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In our recent paper [1], we gave a complete description of symmetry reduction of four Lax-integrable (i.e.,
possessing a zero-curvature representation with a non-removable parameter) 3-dimensional equations. Here we
study the behavior of the integrability features of the initial equations under the reduction procedure. We show
that the ZCRs are transformed to nonlinear differential coverings of the resulting 2D-systems similar to the one
found for the Gibbons-Tsarev equation in [17]. Using these coverings we construct infinite series of (nonlocal)
conservation laws and prove their nontriviality. We also show that the recursion operators are not preserved
under reductions.

Keywords: Partial differential equations, symmetry reductions, solutions, the Gibbons-Tsarev equation, Lax-
integrable equations
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Introduction

In [1] we gave a complete description of symmetry reductions for four three dimensional systems:
the universal hierarchy equation, the 3D rdDym equation, the modified Veronese web equation, and
Pavlov’s equation. The result comprised more than 30 equations, but the majority of them were
either exactly solvable or linearized by the generalized Legendre transformations. Nevertheless,
there were 10 ‘interesting’ reductions, among which two well-known equations, i.e., the Liouville
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and Gibbons-Tsarev equations, [3, 5]. The rest eight can be divided in two groups by their symme-
try properties: five equations admit infinite-dimensional Lie algebras of contact symmetries (with
functional parameters) and three others possess finite-dimensional symmetry algebras. These are

Uylhyy — Uyllyy = € lUyy 0.1
(reduction of the universal hierarchy equation),
Uyy = (Uy + X)Uyy — Uy (e +2) 0.2)
(reduction of the 3D rdDym equation), and
Uy = (X — Uy)thyy + (29 + 1ty ) Uy — 1y 0.3)

(reduction of the Pavlov equation)®. These equations are pair-wise inequaivalent (see Section 5).

We deal with these three equations below and study how the integrability properties of the initial
3D systems behave under reduction. More precisely, we construct (Section 1) the reductions of the
zero-curvature representations for Equations (0.1)—(0.2) and show that they result in differential
coverings of the form

a2w2+a1w+a0 b2W2+b1W+b0
= W, =
T w4 aw+e Y w24 eiw+co

where q;, b;, ¢; are functions in x, y, u, uy, and u,. These coverings are similar to the one found
in [17] for the Gibbons-Tsarev equation and this resemblance, by all means, reflects the relations
between generalized Gibbons-Tsarev equations and integrable 3D-systems [18]. In Section 3, for
every nonlinear covering we construct an infinite series of conservation laws and prove their non-
triviality.

We also study the behavior of the recursion operators for symmetries of three-dimensional sys-
tems and show that these operators do not survive under reduction (Section 4).

In Section 2 local symmetries and cosymmetries of the reduction equations are described. The
corresponding conservation laws are presented in the Appendix.

Throughout the text the notion of (differential) covering is understood in the sense of [9].

1. Reduction of the Lax pairs

Using Lax representations of the 3D equations, whose reductions are the equations at hand, we
construct here nonlinear coverings of Equations (0.1)—(0.3).

1.1. Equation (0.1)

This equation is obtained as the reduction of the universal hierarchy equation®
Uyy = Uzllyy — Uyly; (1.1)
with respect to the symmetry

O = uy +ux+yuy +u. (1.2)

2All the reductions of the modified Veronese web equation were either exactly solvable or linearizable.
bTo save the notation here and below, we denote by u the dependent and by x, y the independent variables. These are not
the same as in the initial equation; see the details in [1].
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Equivalently, this reduction may be written in the form
yy = Uyltr — (1t + 1) Uxy + ety (1.3)

and Equation (0.1) transforms to (1.3) by the change of variables x — y, y — x, u — —e’u.
Equation (1.1) admits the following Lax representation

we = (wu, — ”y)W_ZWm

1 (1.4)
Wy = Uyw Wy.
The symmetry ¢ can be extended to a symmetry ® = (¢, ) of (1.4), where
X=w;+wet+ywy+w
and the corresponding reduction leads to the covering
w3
Wy = — 2 — )
W Lk =iy (1.5)
uyw
Wy = —

w2 — (uy +u)w — u,

of Equation (1.3). Note that the first equation above is cubic in w, but by an appropriate gauge
transformation it can be converted to a quadratic one, see Subsection 3.2 below.

Remark 1.1. Equation (0.1) can be written in the potential form

the corresponding Abelian covering being

u e
y
vx:—’ vy:— (1.6)
Uy Uy
Then v enjoys the equation
Vy — Vyy = VyVxx — VVay, (1.7)

which also admits the rational covering

WYy —XVy +Vy
w24 (=2x+ve)w+x2 —xve+ vy
WYy — XV
w )
W (= 2x v )w X2 —xvy + vy

Wy =

of the same type. U
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1.2. Equation (0.2)

This equation was obtained as the reduction of the 3D rdDym equation
Uy = Uylyy — Uyllxy
with respect to the symmetry
O = Uy — Xty — Uy + 2.
The Lax representation for Equation (1.8) is

wy = (uy +w)wy,

Wy = —Uyw Iwy.
The symmetry ¢ extends to the one of (1.10): & = (¢, x), where
X =W —XWy —Wwy+Uu.

