)v]x = 0,

the so called generalized pressureless gas dynamics, only assuming φ ,ψ : R→ R continuous, we
were able to show the formation of a delta-shock wave solution [21]. In this case, we arrived, in
a more general setting, to the same result of Danilov and Mitrovic [4], which have employed the
weak asymptotic method, and also to the same result of Mitrovic et al. [11], which have used a
different approach, based on a linearization process. Thus, there exists loss of regularity relative
to initial conditions. As a consequence, the space of all functions is not sufficient to contain all
α-solutions of this problem. Also remark that our α-solutions can be considered, in this case, as
limits of classical solutions in the sense of [4]. For our present interaction phenomena represented
by (1.2), this is still more difficult to prove and we do not know the answer.

In the Brio system

ut +

(
u2 + v2

2

)
x
= 0,

vt +(uv− v)x = 0,

a simplified model for the study of plasmas, we have subjected u(x, t) and v(x, t) to the initial
conditions

u(x,0) = c0δ (x),

v(x,0) = h0δ (x),

with c0,h0 ∈ R\{0}. Under certain assumptions, we have obtained, as solutions, travelling delta-

waves with speed c2
0+h2

0
c2

0−h2
0

and certain singular perturbations (which are not measures) propagating
with speed 1 [23]. The space of measures is not sufficient to contain all α-solutions; there exists
also loss of regularity relative to initial conditions.
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For the Hunter-Saxton equation [
ut +

(
u2

2

)
x

]
x
=

1
2

u2
x ,

which models the director field’s propagation

n(x, t) = (cosu(x, t),sinu(x, t)),

in a one-dimensional nematic liquid crystal, we have considered the Riemann problem correspond-
ing to the initial condition

u(x,0) = a+(b−a)H(x),

where a,b ∈ R, and a 6= b; in a convenient space of discontinuous functions, all solutions were
evaluated. Also a new set of distributional travelling waves was identified [22]; this set contains
many δ -waves and also many discontinuous waves.

Let us now summarize the present paper’s contents. In Section 2, we present the main ideas of
our method for multiplying distributions, displaying all formulas required in the sequel. In Section
3, we define the concept of α-solution for equation (1.1). In Section 4, we give a necessary and
sufficient condition for the propagation, according to (1.1), of waves of the form (1.2) and we
analyze the case f = 2, β = 0, which corresponds to inviscid Burgers equation. In Sections 5 and 6,
we present examples of collisions exhibiting distinct dynamics: solitonic, scattering, and merging.

2. The multiplication of distributions

Let C ∞ be the space of indefinitely differentiable real or complex-valued functions defined on RN ,
N ∈ {1,2,3, ...}, and D the subspace of C∞ consisting of those functions which have compact
support. Let D ′ be the space of Schwartz distributions and L(D) the space of continuous linear
operators φ : D →D , where we suppose D endowed with the usual topology. We will sketch the
main ideas of our distributional product which can be seen as an extension of the classical Schwartz
product of a distribution with a C∞-function. For proofs and other details concerning this product
see [14].

First we define a map ζ̃ : L(D)→D ′ where the image of φ is the distribution ζ̃ (φ) given by

〈ζ̃ (φ),ξ 〉=
∫

φ(ξ ),

for all ξ ∈ D (in the present paper, all integrals are extended all over RN). This map is an epimor-
phism because it is linear and given a distribution S ∈D ′ there exists always an operator φ ∈ L(D)

such that ζ̃ (φ) = S: taking α ∈ D such that
∫

α = 1 and φ ∈ L(D) defined by φ(ξ ) = α〈S,ξ 〉 for
all ξ ∈D , we have

〈ζ̃ (φ),ξ 〉=
∫
[α〈S,ξ 〉] = 〈S,ξ 〉

∫
α = 〈S,ξ 〉,

which means that ζ̃ (φ) = S. Since we have a lot of α satisfying
∫

α = 1, it is also clear that,
given S ∈ D ′, the operator φ such that ζ̃ (φ) = S is not unique. When ζ̃ (φ) = S we say that φ is a
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representative operator for the distribution S. For example, if β ∈C∞ is seen as a distribution, the
operator φβ ∈ L(D) defined by φβ (ξ ) = βξ for all ξ ∈D , is a representative operator for β because

