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In this paper a three-dimensional system with five parameters is considered. For some particular values of these
parameters, one finds known dynamical systems. The purpose of this work is to study some symmetries of
the considered system, such as Lie-point symmetries, conformal symmetries, master symmetries and varia-
tional symmetries. In order to present these symmetries we give constants of motion. Using Lie group theory,
Hamiltonian and bi-Hamiltonian structures are given. Also, symplectic realizations of Hamiltonian structures
are presented. We have generalized some known results and we have established other new results. Our unitary
presentation allows the study of these classes of dynamical systems from other points of view, e.g. stability
problems, existence of periodic orbits, homoclinic and heteroclinic orbits.

Keywords: symmetries, symplectic realization, Lie groups, Poisson structure, Hamiltonian dynamics,
Lagrangian dynamics.

1. Introduction

The importance of the notion of symmetry for ordinary and partial differential equations is empha-
sized especially in time-evolution problems, bifurcation theory, fluid dynamics. A symmetry group
of a system of differential equations is a Lie group which allows us to find some solutions invariant
under some of its subgroups.

The symmetry analysis of differential equations was introduced and developed by Sophus
Lie [17]. Emmy Noether pointed the connection between symmetries and the existence of conserva-
tion laws [19]. The symmetry approach for partial differential equations can be found for example
in [12]. For some systems of differentials equations of even order, master symmetries and symme-
tries were calculated [6]. A classification of the symmetry group of three-dimensional Hamiltonian
systems was given in [10]. Recently, some studies of symmetries for a five-dimensional dynamical
system was presented [3].

Theoretical details about symmetries of differential equations can be found in [2, 7, 20].
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The aim of the present paper is to give a unitary presentation of some symmetries for some
classes of three-dimensional dynamical systems. For this purpose we have introduced the system:

ẋ = ay+byz
ẏ = cxz+dx
ż =−kxy

(1.1)

where a,b,c,d,k are real parameters, k 6= 0. System (1.1) generalizes for example the Euler equa-
tions for a free rigid body [20], the equations of the rigid body with a free spinning rotor [14], the
real Maxwell-Bloch equations [11], a particular case of Rikitake system [22], a particular case of
Rabinovich system [21], a completely integrable case of the Lorenz system [13], a particular case
of May-Leonard system [13] and a particular case of Chen-Lee system [4].

In order to establish some symmetries for system (1.1), Hamilton-Poisson realizations and sym-
plectic realizations are given.

For details on Poisson geometry and Hamiltonian mechanical systems, see, e.g. [5, 16, 18].

2. Hamiltonian structures and symplectic realizations

In this section Hamiltonian structures and symplectic realizations for the system (1.1) are given.
Also, bi-Hamiltonian formulations of the system are presented. Our study will be focused on the
following cases.

Case I. bd−ac 6= 0.
It is easy to see that the functions H1,C1 ∈ C∞(R3,R) where H1(x,y,z) = −d

2 x2 + a
2 y2 + ac−bd

2k z2

and C1(x,y,z) = ck
2 x2− bk

2 y2 +(ac−bd)z are constants of motion for the considered system.
We begin our study by giving the Lie-Poisson structures. To do this, we consider the following

subcases.
I1. bc 6= 0.

Proceeding as in [15], let us consider the linear Poisson bracket {·, ·},

{x,y}= α1x+α2y+α3z , {x,z}= β1x+β2y+β3z , {y,z}= γ1x+ γ2y+ γ3z. (2.1)

Imposing the condition that C = H1 to be a Casimir for (2.1), it results α1 = α2 = β1 = β3 =

γ2 = γ3 = 0. If H = C1 is a Hamiltonian function, it follows {x,y} = −1
k z, {x,z} = a

ac−bd y and
{y,z}= d

ac−bd x, or in coordinates, using matrix notation,

Π(x,y,z) =

 0 −1
k z a

ac−bd y
1
k z 0 d

ac−bd x

− a
ac−bd y − d

ac−bd x 0

 .
Therefore we consider the three-dimensional Lie algebra g1 defined by [E1,E2] =−1

k E3, [E1,E3] =
a

ac−bd E2, [E2,E3] =
d

ac−bd E1 where

E1 =

 0 −1
k 0

a
ac−bd 0 0

0 0 0

 , E2 =

 0 0 1
k

0 0 0
d

ac−bd 0 0

 , E3 =

0 0 0
0 0 − a

ac−bd
0 − d

ac−bd 0

 .
Now, we introduce a second Poisson structure.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