Reduction of the covering (1.10) with respect to ® leads to the covering

W2

w2 (U — X)Wt uy
Uyw
Wy = .
YW (e — X)Wty

Wy =

over Equation (0.2).

1.3. Equation (0.3)
Finally, Equation (0.3) is the reduction of the Pavlov equation
Uyy = Upy + Uylyy — Uxllyy
with respect to the symmetry
© = uy — 2xu, — yuy + 3u.
The Pavlov equation possesses the Lax pair
wr = (W — Wity — tty )Wy,
Wy = (W — ) wy.

The symmetry ¢ lifts to the symmetry ® = (@, x) of (1.14), where

X = Wr —2xwyx — ywy +w.

(1.8)

(1.9

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

Reduction of the covering (1.14) with respect to this symmetry results in the nonlinear covering

w(w —uy)

w2 — (ty + X)W + X1y — uy — 2y’
w

— (uy + X)W+ xuy — uy — 2y

of Equation (0.3).
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Remark 1.2. Equation (0.3) has a close relative. Namely, if we accomplish reduction of the Pavlov
equation using another symmetry

O = u — yu,+2x
the resulting equation will be
Uy = (Uy +Y) oy — Uyltyy — 2. (1.16)
The symmetry ¢’ can also be lifted to (1.14) by &' = (@', '), where
X =wi—ywi+1,
and the reduction of (1.14) will be
1

W2 — W — Uy —y
W — Uty

Wy = — ’

(1.17)

Wy, = — .
Y W2 —uew — ity —y

By the change of variables u +— u —y* /2, Equation (1.16) transforms to the Gibbons-Tsarev equa-
tion, see [5],

Uyy = Uyllyy — Uyllyy — 1,

while (1.15) becomes
1

Wy = — b} ’
W2 — W — ity
W— Uy
Wy = —
J W2 — W — ity
cf. [17]. O

Remark 1.3. Equations (0.1), (0.2) and (0.3) are known to admit linear Lax representations with
non-removable parameter (see [10,11,19] for the universal hierarchy equation, [13,20] for the 3Drd-
Dym equation, and [4, 19] for the Pavlov equation). Nonlinear Lax pairs (1.4), (1.10), and (1.14)
can be obtained from their linear counterparts by the standard procedure proposed in [21] or by the
methods used in [13, 14].

2. Local symmetries and cosymmetries of the reduced equations

We present here computational results on classical symmetries and cosymmetries of Equa-
tions (0.1)—(0.3), i.e., solutions of the equations

le(@) =0

and

where /¢ is the linearization of the equation at hand and £, is its formally adjoint and ¢ and y
depend on x, y, u, uy, uy (see, e.g., [7]). The conservation laws corresponding to classical cosym-
metries are presented in the Appendix below. The spaces of solutions are denoted by sym¢(&)
and cosym, (&), respectively.
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All the equations under consideration happen to possess a scaling symmetry and thus admit
weights (which we denote by |-|) with respect to which they become homogeneous.

2.1. Equation (0.1)
We consider this equation in the form (1.3), i.e.,

Uyy = Uyly — (Ux + 1) Uy + Uylty,.
The weights are

W=0, D=1, [ul=—1, ful=—1, |u|=-2.

Symmetries
The defining equation for symmetries is®
D§(¢) = ”yD)zc((P) — (tx +u) DDy (@) + (tty — 1ty ) D (@) + (thax + 1) Dy (@) — thy .

The space sym, (&) is generated by the symmetries

X

/ —
(P—l = Uy, (PO:yuy‘f‘% (PO:an (Pl =e ,

where the subscripts coincide with the weights9.

Cosymmetries

The defining equation for cosymmetries of Equation (0.1) is

Di(‘/’) = ”yD)zc(ll/) — (ux +u)DiDy (W) + 2(uxy + uy ) Dx (W) — 2(ttxx + ) Dy (W) — ity Y.

The space cosym (&) is 6-dimensional and is spanned by the following cosymmetries:

Vo3 = e (3ud + 8 + 10uu, +2uy), Yo =e¥(3ut2u), wi=e>
and

1 2uy — yuy +2u

Y3 =—, Ya = %,
iy w)

—4uyuy + 6uu, + 3u? — dyuu, + 3u® + 2uy + yzuf
Vs = 4 s
uy

Y

where superscript coincides with the weight®.