〈ζ̃ (φβ ),ξ 〉=
∫

φβ (ξ ) =
∫

βξ = 〈β ,ξ 〉,

for all ξ ∈D , which means that ζ̃ (φβ ) = β .
Now, we can define an operation that makes D ′ a right L(D)-module. This operation is the

product T φ ∈D ′, for T ∈D ′ and φ ∈ L(D) defined by

〈T φ ,ξ 〉= 〈T,φ(ξ )〉,

for all ξ ∈D . For example,

〈T φβ ,ξ 〉= 〈T,φβ (ξ )〉= 〈T,βξ 〉= 〈T β ,ξ 〉,

for all ξ ∈D , and we conclude that T β = T φβ , being T β the usual classical product of T ∈D ′ with
β ∈C∞.

Thus, given T,S ∈ D ′ we are tempted to define a natural product by setting T S := T φ , where
φ ∈ L(D) is a representative operator for S. Unfortunately, this product is not well defined, because
T S depends on the representative φ ∈ L(D) of S ∈D ′.

This difficulty can be overcome, if we fix α ∈D with
∫

α = 1 and define sα : L(D)→L(D) by

[(sαφ)(ξ )](y) =
∫

φ [(τyα̌)ξ ], (2.1)

for all ξ ∈D and all y ∈RN , where τyα̌ is given by (τyα̌)(x) = α̌(x−y) = α(y−x) for all x ∈RN .
It can be proved that for each α ∈D with

∫
α = 1, sα(φ) ∈ L(D), sα is linear, sα ◦ sα = sα (sα is a

projector of L(D)), kersα = ker ζ̃ , and ζ̃ ◦ sα = ζ̃ .
Now, for each α ∈D , we can define a general α-product �

α

, of T ∈D ′ with S ∈D ′ by setting

T �
α

S := T (sαφ) (2.2)

where φ ∈ L(D) is a representative operator for S ∈ D ′. This α-product is independent of the
representative φ of S, because if φ ,ψ are such that ζ̃ (φ) = ζ̃ (ψ) = S, then φ −ψ ∈ ker ζ̃ = kersα .
Hence,

T (sαφ)−T (sαψ) = T [sα(φ −ψ)] = 0.

Since φ in (2.2) satisfies ζ̃ (φ) = S, we have
∫

φ(ξ ) = 〈S,ξ 〉 for all ξ ∈D , and by (2.1)

[(sαφ)(ξ )](y) = 〈S,(τyα̌)ξ 〉= 〈Sξ ,τyα̌〉= (Sξ ∗α)(y),

for all y ∈ RN , which means that (sαφ)(ξ ) = Sξ ∗α . Therefore, for all ξ ∈D ,

〈T �
α

S,ξ 〉= 〈T (sαφ),ξ 〉= 〈T,(sαφ)(ξ )〉= 〈T,Sξ ∗α〉

= [T ∗ (Sξ ∗α )̌ ](0) = [(Sξ )̌∗ (T ∗ α̌)](0) = 〈(T ∗ α̌)S,ξ 〉,

and we obtain an easy formula for the general product (2.2),

T �
α

S = (T ∗ α̌)S (2.3)
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In general, this α-product is neither commutative nor associative but it is bilinear and satisfies
the usual differentiation rules provided that the Leibniz rule is written in the form

Dk(T �
α

S) = (DkT )�
α

S+T �
α

(DkS),

where Dk is the usual k-partial derivative operator in distributional sense (k = 1,2, ...,N).
Recall that the usual Schwartz products of distributions are not associative and the commutative

property is a convention inherent to the definition of such products (see the classical monograph
of Schwartz [24] pp. 117, 118, and 121, where these products are defined). Unfortunately the α-
product (2.3) is not in general consistent with the classical Schwartz products of distributions with
functions.

In order to obtain consistency with the usual product of a distribution with a C∞-function, we
are going to introduce some definitions and single out a certain subspace Hα of L(D).