266
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If bc > 0, we consider the three-dimensional Lie group E(1,1) of rigid motions of the
Minkowski plane and its corresponding Lie algebra e(1,1). Considering the base Be(1,1) =

{E1,E2,E3} where

E1 =

0 0 0
b 0 0
0 0 0

 , E2 =

 0 0 0
0 0 0√
bc 0 0

 , E3 =

0 0 0
0 0 −k

√
bc

ac−bd

0 −k
√

bc
ac−bd 0

 ,
the following bracket relations [E1,E2] = 0, [E1,E3] =

bk
ac−bd E2, [E2,E3] =

ck
ac−bd E1, hold.

Following [16], it is easy to see that the bilinear map Θ : e(1,1)×e(1,1)→R given by the matrix
(Θi j)1≤i, j≤3, Θ12 =−Θ21 = 1 and 0 otherwise, is a 2-cocycle on e(1,1) and it is not a coboundary
since Θ(E1,E2) = 1 6= 0 = f ([E1,E2]), for every linear map f , f : e(1,1)→ R. On the dual space
e(1,1)∗ ' R3, a modified Lie-Poisson structure is given in coordinates by

Πb(x,y,z) =

 0 1 bk
ac−bd y

−1 0 ck
ac−bd x

− bk
ac−bd y − ck

ac−bd x 0

 .
If bc < 0, we consider the special Euclidean Lie group SE(2) of all orientation-preserving

isometries and its corresponding Lie algebra se(2). Considering the base Bse(2) = {X1,X2,X3}where

X1 =

0 0 0
b 0 0
0 0 0

 , X2 =

 0 0 0
0 0 0√
−bc 0 0

 , X3 =

0 0 0
0 0 k

√
−bc

ac−bd

0 −k
√
−bc

ac−bd 0

 ,
the following bracket relations [X1,X2] = 0, [X1,X3] =

bk
ac−bd X2, [X2,X3] =

ck
ac−bd X1, hold. Then, on

the dual space se(2)∗ ' R3, the same Lie-Poisson structure Πb is obtained.
I2. b = 0.

In this case, we consider the three-dimensional Heisenberg Lie group H3 and its corresponding Lie
algebra h3. Considering the base Bh3 = {E1,E2,E3} where

E1 =

0 0 a
0 0 0
0 0 0

 , E2 =

0 1 0
0 0 0
0 0 0

 , E3 =

0 0 0
0 0 k
0 0 0

 ,
the following bracket relations [E1,E2] = 0, [E1,E3] = 0, [E2,E3] =

k
a E1, hold. As in the case I1, a

modified Lie-Poisson structure on the dual space h∗3 ' R3 is given in coordinates by

Π0 =

 0 1 0
−1 0 k

a x
0 − k

a x 0

 .
We notice that for b = 0 in the matrix Πb, we obtain Π0.

I3. c = 0.
By using the substitution x = Y,y = X ,z = Z, we obtain the case I2.

The following theorem gives a Hamilton-Poisson realization and a bi-Hamiltonian formulation
of the considered system.
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Theorem 2.1. Let a, b, c, d, k ∈ R such that bd− ac 6= 0. The system (1.1) has the Hamilton-
Poisson realization (R3,Πb,H1) and C1 is a Casimir of this configuration. Moreover, system (1.1)
has bi-Hamiltonian formulation.

The next theorem states that the system (1.1) can be regarded as a Hamiltonian mechanical
system.

Theorem 2.2. Let a, b, c, d, k ∈R such that bd−ac 6= 0. The Hamilton-Poisson mechanical system
(R3,Πb,H1) has a full symplectic realization (R4,ω, H̃1), where ω = dp1 ∧ dq1 + dp2 ∧ dq2 and
H̃1 =−d

2 q2
1 +

a
2 p2

1− 1
8k(bd−ac)

(
ckq2

1−bkp2
1−2p2

)2.