2.2. Equation (0.2)

The weights are

|x|:1, |y’:Oa ’M|:2, |MX|:17 |My|:2~

“Here and below Dy and Dy, denote the total derivatives with respect to x and y.
4To a symmetry ¢ we assign the weight of the corresponding evolutionary vector field E¢.
°To every cosymmetry we assign the weight of the corresponding variational form, see [8]
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Symmetries

The linearized equation is

Di((l’) = (ux +x)DxDy(9) — L@Dﬁ((p) + tyyDx (@) — (txx +2)Dy ().
The space sym. (&) is generated by the symmetries

1

0o_r=1, @_;=u,+x, (pozu—ixux, ) = uy.

Cosymmetries

The defining equation for cosymmetries reads

Dﬁ(‘lf) = (ux +2)DxDy (W) — uy D3 (W) = 2uny Do (W) + (2t +3)Dy (W),
The space cosym. (&) is generated by the cosymmetries
e 2 (uy+x)

3
Uy

Y3 = ) W2:17

1[’—2:7, ll’3:ux+2x-

2.3. Equation (0.3)

The weights of variables are
=1, Iy[=2 ful=3, |wl=2|u[=1.

in this case.

Symmetries

The symmetries are defined by the equation

D(9) = (x— uy)DiDy(@) + (2y + ux) D3 () — Dy (9)

and the space sym. (&) is generated the symmetries

1 2 1,
(poz—gxux—gyuy—ku, (p,lzux—xuy—ky—ix ,
Q= uy+2xa O3 = 1.

Cosymmetries

The defining equation for cosymmetries is of the form
D (y) = (x—uy)DDy(y) + (2y + ”x)D§ — ttyy Dy +3(2 — ttyy) Dy.
The space cosym. (&) is 6-dimensional and and is spanned by the elements

54 164 256 , 4 12
Y7 = Xty + ——xuyy + —— X"y +2xu+ _uuy, + S

36
5 5 5 5 21+ dyuy + —uﬁy

Y 5
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82, 512, 32 9% 5, 32, 512,

3
+ =X ux—l——x‘uﬁ—fxui%-fxu + + X +—u2+u§,

5 15 5 57T st s

49 3 9 49 , 21, 343 5 1 3
Yo = ny+4xux+§uyux+§uyy+fx uy+quy—|- 24)6 +Zu+uy,
l//5:4xuy+6x2+2y+§ux+u§,

5
W4:§x+uya
v =1,

B 1

Vo= (—xuy + 1y +2y)%

3. Hierarchies of nonlocal conservation laws

Using the nonlinear coverings presented in Section 1 we construct here infinite hierarchies of non-
local conservation laws for Equations (0.1)-(0.1).

3.1. A general construction

The initial step of the construction is the so-called Pavlov reversing, [21] (see [6] for the invariant
geometrical interpretation). Let & be an equation in two independent variables x and y and unknown
function u and

wy = X (x,y, [u],w), wy =Y (x,y,[u],w)

be a differential covering over &, where [u] denotes u itself and a collection of its derivatives up to
some finite order. Then the system

Wx:_x<xay7[u]7l>w17 l//y:—Y(x,y, [M],)L)WA (3.1

is also compatible modulo & (thus, the nonlocal variable w turns into a formal parameter in the new
setting).
Assume now that

X=X A +Xp+ gy Xy
=X 0+ = PO
Y=Y A+Yot g iy
=71 o+~ PO
where X;, Y;, i > —1, are functions in x, y and [u], and also expand y in formal Laurent series
) ,
V= W717L+W0+%+"'+%+...
Then (3.1) implies
Vie=— ), KXy, Viy=— Y Ky,
Jtk=i+1 Jk=i+1
or
Yoix=—X1y, Voiy=-Y 1y y;
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Yo = —XoY_1, Yo,y = —Yoy_1;
Via=X1—-X1y_1, Vviy=Y_1-"vy_y;
Yo =2X_1yo +Xoy1 —Xoy_y, Yo, =2Y 1yh + Yoy — Ly,
and
Vix = kX Wi+ (k— DXoWio1 + - + X oy — Xy,
Viy =kY_ 1Y+ (k= DYooy, + - + Yoy — Yy
for all k > 2.
In general, this system defines an infinite-dimensional non-Abelian covering (which may be
trivial generally) over the base equation &, but in the particular case X_; = Y_; = 0 the covering

becomes Abelian, i.e., transforms to an infinite series of (nonlocal) conservation laws. Indeed, the
first pair of equations reads

1[1717,(:0, l/ffl,y:O

in this case and without loss of generality we may set w_; = 1. The rest equations read
Yo.x = —Xo, Yo,y = —Yo;
Y = —Xi, Yy =—Yi;
Yo = Xoy1 — Xo, Vo, = Yoy — 12,
Y3 = 2Xoyn + X1y — X3, Y3 =2Youh + Y1y — Y35
and

Vix = (k— DXoWi—1 + (k=2)X1 W2 + - - + Xi2 W1 — X,

32
l"’k,y: (k_1)Y0wk71+(k_2)YllI/k*2+"'+Yk72Vf1 _Yk ( )

for all k > 3.