An operator φ ∈ L(D) is said to vanish on an open set Ω ⊂ RN if and only if φ(ξ ) = 0 for all
ξ ∈ D with support contained in Ω. The support of an operator φ ∈ L(D) will be defined as the
complement of the largest open set in which φ vanishes.

Let N be the set of operators φ ∈ L(D) whose support has Lebesgue measure zero, and ρ(C∞)

the set of operators φ ∈ L(D) defined by φ(ξ ) = βξ for all ξ ∈D , with β ∈C∞. For each α ∈D ,
with

∫
α = 1, let us consider the space Hα = ρ(C∞)⊕ sα(N )⊂ L(D). It can be proved that ζα :=

ζ̃ |Hα
: Hα →C∞⊕D ′µ is an isomorphism (D ′µ stands for the space of distributions whose support

has Lebesgue measure zero). Therefore, if T ∈ D ′ and S = β + f ∈C∞⊕D ′µ , a new α-product, α̇ ,
can be defined by Tα̇S := T φα , where for each α , φα = ζ−1

α (S) ∈ Hα . Hence,

Tα̇S = T ζ
−1
α (S) = T [ζ−1

α (β + f )]

= T [ζ−1
α (β )+ζ

−1
α ( f )] = T β +T �

α

f = T β +(T ∗ α̌) f ,

and putting α instead of α̌ (to simplify), we get

Tα̇S = T β +(T ∗α) f . (2.4)

Thus, the referred consistency is obtained when the C∞-function is placed at the right-hand side: if
S ∈C∞, then f = 0, S = β and Tα̇S = T β .

The α-product (2.4) can be easily extended for T ∈ D ′p and S = β + f ∈ Cp ⊕D ′µ , where
p ∈ {0,1,2, ...,∞}, D ′p is the space of distributions of order ≤ p in the sense of Schwartz (D ′∞

means D ′), T β is the Schwartz product of a D ′p-distribution with a Cp-function, and (T ∗α) f is
the usual product of a C∞-function with a distribution. This extension is clearly consistent with
the Schwartz products of D ′p-distributions with Cp-functions, if the Cp-functions are placed at the
right-hand side, keeps the bilinearity and satisfies the usual rules of differentiation, provided the
Leibniz rule is written in the form

Dk(Tα̇S) = (DkT )α̇S+Tα̇(DkS),

and the α-products are well defined. Moreover, these products are invariant by translations, that is,

τa(Tα̇S) = (τaT )α̇(τaS),

where τa stands for the usual translation operator in distributional sense. They are also invariant for
the action of any group of linear transformations h : RN → RN , with |deth| = 1, which leaves α

invariant .
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Thus, for each α ∈D with
∫

α = 1, formula (2.4) allows us to evaluate the product of T ∈D ′p

with S ∈Cp⊕D ′µ ; therefore, we have obtained a family of products, one for each α . For instance,
in dimension N = 1, if β is a continuous function and a ∈ R, we have for each α , and by applying
(2.4),

βα̇β = βα̇(β +0) = ββ +(β ∗α)0 = β
2

δα̇β = δα̇(β +0) = δβ +(δ ∗α)0 = β (0)δ ,

βα̇δ = βα̇(0+δ ) = β0+(β ∗α)δ = [(β ∗α)(0)]δ ,

δα̇δ = δα̇(0+δ ) = δ0+(δ ∗α)δ = αδ = α(0)δ ,

(τaδ )α̇(Dδ ) = [(τaδ )∗α]Dδ = (τaα)Dδ = [α(−a)]Dδ − [α ′(−a)]δ , (2.5)

(Dδ )α̇(τaδ ) = [(Dδ )∗α](τaδ ) = α
′(τaδ ) = α

′(a)τaδ , (2.6)

(Dδ )α̇(Dδ ) = [(Dδ )∗α]Dδ = α
′Dδ = α

′(0)Dδ −α
′′(0)δ , (2.7)

Hα̇δ = (H ∗α)δ =

[∫ +∞

−∞

α(−τ)H(τ)dτ

]
δ =

(∫ 0

−∞

α

)
δ .