Proof. The corresponding Hamilton’s equations are

q̇1 = ap1 +
b

2(bd−ac) p1
(
ckq2

1−bkp2
1−2p2

)
q̇2 =

1
2k(bd−ac)

(
ckq2

1−bkp2
1−2p2

)
ṗ1 = dq1 +

c
2(bd−ac)q1

(
ckq2

1−bkp2
1−2p2

)
ṗ2 = 0.

(2.2)

We define the application ϕ : R4 → R3 by ϕ(q1,q2, p1, p2) = (x,y,z) where x = q1, y = p1, z =
ck

2(bd−ac)q
2
1− bk

2(bd−ac) p2
1− 1

bd−ac p2. It follows that ϕ is a surjective submersion, the equations (2.2)
are mapped onto the equations (1.1) and the canonical structure {., .}ω is mapped onto the Poisson
structure Πb, as required. We also remark that H1 = H̃1 and C1 = p2.

Case II. bd−ac = 0.
We notice that if bc = 0, the system (1.1) is reduced to the harmonic oscillator. In the following we
will only consider the case bc 6= 0. We remark that the constants of motion of the system (1.1) are
the functions H2,C2 ∈C∞(R3,R) where H2(x,y,z) = k

2 x2 + b
2

(
z+ a

b

)2 and C2(x,y,z) = c
2 x2− b

2 y2.

In order to obtain a Hamilton-Poisson realization of the system (1.1) we consider two cases.
If bc > 0, we again consider the Lie algebra e(1,1) having now the base Be(1,1) = {E1,E2,E3}

where

E1 =

0 0 0
1 0 0
0 0 0

 , E2 =

 0 0 0
0 0 0√ c

b 0 0

 , E3 =

0 0 0
0 0 −

√ c
b

0 −
√ c

b 0


with [E1,E2] = 0, [E1,E3] = E2, [E2,E3] =

c
b E1. On the dual space e(1,1)∗ ' R3, a Lie-Poisson

structure is given in coordinates by

Π̃1(x,y,z) =

 0 0 y

0 0 c
b x

−y − c
b x 0

 .
If bc < 0, once more we consider the Lie algebra se(2) with the base Bse(2) = {X1,X2,X3} where

X1 =

0 0 0
1 0 0
0 0 0

 , X2 =

 0 0 0
0 0 0

−
√
− c

b 0 0

 , X3 =

0 0 0
0 0 −

√
− c

b
0
√
− c

b 0
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with [X1,X2] = 0, [X1,X3] = X2, [X2,X3] =
c
b X1. Therefore, on the dual space se(2)∗ 'R3, the same

Lie-Poisson structure Π̃1 is obtained.
Now, we can state the next result.

Theorem 2.3. Let a, b, c, d, k∈R such that bd−ac= 0. The system (1.1) has the Hamilton-Poisson
realization (R3,Π̃1,H2) and C2 is a Casimir of this configuration.

In the following, another Poisson structure is given. Let us consider the modified Poisson bracket
{·, ·} [16],

{x,y}= α1x+α2y+α3z+α4 , {x,z}= β1x+β2y+β3z+β4 , {y,z}= γ1x+γ2y+γ3z+γ4. (2.3)

Imposing the condition that C = H2 is a Casimir for (2.3), it results α1 = α2 = β1 = β2 = β3 = β4 =

γ2 = γ3 = γ4 = 0, aγ1 = kα4, bγ1 = kα3. If H =C2 is a Hamiltonian function, we get the following
dynamical system: 

ẋ =−bα4y−bα3yz
ẏ =−cα3xz− cα4x
ż = bγ1xy.