Remark 3.1. The first two pairs of equations define local conservation laws (probably, trivial) and
the potential Yy does not enter the other equations. This means that the obtained covering is the
Whitney product of the one-dimensional Abelian covering 7o associated to Yy and the infinite-
dimensional 7, related to yi, y»,... We shall deal with 7, below. O

‘We now confine ourselves to the case

_ arw? +aw+ag _ byw? +byw + by

= 3.3
w2+ciw+co w2 +ciw+co (3-3)

where a;, b;, and ¢; are functions in x, y, and [u], and deduce the needed Laurent expansions. One
has

aA? +ai A +ap a  ap 1
) :<02+*+72)‘ DU
A —|—Cll+C0 A A 1+%
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Cll-i-Co
<02+/1+/12>§6< A2 )

Let us present temporally the second factor in the form
c 11 + o
Z Z 7Ll ’
>0

Then

a27l,2+a1)y+a0 . ( ) Z

AM24cid+co 7L lz ‘A

ardy + ayd, ad+ad+ad ard; +ayd;—1 + apd;—
21}(10_'_22 izl 00+_“+21 1;“1 012+

Compute the coefficients d; now. One has

= axdy +

from where it follows that

d():l, dlz—Cl

and
k .
(k o
Z(—l)k1< 2+_]>c16 i if § = 2k,
Z(—l)kj“< / ) o Tt ifi=2k+1
=0 2j+1
for i > 1, Or, in shorter notation
i/2] , o) . o
di _ Z(_l)[z/Z] J+p(i <[ /2] +J+p( ))Cg/z]—]c?""l’(’)7 (35)
=0 J+p()

where p(i) =i mod 2 is the parity of i and [k/2] is the integer part.
Gathering together the results of the above computations, one obtains that in the case of cover-
ings (3.3) we have X_| =Y_;| = 0, while other coefficients are

Xo = a, Yo = bo;

X1 = ay —aocy, Y1 = by —bycy;

X; = ap —ajc1 +az(ct — co), Y> = by — b1 +ba(ct —cp);
X; = aodi—» +a1di—1 + axd,, Y = bodi—> + bid;i—1 + byd;

ey

where the functions d; are given by (3.4).
Let us now show how these general constructions look like in the particular cases of the equa-
tions under consideration.
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3.2. Equation (0.1)

Note first that the covering (1.5) is not of the form (3.3). Nevertheless, it can be transformed to the
needed form by the gauge transformation w — we™*. Then (1.5) acquires the form

(uy + u)ew? — uye*w iy w?
Wy = wy = — .
w2 — (uy + u)e*w — uye?’ Y w? — (uy +u)eXw — uye
We have |w| = —1.
Thus,

ap =0, a; = —uyezx ay = (uy+u)e*,
b() = 0, b] = 0, b2 = —Myex,
co = —uyezx, c1 = —(ux+ue'.

Let us compute the coefficients d;. By (3.4), we have

_k_k—j k+J _uezxk*j_u e )2
de_j;)( 1) <2j>( ve™ )" (= (up+u)e)

k .
K+ 7\ o ~
= eka E < 2]]> u§ J(Mx+u)2J

j=0
and
k .
_i(k+j+1 k—j -
d2k+l _ Z(_l)k j+1< 5 .] > (_uye2x) J (_(ux+u)ex)2]+1
=0 J+1
k .
k+j+1\ ,_; ;
_ L (2k+1)x k—j 2j+1
=e . u, (ux+u ,
or
L2 PG 2 2
di=ée" < it (i )uy My +u) (), (3.6)
= Jj+p(i)
Hence,
Xo = (uy +u)e”, Yo = —uye”;
X = ((ux+u)2 —uy) e, Y| = (ux—i-u)uyezx
and

. ) [(i+1)/2] i—j i—j . o
X; = elit1)x (ux+u>z+1 + <<i_2j) _ (i_2j+ 1)) u§(ux+u)1721+1 ,
=1

o 2+ 4 p ()N 2l .
Y, — _olit s <[l/ it p )u[;/z]—w e )20
jga 2j+pi) )7 (et )
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for i > 1 (we assume (g) =0 for B < 0). Obviously,
X|=—i—1, [W=—i-2.

The functions X;, ¥; define, by Equations (3.2), the infinite number of nonlocal variables y; for
Equation (0.1) with

il =—i—1.

The corresponding conservation laws have the same weights and the first three of them coincide (up
to equivalence) with the local conservation laws @w_,, ®w_3, @_4 described in Section 2.1. The first
essentially nonlocal one is associated to 3.