For each α the support of the α-product (2.4) satisfies supp(Tα̇S) ⊂ suppS, as for usual functions,
but it may happen that supp(Tα̇S) 6⊂ suppT . For instance, if a,b ∈ R, from (2.4) we have,

(τaδ )α̇(τbδ ) = [(τaδ )∗α](τbδ ) = (τaα)(τbδ ) = α(b−a)(τbδ ). (2.8)

It is also possible to multiply many other distributions, to define powers of distributions, and to
compose distributions with functions (see for instance [15, 18, 20]). However, for the present paper
this is all we need.

3. The α-solution concept

Let I be an interval of R with more that one point, and let F (I) be the space of continuously
differentiable maps ũ : I → D ′ in the sense of the usual topology of D ′. For t ∈ I, the notation
[ũ(t)](x) is sometimes used for emphasizing that the distribution ũ(t) acts on functions ξ ∈D which
depend on x.

Let Σ(I) be the space of functions u : R×I→ R such that:
(a) for each t ∈ I, u(x, t) ∈ L1

loc(R);
(b) ũ : I→D ′, defined by [ũ(t)](x) = u(x, t) is in F (I).

The natural injection u 7→ ũ from Σ(I) into F (I) identifies any function in Σ(I) with a certain
map in F (I). Since C1(R×I)⊂ Σ(I), we can write the inclusions

C1(R×I)⊂ Σ(I)⊂F (I).

Thus, identifying u with ũ, the equation (1.1) can be read as follows:

f (t)
dũ
dt

(t)+D[ũ(t)α̇ ũ(t)− ũ(t)τγ(t)β ] = 0. (3.1)

Remark 3.1. We could also write (τγ(t)β )ũ(t) instead of ũ(t)τγ(t)β , since this product is a classical
product of a D ′1 distribution with a C1-function. Meanwhile, if we want to write it under the form
of an α-product, we must write ũ(t)α̇(τγ(t)β ), since, as we have said in Section 2, the α-products
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of D ′p-distributions with Cp-functions are consistent with the classical Schwartz products when the
Cp-functions are placed at the right-hand side.

Definition 3.1. Given α , the function ũ ∈F (I) will be called an α-solution of the equation (3.1)
on I, if the α-product appearing in this equation is well defined and this equation is satisfied for all
t ∈ I.

We have the following results:

Theorem 3.1. If u is a classical solution of (1.1) on R×I, then, for any α , the function ũ ∈F (I)
defined by [ũ(t)](x) = u(x, t) is an α-solution of (3.1) on I.

Notice that by a classical solution of (1) on R×I we mean a C1-function u(x, t) satisfying (1) on
R×I.

Theorem 3.2. If u : R×I→ R is a C1-function and, for a certain α , the function ũ ∈F (I) defined
by [ũ(t)](x) = u(x, t) is an α-solution of (3.1) on I, then u is a classical solution of (1.1) on R×I.

For the proof it is enough to observe that any C1-function u(x, t) can be read as a continuously
differentiable function ũ ∈F (I) defined by [ũ(t)](x) = u(x, t), and to use the α-products’ consis-
tency with classical Schwartz products of distributions with functions.

Definition 3.2. Given α , any α-solution ũ of equation (3.1) on I, will be called an α-solution of
the equation (1.1) on I.

As a consequence, an α-solution ũ in this sense, read as a usual distribution u, affords a consis-
tent extension of the classical solution concept for equation (1.1). Thus, and for short, we also call
the distribution u an α-solution of (1.1).

Remark 3.2. The study of differential equations in the classical distribution theory is, of course,
restricted to linear equations owing to the well known difficulties of multiplying distributions. The
classical setting usually considers linear partial differential equations with C∞-coefficients, and a
solution u ∈ D ′, also called a weak solution, is defined as satisfying the equation in the sense of
distributions.