Taking α3 = −1, α4 = −a
b , γ1 = − k

b , the above system is the system (1.1) in the case bd−ac = 0
with bc 6= 0. Thus, {x,y} = −z− a

b , {x,z} = 0, {y,z} = − k
b x, or in coordinates, using matrix

notation,

Π̃2(x,y,z) =

 0 −z− a
b 0

z+ a
b 0 − k

b x

0 k
b x 0

 .
Therefore we consider the three-dimensional Lie algebra g2 defined by [Y1,Y2] =−Y3, [Y1,Y3] = 0,
[Y2,Y3] =− k

bY1 where

Y1 =

0 0 0
1 0 0
0 0 0

 , Y2 =


0 0 0

0 0 −
√

k
b

0
√

k
b 0

 , Y3 =

 0 0 0
0 0 0√

k
b 0 0


and kb > 0, and respectively g3 defined by [Z1,Z2] =−Z3, [Z1,Z3] = 0, [Z2,Z3] =− k

b Z1 where

Z1 =

0 0 0
1 0 0
0 0 0

 , Z2 =


0 0 0

0 0
√
− k

b

0
√
− k

b 0

 , Z3 =

 0 0 0
0 0 0√
− k

b 0 0


and kb < 0.

After standard computations it follows that the Lie group G2 generated by the Lie algebra g2 is
SE(2) and the Lie group G3 generated by the Lie algebra g3 is E(1,1).

Now, it is easy to prove the following result.

Theorem 2.4. Let a, b, c, d, k ∈ R such that bd− ac = 0. The system (1.1) is a bi-Hamiltonian
system.
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The next theorems state that the system (1.1) can be regarded as a Hamiltonian mechanical
system.

Theorem 2.5. Let a, b, c, d, k ∈ R such that bd− ac = 0. If bc > 0, then the Hamilton-Poisson
mechanical system (R3,Π̃1,H2) has a full symplectic realization (R4,ω, H̃+

2 ) where ω = dp1 ∧
dq1 +dp2∧dq2 and H̃+

2 = k
8 (p2eq1 + e−q1)

2
+ c

2 p2
1.

Proof. The corresponding Hamilton’s equations are
q̇1 = cp1

q̇2 =
k
4 (p2eq1 + e−q1)eq1

ṗ1 =− k
4 (p2eq1 + e−q1)(p2eq1− e−q1)

ṗ2 = 0.

(2.4)

We define the application ϕ : R4→ R3 by ϕ(q1,q2, p1, p2) = (x,y,z) where x = 1
2 (p2eq1 + e−q1),

y = 1
2

√ c
b (e
−q1− p2eq1), z = −

√ c
b · p1− a

b . It follows that ϕ is a surjective submersion, the equa-
tions (2.4) are mapped onto the equations (1.1) and the canonical structure {., .}ω is mapped onto
the Poisson structure Π̃1, as required. We also remark that H2 = H̃+

2 and C2 =
c
2 p2.

Theorem 2.6. Let a, b, c, d, k ∈ R such that bd− ac = 0. If bc < 0, then the Hamilton-Poisson
mechanical system (R3,Π̃1,H2) has a full symplectic realization (R4,ω, H̃−2 ) where ω = dp1 ∧
dq1 +dp2∧dq2 and H̃−2 = k

2 p2
2 cos2 q1− c

2 p2
1.

Proof. The corresponding Hamilton’s equations are
q̇1 =−cp1

q̇2 = kp2 cos2 q1

ṗ1 = kp2
2 sinq1 cosq1

ṗ2 = 0.

(2.5)

We define the application ϕ : R4 → R3 by ϕ(q1,q2, p1, p2) = (x,y,z) where x = p2 cosq1, y =√
− c

b · p2 sinq1, z = −
√
− c

b · p1− a
b . It follows that ϕ is a surjective submersion, the equations

(2.5) are mapped onto the equations (1.1) and the canonical structure {., .}ω is mapped onto the
Poisson structure Π̃1, as required. We also remark that H2 = H̃−2 and C2 =

c
2 p2

2.

We conclude this section noting that these Hamiltonian formulations are not of the type studied
in [9].