3.3. Equation (0.2)

Due to Equations (1.11), one has

ao =0, a; =0 ay =—1,
bp =0, by = uy, b, =0,
co = Uy, Cl = Uy —X.
Hence,
Xo=—1, Yo =0;
X1 =ux—x, Y1 = uy;
Xy = —(uy —x)* +uy, Yo = —uy(uy —x)
and
i (1724540 2 o
X; = —d; =Y~/ ( I >M£’/ 17 (4 — ) 2P (D)
= 2j+p(i)
[(i—1)/2] . o
Y, = uyd; | = Z (= DIE=D/2=4pl=1)
J=0
(=1 /21 +j+pli—1) QDA g 2ip-)
2j+p(i—1) ’ '
for i > 2. Consequently,
Yor=—Xo=1, Yo, = —Yo=0;
Yix = X1 = —ur+x, Viy = =Y = —Uy
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and one may set

2
Yo =X, Wl:_u+57
while
2
Vo = (uy —x)? +uy+u— S5 V= (Uy — X)uy
and fori > 2

. . x?
Vie=—(—DWi1+({—=2)X1¥; 2+ +X; 39>+ (2 —u) Xi2—X;

. _xz
%7},: (l—z)Y]lI/i_2+...+Yi_3lI/2+ (2_u> Yi—Q_Yi

where Xy, Y; are given by the above formulas.
One has

(Xil =i, il =i+1, |yil=i+1.

The conservation law corresponding to y; is of the weight i + 1 and the first two ones, up to equiv-
alence coincide with those described in Section 2.2, while all the others are essentially nonlocal.

3.4. Equation (0.3)
By Equation (1.15), we have

ag =0, ap = uy a=—1,
by =0, by =-1, by =0,
Co = Xty — Uy — 2, c1 = —(uy+x).
Consequently,
Xo=—1, Yo =0;
X = —x, Yi=-1;
X = —uy—x" =2y, Yy =—uy—x
and
X, = uydi_l — d,’, Y= _di—l

for i > 2, where

[i/2] , (1i/2]+ j+ p(i) . , L
d=Y (—1 [z/zm<[’/ it ) ity — 1t — 2920 ()P0,

One has
Thus we have

Vix =X, Viy= I;
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2

X
WZ,x:Mx+E+ya Yoy =uUy+x
and we may set
Xz X3
‘I’1=E+)’a W2=M+Xy+€-

Then the other potentials are defined by
Vie=—(i=D¥i1 = (i =2)¥i2(i =3)X2¥i 3+ ..

3 2
x x
o+ 3Xiays + <2u—|—2xy+ 3> Xi3+ (2 +y> Xi2—X;

Viy=—([—=2)yia2(i—-3)ryiz+...

x3 x2
o+ 3Yiays + <2u+2xy+ 3> Yi 3+ (2 +y> Yi 2 =Y,

i > 2. We have
il =i+1.

The conservation laws associated with s, ..., Yy are equivalent to @y,...,®s introduced in
Section 2.3. The first essentially nonlocal conservation law corresponds to ysg.

3.5. Proof of nontriviality

We shall now prove that the above constructed conservation laws are nontrivial. To this end, intro-
duce the notation &y, a = 1, 2, 3, for Equations (0.1), (0.2) and (0.3), respectively, and

Tia: Sia — b
for the coverings defined by the nonlocal variables Yy, ..., ;. Let

D%, Dj*
be the total derivatives on &; 4.
Proposition 3.1. For all i > a, the only solutions of the system

Di%(f)=0,  Di(f)=0 (3.7)
are constants.
Proof. Let us present the total derivatives in the form
Di* =D+ X" DL*=D¥4yH®,

where DY, D;" are the total derivatives on &, and X*%, Y"% are the ‘nonlocal tails’:

Xi,a_ i Xi,ai Yi’a— i Yi’a 0
o Z J dy;’ - Z

J )
j—a = v

X]’:’a, Y ;’O‘ being the right-hand sides of the defining equations (3.2) for the potentials .
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From the constructions of Sections 3.2-3.4 one readily sees that the quantities X;’a and Y ]l % are
polynomials in u, and u, and, moreover,

i i i a i i i
X0 = 4l H)XMXHTM +o, Yl = 4ol +1)xuxuy8wi +o0;
. 9 . .
X% = +ul ; Y2 = 4! ;
uxa% +o0 Uy i +o
i3 _ -2, 7 i3 _ i—1
X" = fuy uxawi—l—o, Y = du awi—l—o,

where o denotes terms of lower degree.

Now, the proof goes by induction. For small i’s the result follows from the fact that the cosym-
metries corresponding to the local conservation laws do not vanish and these conservation laws are
of different weights. Assume now that the statement is valid for all £ < i and consider Equation (3.7).
Then from the above estimates it follows that d f/dy; = 0. O

Evidently, nontriviality of the constructed conservation laws is a direct consequence of the
Proposition 3.1.

4. On reductions of the recursion operators

We show here that symmetry reductions of Equations (1.1), (1.8), and (1.12) are incompatible with
their recursion operators and thus the latter are not inherited by Equations (0.1), (0.2), and (0.3),
respectively.