Concerning a linear partial differential evolution equation in the unknown u, when re-interpreted
as an equation with α-products in the unknown ũ(t), we can place the (re-interpreted) C∞-
coefficients at the right-hand side of ũ(t) and its derivatives. The reason is that, in this case, our
α-products are consistent with the products of distributions with C∞-functions. Thus, for any weak
solution u, the corresponding ũ(t) is necessarily an α-solution for any α . Conversely, if for a certain
α , ũ(t) is an α-solution then ũ(t) read as a usual distribution u is a weak solution. In this sense, the
α-solution concept coincides with the weak solution concept. In the framework of linear differential
evolution equations, the advantage of the α-solutions is that, now, the coefficients can be considered
as distributions, if the α-products are well defined.

4. The possibility of the propagation of the wave u(x, t) = δ (x− γ(t))+δ ′(x)

Here we consider the propagation of the wave (1.2) according to equation (1.1). Having in mind the
identification u 7→ ũ, we must substitute the equation (1.1) by equation (3.1) and the wave (1.2) by

ũ(t) = τγ(t)δ +Dδ . (4.1)

The following result is a necessary and sufficient condition for the propagation of this wave.
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Theorem 4.1. For each α, the function ũ given by (4.1) is an α-solution of (3.1) on I, if and only if
the following two conditions are satisfied:

(I) for each t ∈ I such that γ(t) 6= 0, we have

f (t)γ ′(t) = α(0)+α
′(γ(t))−β (0), (4.2)

α(−γ(t))−β (−γ(t))+α
′(0) = 0, (4.3)

α
′(−γ(t))−β

′(−γ(t))+α
′′(0) = 0; (4.4)

(II) for each t ∈ I such that γ(t) = 0, we have

f (t)γ ′(t) = α(0)−β (0)−α
′′(0)+β

′(0), (4.5)

α(0)+α
′(0)−β (0) = 0. (4.6)

Proof. Let us suppose that ũ given by (4.1) is an α-solution of (3.1). From (4.1) we have,

dũ
dt

(t) =−γ
′(t)τγ(t)Dδ .

Using the α-products’ bilinearity and formulas (2.5), (2.6), (2.7) and (2.8), we have

ũ(t)α̇ ũ(t) =[α(0)+α
′(γ(t))]τγ(t)δ +

+[α(−γ(t))+α
′(0)]Dδ − [α ′(−γ(t))+α

′′(0)]δ .

Since, for each t, ũ(t) ∈D ′1 and τγ(t)β ∈C1, it is easy to evaluate the classical product

ũ(t)(τγ(t)β ) = β (0)τγ(t)δ +β (−γ(t))Dδ −β
′(−γ(t))δ ,

and (3.1) turns out to be

[− f (t)γ ′(t)+α(0)+α
′(γ(t))−β (0)]τγ(t)Dδ +

+[α(−γ(t))+α
′(0)−β (−γ(t))]D2

δ +

+[−α
′(−γ(t))−α

′′(0)+β
′(−γ(t))]Dδ = 0. (4.7)

Now, if we suppose γ(t) 6= 0, we have (4.2), (4.3) and (4.4). If we suppose γ(t) = 0, we have (4.5)
and (4.6). Conversely, suppose that we have (I). Then (4.7) is satisfied, and this means that ũ given
by (4.1) is an α-solution of (3.1). Suppose that we have (II). Then (4.7) is also satisfied, which
means that ũ given by (4.1) is an α-solution of (3.1). Hence, the theorem is proved.

Since inviscid Burgers equation

dũ
dt

(t)+
1
2

D[ũ(t)α̇ ũ(t)] = 0 (4.8)

can be seen as a particular case of (3.1), it is interesting to apply this theorem (with β = 0 and f = 2)
to see that the wave (4.1) may propagate according to (4.8). Thus, taking for instance γ : [1,+∞[→R
defined by γ(t) = t, it is easy to see that, for all α such that suppα ⊂ [−1,1], α(0) = 2, and
α ′(0) = α ′′(0) = 0, the wave (4.1) is an α-solution of (4.8); indeed, since β = 0, f = 2 and γ(t) 6= 0
for all t ∈ [1,+∞[, conditions (4.2), (4.3) and (4.4) are trivially satisfied, because suppα ′⊂ suppα ⊂
[−1,1].
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As a consequence, the wave ũ1(t) = τγ(t)δ travels away from ũ2(t) = Dδ with speed γ ′(t) = 1.
Since in the interval of time [1,+∞[ does not exists t∗ such that γ(t∗) = 0, we conclude that the
wave ũ1(t) = τγ(t)δ does not collide with the stationary wave ũ2(t) = Dδ .