3. Symmetries

In this section some types of symmetries are studied.
We recall that for a system ẋ = f (x), where f : M→ T M, and M is a smooth manifold of finite

dimension, a vector field X is called:
• a symmetry if ∂X

∂ t +[X,X f ] = 0 where X f is the vector field defined by the system;
• a Lie-point symmetry if its first prolongation transforms solutions of the system into other

solutions;
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Cristian Lăzureanu and Tudor Bı̂nzar / Symmetries of some classes of dynamical systems

• a conformal symmetry if the Lie derivative along X satisfies LXπ = λπ and LXH = νH, for
some scalars λ ,ν where the Poisson tensor π and the Hamiltonian H give the Hamilton-Poisson
realization of the system;
• a master symmetry if [[X,X f ],X f ] = 0, but [X,X f ] 6= 0.

For Lagrange’s equations d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= 0 , i = 1,2 generated by the Lagrangian L, a vector

field −→v = ξ (q1,q2, t) ∂

∂ t +η1(q1,q2, t) ∂

∂q1
+η2(q1,q2, t) ∂

∂q2
is

• a variational symmetry if pr(1)(−→v )(L)+L dξ

dt = 0 where

pr(1)(−→v ) =−→v +
(

η̇1− ξ̇ q̇1

)
∂

∂ q̇1
+
(

η̇2− ξ̇ q̇2

)
∂

∂ q̇2
;

• a Lie-point symmetry if the action of its second prolongation pr(2)(−→v ) on Lagrange’s equa-
tions vanishes where pr(2)(−→v ) = pr(1)(−→v )+

(
η̈1− ξ̈ q̇1−2ξ̇ q̈1

)
∂

∂ q̈1
+
(

η̈2− ξ̈ q̇2−2ξ̇ q̈2

)
∂

∂ q̈2
.

Following [8], our first result provides some Lie point symmetries and a conformal symmetry
of the system (1.1).

Proposition 3.1. (i) The vector field X1 = −t ∂

∂ t + x ∂

∂x + y ∂

∂y +
(
z+ a

b

)
∂

∂ z is a Lie point symmetry
of the system (1.1) in the case bd−ac = 0, bc 6= 0.
(ii) The vector field X2 = −t ∂

∂ t + x ∂

∂x + 2y ∂

∂y + 2
(
z+ d

c

)
∂

∂ z is a Lie point symmetry of the system
(1.1) in the case b = 0, ac 6= 0.

Moreover, X1 is a conformal symmetry.

Proof. If the vector v = τ(t,x,y,z) ∂

∂ t +A1(t,x,y,z) ∂

∂x +A2(t,x,y,z) ∂

∂y +A3(t,x,y,z) ∂

∂ z is a Lie point

symmetry, then its first prolongation pr(1)(v)= v+(Ȧ1− τ̇ ẋ) ∂

∂ ẋ +(Ȧ2− τ̇ ẏ) ∂

∂ ẏ +(Ȧ3− τ̇ ż) ∂

∂ ż applied
to our system implies 

Ȧ1− ẋτ̇− (a+bz)A2−byA3 = 0
Ȧ2− ẏτ̇− (d + cz)A1− cxA3 = 0
Ȧ3− żτ̇ + kyA1 + kxA2 = 0.

One solution of the above system is the vector X1 in the case (i) and the vector X2 in the case (ii),
i.e. X1 and X2 are Lie point symmetries.

One can easily check that LX1Π̃1 =−Π̃1, LX1Π̃2 =−Π̃2, LX1H2 = 2H2, LX1C2 = 2C2, whence
X1 is a conformal symmetry.

The following result provides a master symmetry of our considered system.

Proposition 3.2. i) The vector field
−→
X 1 = x ∂

∂x + y ∂

∂y +
(
z+ a

b

)
∂

∂ z is a master symmetry of the
system (1.1) in the case bd−ac = 0, bc 6= 0.
(ii) The vector field

−→
X 2 = x ∂

∂x +2y ∂

∂y +2
(
z+ d

c

)
∂

∂ z is a master symmetry of the system (1.1) in the
case b = 0, ac 6= 0.

In the following, using symplectic realizations of the system (1.1), the symmetries of the Euler-
Lagrange equations are presented.