4.1. A general construction

We treat here recursion operators for symmetries as Backlund transformations of the tangent cover-
ings, cf. [12]. More precisely, let & be a differential equation given by the system

&={F=0}, F=(F'(yu). .. Fylu),

F/ being functions on some jet space, [7]. Here, as above, [u] denotes the collection of « and its
derivatives. The tangent covering t =tg: .7 & — & is the projection (x,y, [u],[¢]) — (x,y, [u]) of the
system

T E ={F(x,y,[u]) =0, £r(x,y,[u],[q]) = 0}

to &. The characteristic property of t is that its sections that preserve the Cartan (higher contact)
distribution are identified with symmetries of &.
A Bicklund transformation between equations &1 and & is a diagram

AN
C’gal 527
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where 7; and T, are coverings. It relates solutions of & and &3 to each other. A recursion operator
between symmetries of &1 and & is a Béacklund transformation of the form

tg]
yéa] — 51

v
4

(%)
:7(9@2 ti> gg.

In particular, if &1 = & = & it relates symmetries of & to each other. Then % may be considered as
an equation

KHCTERe TE

in the Whitney product of tg with itself.
Any symmetry @ = @(x,y, [u]) of & admits a natural lift ® = (¢,¢’) to 7 &. To this end, it
suffices to set

3 3
¢ = SPqt et 2 ot
(e

Choose a symmetry @ of & and denote by ry: & — & the corresponding reduction map. Then
the diagram

g6 — &

te

¢
(T7E)e=T(6g) — &
is commutative. An immediate consequence of this fact is

Proposition 4.1. Let Z C T & Rg T & be a recursion operator for symmetries of equation &
and @ be a symmetry of &. If % is invariant with respect to ¢ then X is a recursion operator for
symmetries of &y.

4.2. Recursion operators for symmetries of 3D systems

We briefly recall here the results on recursion operators for symmetries of Equation (1.1), (1.8),
and (1.12) obtained in [15, 16]

The universal hierarchy equation

Equation (1.1) admits the following recursion operator

D)‘((p) :”ny((P)_”xy(Py @1
u, D, '

D.(¢) = ((P)_Dy((P)_“xz(p
that acts on its symmetries.
Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors
225



H. Baran, LS. Krasil' shchik, O.1. Morozov, P. Vojédk / Integrability properties of some symmetry reductions

The 3DrdDym equation

The Backlund transformation

Dy(@) = ux Dx(@) — Di (@) — urc 9,

- 4.2)
DY((p) = uny(q)) — Uy @
is a recursion operator for symmetries of Equation (1.8).
The Pavlov equation
The relations
Dy(@) = uxDx(@) + Dy(@) — urx @, @.3)

Dy((i)) =Di(9) + MYDX((P) — Uy P.

are a recursion operator for symmetries of Equation (1.12).

4.3. The negative result

Here we show that the general construction of Section 4.1 produces no recursion operator for the
reduced equations under consideration.

Proposition 4.2. Recursion operators (4.1), (4.2) and (4.3) are not invariant with respect to the
natural lifts of the symmetries (1.2), (1.9), and (1.13), respectively.

Proof. By direct check. O

Remark 4.1. The same fact holds for the reduction of the Pavlov equation that leads to the Gibbons-
Tsarev equation.

Remark 4.2. We also tried to construct recursion operators for all the equations at hand directly,
but this did not lead us to positive results either.

5. Discussion

Let us first establish the following fact:

Proposition 5.1. Equations (0.1), (0.2), and (0.3) are pair-wise inequivalent with respect to an
arbitrary contact transformation.

Proof. Let us first compare dimensions (see Table 1). Consequently, only Equations (0.1) and (0.3)

dimsym (&) | dimcosym, (&)
Equation (0.1) 4 6
Equation (0.2) 4 4
Equation (0.3) 4 6

Table 1. Dimensions of symmetry and cosymmetry spaces

may be equivalent. Now, the Lie algebra structure of sym¢(&’) for Equations (0.1) and (0.3) is
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Weights: —3-2-1012 34567

Fig. 1. Distribution of cosymmetries

presented in Table 2. One can see that dimension of the commutant in the first case is 2, while in
the second case it equals 3. Thus, the algebras are not isomorphic. O

Remark 5.1. The equations under consideration are not equivalent to the Gibbons-Tsarev equation,
because the symmetry algebra of the latter is five-dimensional.

Nevertheless, as we saw, all these equations have several common features. In particular, we
would like to indicate how local cosymmetries of our equations are distributed with respect to
weights (see Figure 1). In all three cases, they fit into two disjoint groups with certain gaps between
them: the first one consist of cosymmetries whose corresponding conservation laws are members of
infinite series (these are underlined by arrows, and the arrow itself indicates the direction to which
the sequence of conservation laws goes). The second group includes ‘standing-alone’ cosymmetries.

Remark 5.2. A similar picture is observed in the case of the Gibbons-Tsarev equation. It also
possesses a ‘standing-alone’ cosymmetry of order three.