Indeed, this phenomenon is much more general: it is not possible any collision of ũ1 with ũ2 in
the setting of inviscid Burgers equation, as the following theorem shows.

Theorem 4.2. Let t0 ∈ R, and I = [t0,+∞[. Still suppose that ũ given by (4.1) is an α-solution of
the equation (4.8) on I, satisfying γ(t0) 6= 0. Then γ(t) 6= 0 for all t ∈ I.

Proof. Suppose that there exists t∗ ∈ I such that γ(t∗) = 0. Then the set

K = {t ∈ ]t0, t∗] : γ(t) = 0}

is a compact of R, and t∗ ∈ K. Let t ′ = minK. Then, γ(t ′) = 0, t ′ ∈ ]t0, t∗] and γ(t) 6= 0 for all
t ∈ [t0, t ′[. Since ũ is an α-solution of (4.8), from (4.2) in theorem 4.1, we can write (remember that
β = 0 and f = 2),

2γ
′(t) = α(0)+α

′(γ(t)), (4.9)

for all t ∈ [t0, t ′[. Thus, equation (4.9) with initial condition γ(t0) = x0 6= 0 has, for each α , an unique
solution γ : [t0, t ′[→ R, which does not vanish identically on [t0, t ′[. However, there exists

lim
t→t́

γ(t) = γ(t ′) = 0,

which shows that the solution γ is continuable at the right. This means that there exists ε > 0 and a
function γ̄ : [t0, t ′+ ε[→ R, of class C1, such that

2γ̄
′(t) = α(0)+α

′(γ̄(t)), (4.10)

γ̄(t0) = x0. (4.11)

Since γ̄(t ′) = limt→t ′ γ(t) = γ(t ′) = 0, from (4.6) in theorem 4.1, we can write

α(0)+α
′(0) = 0. (4.12)

In addition, the Cauchy problem (4.10), (4.11) has, for each α , the same solution of the equation
(4.10), with initial condition γ̄(t ′) = 0. On the other hand, the equation (4.10) with initial condition
γ̄(t ′) = 0 has the unique solution γ̄ = 0, because, by direct substitution, (4.10) turns out to be (4.12).
This is a contradiction, because the restriction γ of γ̄ to [t0, t ′[ does not vanish identically on [t0, t ′[.
Hence, the theorem is proved.

In the sequel, we will see, applying again theorem 4.1, that this collision may arise in models
ruled by equation (1.1) for f , β and γ conveniently chosen.

5. Solitonic collision and scattering

Let us consider the interval of time I = [−1,+∞[. Let A > 0 be a real number, n≥ 2 an integer, and
β ∈D(R) such that

•
∫ +∞

−∞
β = 1 and

• β (x) = n−1
3A x3, for x ∈ [−A,A].
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Let us define f : [−1,+∞[→R by f (t) = tn, and let γ : [−1,+∞[→R be defined the following
way:

• for t ∈ [−1,1[,

γ(t) = Atn−1; (5.1)

• for t ∈ [1,+∞[, γ(t) is the solution of the Cauchy problem

tn
γ
′(t) = β

′(γ(t)), (5.2)

γ(1) = A. (5.3)

Lemma 5.1. The function γ : [−1,+∞[→ R defined above has the following properties:
(a) γ is a C1-function;
(b) γ(t) = 0 if and only if t = 0.

Proof. (a) The function γ is continuous at t = 1 because

lim
t→1−

γ(t) = A and lim
t→1+

γ(t) = γ(1) = A.

Thus, γ is continuous on [−1,+∞[ and differentiable on [−1,1[∪ ]1,+∞[. On the other hand, for
t = 1 we have from (5.2) and (5.1),

γ
′(1+) = β

′(γ(1)) = β
′(A) = (n−1)A,

and from (5.1),

γ
′(1−) = (n−1)A.