Our study begins with the case bd−ac = 0, bc > 0. From Hamilton’s equations (2.4) we obtain
by differentiation: {

q̈2−2q̇1q̇2 +
k
2 q̇1 = 0

q̈1−2ce−2q1 q̇2 +
4c
k e−2q1 q̇2

2 = 0.
(3.1)
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These are also the Euler-Lagrange equations generated by L = 1
2c q̇2

1 +
2
k e−2q1 q̇2

2− e−2q1 q̇2. The
condition for the vector field −→v = ξ (q1,q2, t) ∂

∂ t +η1(q1,q2, t) ∂

∂q1
+η2(q1,q2, t) ∂

∂q2
to be a Lie

Point symmetry for the Euler-Lagrange equations (3.1) leads to:
η̈2− q̇2ξ̈ +

( k
2 −2q̇2

)
η̇1−2q̇1η̇2 +

(
4q̇1q̇2− k

2 q̇1−2q̈2
)

ξ̇ = 0,
η̈1− q̇1ξ̈ +

(8c
k q̇2−2c

)
e−2q1 η̇2 +

(
2ce−2q1 q̇2− 8c

k e−2q1 q̇2
2−2q̈1

)
ξ̇ +

(
4cq̇2− 8c

k q̇2
2
)

e−2q1η1 = 0.
Taking into account the chain rule for the computations of ξ̇ , ξ̈ , η̇1, η̈1, η̇2 and η̈2, and using
the equations (3.1), the above equations become two equations in t, q1, q2, q̇1, q̇2, that are all
independent. Then, these equations must be satisfied identically in t, q1, q2, q̇1, q̇2. It follows ξq1 =

0, ξq2 = 0, η1,q1 = 0, ξtt = 0, η1,q2q2 = 0, η2,q1q2 = 0 and

η2,q1q1−2η2,q1 = 0, (3.2)

2η2,tt + kη1,t = 0, (3.3)

η2,q2q2−2η1,q2− 4c
k e−2q1η2,q1 = 0, (3.4)

4η2,tq1−4η2,t + kξt − kη2,q2 = 0, (3.5)

kη1,q2−4η1,t +4η2,tq2 +4ce−2q1η2,q1 = 0, (3.6)

η1−η2,q2 = 0, (3.7)

η1,tt −2ce−2q1η2,t = 0, (3.8)

η1,q2 +
4c
k e−2q1η2,q1 = 0, (3.9)

η1,tq2 +
4c
k e−2q1η2,t +2ce−2q1η1− ce−2q1η2,q2− ce−2q1ξt = 0. (3.10)

Using (3.3), (3.5), (3.7) it results η1,t = 0, η2,tt = 0, η2,tq2 = 0. By (3.8) one gets η2,t = 0, whence
η1 = ξt from (3.7) and (3.10). Therefore η2,q1 = 0 by (3.9), hence η2,q2q2 = 0 from (3.4). Taking
into account the above results we obtain ξ = αt +β , η1 = α, η2 = αq2 + γ , α, β , γ ∈ R.

Now, we can conclude the following result.

Theorem 3.1. Let a, b, c, d, k ∈ R such that bd − ac = 0 and bc > 0. The symmetries of the
equations (3.1) are given by −→v = (αt +β ) ∂

∂ t +α
∂

∂q1
+(αq2 + γ) ∂

∂q2
where α, β , γ ∈ R.

Remark 3.1. (i) For α = γ = 0 and β 6= 0, we have −→v1 = β
∂

∂ t that represents the time translation
symmetry which generates the conservation of energy H̃+

2 .
(ii) For α = β = 0 and γ 6= 0, we have −→v2 = γ

∂

∂q2
that represents a translation in the cyclic q2

direction which is related to the conservation of p2.
Moreover −→v1 and −→v2 are variational symmetries.

Remark 3.2. The 3-dimensional Lie algebra corresponding to the symmetries of the equations
(3.1) endowed with the standard Lie bracket vector fields is generated by the base {−→u 1,

−→u 2,
−→u 3}

where −→u 1 = −t · ∂

∂ t −
∂

∂q1
− q2 · ∂

∂q2
, −→u 2 = ∂

∂ t ,
−→u 3 = ∂

∂q2
. The following relations [−→u 1,

−→u 2] =
−→u 2 , [−→u 1,

−→u 3] =
−→u 3 , [−→u 2,

−→u 3] =
−→
0 , hold. Therefore this Lie algebra is of type V in Bianchi’s

classification [1].