A natural question arises: does there exist a construction, similar to the one of Section 3, that
allows to embed the conservation laws corresponding to the ‘standing-alone’ cosymmetries into
other infinite hierarchies?

Another question relates to the algebras of nonlocal symmetries in the infinite-dimensional cov-
erings constructed above. It seems that such an algebra for Equation (0.3) should be similar (or iso-
morphic to that of the Gibbons-Tsarev equation), while the algebras for Equations (0.1) and (0.2) are
different: all these Lie algebras are graded, but in the first two cases all homogeneous components
are one-dimensional and for other equations this is not the case.

Finally, it is interesting to study the structure of symmetries and cosymmetries of the reductions
that admit symmetry algebras with functional parameters (see the Introduction) and compare them
with the results described here.

All these problems are subject to future research.

6. Appendix: Conservation laws

We present here the conservation laws that correspond to the cosymmetries described above. Every-
where below |®;| = i. We also use the notation y,, € cosym(&) for the generating function of a
conservation law @.

Eq.0.) | 90 @y @ Eq. (03) | oo ¢, ®
¢-1 1 0 0 03 0 0 —0-3
@0 0 @ 02 x -3 30,
) x k=@ Q1 * x =1

Table 2. Commutators in syme &(g.1) and symc & 3)
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Equation (0.1)
The space of corresponding conservation laws is 6-dimensional and is spanned by the following
elements @; = P;dx+ Q;dy:

Py = ™ (tluy + 81l uy + 130”2 + 2} + 8u*uy + u§ — Bunuy, + 2unyuy
— Uttty — 2ultyly),
Q _ 4x(72 +3 2 2 +8 +2 +42
_4=ue Unlhylhyy + 3ty — Uslhyy + Uttty + 2ty + duy
— 2uyuyy);
P (L 3,2 24
3 = e (—uttyy + uyty + 3u"uy + uny — 2uutyyy ),

3x .
O3 = ue™ (—Uylyy — Uplhyy + Ullyy + 2utxlty);

P,= —ezx(—uy + uuty + untyy ),
Q 2 = —ue™uyy;
1
P2 ="
Uy
1
0y = —(uy+u);
Uy
=Ly 2
P = u—;(uyy—k Ullyy — Uty — 2Uixlty),
Q—_iZ 2y 20Uy — 1P uy +2 —4 -2
3= (uttyy + ity y + 2u" iy — u=y + 2uttltyy — 4ttty — 2utyyity
5
2.3,
—uly);

1
P = ) (—uiy2 — 4unyyuyy + 2uu§y + 4uxu§y — uzuy + Ountyiny,
y

2 2
— 2uity — 2ttty — Uity — uy),

1
Q4 = 3 (uuiy2 + uxu;y2 + 4u2uxyuyy — 2u2u§y + dunytyuyy
¥

2 2 22 3 2 2
— 8uuxuyy — 4uuxxuyy - 2uxuyy + Uy — OU Uy Uy + U Uyt

2 2 2
— 6uu Uy, + uuuy + Oun it uy, + uiuy — 2uyyity + 4uuy).

Here |yy| = || + 1.

Equation (0.2)

The space of conservation laws is 4-dimensional and is generated by w; = P;dx + Q;dy of the form

1 e
P,= 3 (2unyy — 2uuty — uyx) TS’
1 ef2y

_ 2 2 .
0.,= 3 (2unttey — 2uttytty + 20ty X — Uity — 2Ulty X — Uy X~ — 2ulty) s
y
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efy
Pfl i
Uy
efy
Q1= —(Ue+x)—;
Uy

P3 = uny, +3u+ uy,

03 = Uity + uyx;

1 5 1
P = —iuuxy + 2uyx + Euxuy + Euxuxx + untytty + 8ux + Euux,
—UllyxUyy +

5 —UlyxUy + Ully.

1
Q4= 2uy)c2 + Euxuyx + 2untyx + )

Again, |y,| = |0 — 1.

Equation (0.3)

The space of conservation laws is 6-dimensional; elements @; = P,dx + Q;dy of a basis are

1 3 116 , 162 229

5 UXU Uy + Tux UxlUyy + ?uxuxuy + 15
8 3 379

+ = ux2u2ux + = 2uxux U+ —— Uyl ux® +
5 R I T 15
184 348 48 5, 6 72

+ —Uyy uxy +— 5 ——UX"YUyy — ?xyuxuy + guyuyuxy + ?