Therefore, there exists γ ′(1) = (n−1)A. Hence, γ ′ is continuous at t = 1 and (a) follows
(b) Clearly, the unique solution of the equation γ(t) = 0 on [−1,1[ is t = 0. For t ∈ [1,+∞[,

γ(t) 6= 0: indeed, if γ(t0) = 0 for a certain t0 ∈ [1,+∞[, then the Cauchy problem

tn
γ
′(t) = β

′(γ(t)), (5.4)

γ(t0) = 0, (5.5)

would have the same solution of Cauchy problem (5.2), (5.3), because both problems have a unique
solution on [1,+∞[. However, since β ′(0) = 0, the problem (5.4), (5.5) has the unique solution
γ(t) = 0 on [1,+∞[, as we can see by direct substitution; this is a contradiction and (b) follows.

Theorem 5.1. Let f , β and γ be defined as above and let α = β . Then, ũ defined by (4.1) is an
α-solution of (3.1) on [−1,+∞[.

Proof. This result is a consequence of theorem 4.1 and lemma 5.1. Indeed, if t 6= 0, (4.2), (4.3) and
(4.4) are clearly satisfied, having in mind the definition of γ , β and f . If t = 0, (4.5) and (4.6) are
also satisfied. Hence, the theorem is proved.

Thus, in the interval of time [−1,+∞[, and with the assumptions of this theorem, a collision of
ũ1(t) = τγ(t)δ with ũ2(t) = Dδ is possible at the instant t = 0.

In the sequel, we will see the consequences of this theorem with n even and with n odd:
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(1) Suppose n ≥ 2 an even integer. Then, the wave ũ1(t) = τγ(t)δ , initially with support at
γ(−1) = −A < 0, begin moving along the x-axis to the right and collides with the stationary wave
ũ2(t) = Dδ at the instant t = 0. At this instant the speed of ũ1 is

γ
′(0) =

{
A if n = 2

0 if n≥ 4
,

and the shape of ũ is

ũ(0) = δ +Dδ . (5.6)

After, that is, for t > 0, the wave ũ1 moves on the positive part of the x-axis, without more collisions
in the future. Thus, ũ1 passes through ũ2 recovering its initial profile. Clearly this is a solitonic
phenomenon.

(2) Suppose n ≥ 3 an odd integer. Then, the wave ũ1(t) = τγ(t)δ , initially with support at
γ(−1) = A > 0, begin moving along the x-axis to the left while t ∈ [−1,0[. The collision takes
place at the instant t = 0. The speed of ũ1 at this instant is γ ′(0) = 0, and the shape of ũ is also given
by (5.6). After, that is, for t > 0, the wave ũ1 turns back as if it has been repelled by ũ2, and moves
on the positive part of the x-axis, without more collisions in the future. Clearly this is a scattering
phenomenon.

6. The merging phenomenon

Suppose n≥ 3. Let I, A, β , f be as in Section 5 and let us define γ in the following way:

• for t ∈ [−1,0[,

γ(t) = Atn−1; (6.1)

• for t ∈ [0,+∞[,

γ(t) = 0. (6.2)

Clearly, γ is a C1-function on [−1,+∞[ and we have γ(t) = 0 if and only if t ∈ [0,+∞[. It is now
also easy to verify, applying theorem 4.1, that theorem 5.1 is also true in this new context. Thus, the
wave ũ1(t) = τγ(t)δ , initially with support at γ(−1) = A(−1)n−1 begin moving along the x-axis and
collides, at the instant t = 0, with the stationary wave ũ2(t) = Dδ . At this instant, the speed of ũ1 is
γ ′(0) = 0 and the shape of ũ is given by (5.6). Meanwhile, for t > 0, the wave ũ1 remains stationary!
Clearly this is a merging phenomenon.

Remark also that in Sections 5 and 6, regarding the α-solution (4.1), the function γ depends
continuously on A > 0 (see (5.1), (5.2), (5.3), (6.1) and (6.2)). Thus, there exists some robustness
in this sense. For the general problem of considering all α-solutions of (1.1) dependent of three
functional parameters f , β and γ , we do not know what happens.
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