In the same manner the symmetries in the other cases are obtained.
In the case bd−ac = 0, bc < 0, from Hamilton’s equations (2.5) we obtain:{

q̈2 cosq1 +2q̇1q̇2 sinq1 = 0

kq̈1 cos3 q1 + cq̇2
2 sinq1 = 0.

(3.11)
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These are also the Euler-Lagrange equations generated by the Lagrangian L =− 1
2c q̇2

1 +
1

2k cos2 q1
q̇2

2.

Doing the same manipulation as before, we get that the symmetries of the equations (3.11) are given
by −→v = β

∂

∂ t + γ
∂

∂q2
, β , γ ∈ R, and again −→v1 and −→v2 are obtained.

In the case bd−ac 6= 0, b = 0, we obtain from Hamilton’s equations (2.2):{
q̈1−ackq̇2q1−adq1 = 0

aq̈2 + q̇1q1 = 0,
(3.12)

which are also the Euler-Lagrange equations generated by L = 1
2a q̇2

1 +
ack
2 q̇2

2 +
ck
2 q̇2q2

1 +
d
2 q2

1.

In this case we have the following result.

Theorem 3.2. Let a, b, c, d, k∈R such that bd−ac 6= 0 and b= 0. The symmetries of the equations
(3.12) are given by −→v = (αt +β ) ∂

∂ t −αq1
∂

∂q1
+
(
−αq2− 2d

ck αt + γ
)

∂

∂q2
where α, β , γ ∈ R.

Remark 3.3. (i) For α = γ = 0 and β 6= 0, we have −→v1 = β
∂

∂ t that represents the time translation
symmetry which generates the conservation of energy H̃1.

(ii) For α = β = 0 and γ 6= 0, we have −→v2 = γ
∂

∂q2
that represents a translation in the cyclic q2

direction which is related to the conservation of p2.
Moreover −→v1 and −→v2 are variational symmetries.

Remark 3.4. The 3-dimensional Lie algebra corresponding to the symmetries of the equations
(3.12) endowed with the standard Lie bracket vector fields is generated by the base {−→u 1,

−→u 2,
−→u 3}

where −→u 1 =−t · ∂

∂ t +q1 · ∂

∂q1
+
(
q2 +

2d
ck t
)
· ∂

∂q2
, −→u 2 =

∂

∂ t ,
−→u 3 =

∂

∂q2
. We have the following bracket

relations: [−→u 1,
−→u 2] =

−→u 2− 2d
ck
−→u 3, [

−→u 1,
−→u 3] =−−→u 3, [

−→u 2,
−→u 3] =

−→
0 .

In the case bd−ac 6= 0, b 6= 0, we obtain from the equations (2.2) the Euler-Lagrange equations

(a+bkq̇2)
2 q̈1 +bkq̇2

1q1− (dq1 + ckq̇2q1)(a+bkq̇2)
3 = 0, (a+bkq̇2) q̈2 + q̇1q1 = 0,

generated by the Lagrangian L =
q̇2

1
2a+2bkq̇2

− k
2(bd− ac)q̇2

2 +
ck
2 q̇2q2

1 +
d
2 q2

1 and again as before we

obtain −→v = β
∂

∂ t + γ
∂

∂q2
, β , γ ∈ R.

4. Conclusions

In this paper a unitary presentation of the symmetries of a class of three-dimensional dynamical
systems is given. In order to obtain this presentation, Hamiltonian structures, symplectic realizations
and Lagrangian formulations are given.

The well-known dynamical systems as the Euler equations for a free rigid body, the equations
of the rigid body with a free spinning rotor, the real Maxwell-Bloch equations, a particular case of
Rikitake system, a particular case of Rabinovich system, a completely integrable case of the Lorenz
system, a particular case of May-Leonard system and a particular case of Chen-Lee system, belong
to the considered class.

Our unitary presentation allows the study of these classes of dynamical systems from other
points of view, e.g. stability problems, existence of periodic orbits, homoclinic and heteroclinic
orbits.
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