5
12, 36 164 , 6 3 8, 3
+ g Uyttt + 80uxyu, + g WYty = 5 —x Yibxlly = FYlhelly = X Uslly
1024 48 18 164
15 x4yu} +43ux® uy + 5 uyu + ? uxu§ —xy%u?
1 52 14 64
— gxuxui + ?uyzuxy + 5 xzuzuy — gxzy }3 + 5
82 2 , 64 , 132
+ ?uyux + ?uxuy UyyUX + ?uy Uy Uxy + 24uxyity i,y + Tuxuyyuxy

+ 12uuyuyyuy + % %uyuyyuxzy + 55—6uxuxuyux) + ;uxu;

+ 3u3u + @uyz—kﬁmf' 241 utx + 2u 4— gy S ﬁy3u — %yu
5775 15 5 5 50T 5V TS

+ guuz — %xzy2 uy + 65—4ux2u2 + lsﬁuxzux — %)ﬁyu — 1?6)@@1 4y2uxuy
32 4 6 , 256 4 127

—?x uxu +5 WUyl — G X Ulty + —— 3

36 72 42 92

5 UyUxllyy = XYl + 5wyt lyy + 5
256 1

+ ?ux Yy + 5

+ ?uxuyuyy + ?ux Uxlyy + ?ux Uylyy + 3uy UyUyyU + ?uy Uyy
256 4 32 , 94 379
5 ——UX Uyy + ?xy Uy + —Uylly + ———UX Uyy

3
P=u qu)yu—l- UX Uy Uy
uyyux v+ 2u’ Uy ULy

2
Uyllyy Ity

16
ux’y + 2yu§uy + ?uxui

uxuyuyyux2 +

ux4uxy + xuiuﬁ,

2
— UXU Uy + Auxuityy

UXYUyy + 5

Og =

3 2.2
Uy UyyUyld + ?ux Uylyy + ?ux Uy Uyy + ?uyuyuxy

Suxuyyu—Ht Uyyl + 5 G
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256 , 82 17 32

— ?x Yy + guxux + 16uxu§ — §xu)2€uy + u;uxyu + §uuxuy
133 4 256 ; 512 176 64 12 5
BT —— X Uylty + 5 — X" yuy + ?uxy—k 5 UXyUylyy + §uxuxuyuyy + ?uuy
2048 512 32 41 512 1
s g~ B =y e = e — gt
13 25 2 65 5
P = Zuyuxuyy — nyuxuy + 2uyuyuyy + Zuxyuxy + Zuxuyuxy + Zuxuxuxy
65 3 13 65 , 47 ,
+ —ux? Yy + = UxlyyUyll + —— UYUy Uy + —— UX" Uxlyy + —— UX"UyUyy
4 2 4 8 8
2 9 » 5 49 , 45 391 ,
Uy Uty -+ Euy Uy + Euxuyyu - Txy Uy + Zuyuy 4 — UX Uy + 2UXUy
2. 3 49 4 343 ;4 343 1 3
+ o Aty + 77Uty + o Ulhxlly = 2 g X thally = XYy + Ty gk
2 21 1 3 2401 4
— Yty + Euxyuyuyy + Zuxuxuyuyy 3 7 ux
9 1 53 7 49 7 131
- Eyzu2 + - 1 §u§ - Ey ;‘ — §u2 - Exyu; — szyu 4x2uxu§ + ?uxzuy,
21 21 11 5 5
07 = Zuxuxuyy + Zuxuyuxy + iuyuyuyy + Zux Uyllyy + Euxuy Uyy
49 343 49 1, 343 ,
+ 2uyuyttyyu + 14uxyu,, — 7 i + ?ux + T 2xu Uy = X iy
4 +343 +5 +1 +4 5 +49 3 +65 5
Ully X uy uuy, Uyl XYy + —UX Uy + ——UX Uy
24 2 2 4 6 8
9 9 33, 3 2
— Zyuxuy + Zuyuxy — gx Uylly ~+ Uy Uyl =+ Uy Uy U
2 2 7
Ps = 12uy+ 3uu + 36ux® + 3uxuy - gyu + 3uxuxuy) + — 3 UXYUyy + Uyl Uyy UL
17 2 8 19 5
+ 2uyuyuyy + ?uxuy + 2uxuyityy — gyuxuy + guyuxy + Uyt + ?ux Uyy

1
— 12x2yuy — 2x2uxuy — 4xyu§ — gxuxu§ — 4y2uy -

guuxa
2 3 1 10 ’
Q6 = 12xu — 6x"uy — 2yu, + 6x7 1y — g”x + = 3 — UXUylyy — gxuxuy +4uxuyy
7
+ u)z,uyyu + 3 Uy + 3 Uy + Uxlyy U+ Uy Uyt + 2XUyY;
P 5 5 9 1, . 25 n 1 n 1
s = —Sxuyy 2xuxuy uyy 2uyux 5 xu zuxuyyu Uyllyy 2uxyuyu
1 1
+ Euxuxy Euuy,
1 5 5 1 5 1
0Os Euuxy + Eu — Exux — Euyux + Exzuy — 2xu§ — Eu;;
Py = —uyux 2uyy +4u,
04 uy + Xuty — Uy;
Py=—"2
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1

Xty — Uy — 2y

Qo =—
Here |y, | = |o| — 1.
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