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In this paper, the bilinear integrability for B-type KdV equation have been explored. According to the relation to
tau function, we find the bilinear transformation and construct the bilinear form with an auxiliary variable of the
B-type KdV equation. Based on the truncation form, the Bäcklund transformation has been constructed. Fur-
thermore, the N-soliton solutions and Riemann-theta function 1-periodic solutions of the B-type KdV equation
are obtained.
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1. Introduction

Various physical phenomena in physics, engineering, mechanics, biology and chemistry are
modeled by nonlinear partial differential equations(NLPDEs). The research on the integrability and
exact solution of these equations plays a major role in the study of the nonlinear interaction in the
physical phenomena and provide better knowledge of possible applications[1,6,13]. It is well known
that there are several kinds of definitions for integrability, Liouville integrability, Lax integrability,
inverse scattering integrability, bilinear integrability, Painlevé integrability, symmetry integrability,
C-integrability and so on [7,8,9,11]. The Hirota bilinear method is a direct approach to construct
the soliton solutions and Riemann-theta function solutions of certain NLPDEs[4,10,12,14].

The B-type KdV equation
ut = (k+1)vx

vt =− 1
k+1

(kvxx − vxx −2wx)

wt =−k2 +1
k+1

vxxx +(k+1)(vux +2uvx)+
k−1
k+1

wxx

(1.1)

belongs to the B-type KdV hierarchy constructed in the Ref.[5], where we constructed a class of
B-type KdV hierarchies by using Lie algebra splitting, and researched the Lax pair, Bäcklund trans-
formation and Hamilton structure of the B-type KdV equation(1.1). However, it is not clear about
the bilinear integrability, the existence of N-soliton solutions and Riemann-theta function solutions.
In this paper, we mainly discuss the bilinear integrability, and construct the N-soliton solutions and
Riemann-theta function solutions of the B-type KdV equation.
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2. Lax Integrability and Tau function

First we recall the definition of τ f given by Wilson in [3].
Definition 2.1. Assume that L± is a splitting of L compatible with the 2-cocycle that defines

a central extension, and that J = {J j| j ≥ 1} is a vacuum sequence in L+. For f ∈ L−, the tau
function τ f associated to f is a function of t = (t1, . . . , tN) defined by

τ f (t) = µ(V (t) f−1) (2.1)

where V (t) = exp(ΣN
j=1t jJ j) is the vacuum frame and µ is the Wilson’s µ-function[3].

Theorem 2.1[2]. Let L± ∈ L , (L+,L−) be a splitting, J = {J j| j ≥ 1} a vacuum sequence, ω
a 2-cocycle on L compatible with the splitting, and V (t) = exp(ΣN

j=1t jJ j) the vacuum frame. Let
f ∈ L−, and

V (t) f−1 = M−1(t)E(t) (2.2)

with M(t) ∈ L− and E(t) ∈ L+. Then
(1)(lnτ f )t j = ⟨J j,M−1∂λ M⟩−1 = ⟨MJ jM−1,(∂λ M)M−1⟩−1,
(2)(lnτ f )t1t j = ⟨MJ jM−1,∂λ J1⟩−1.
From Ref.[5], we know that for the Lie algebras

L B
+ = {∑

j≥0
A jλ j|A j ∈ sl(4,C)},L B

− = {B((A1)+)+ ∑
j<0

A jλ j|A j ∈ sl(4,C)}, (2.3)

if

B =


0 0 1 0 0 0

0 1 0 0 0 0

1−k
k+1 0 0 1 0 k−1

k+1

0 0 1 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

, (2.4)

then (L B
+ ,L

B
−) becomes a Lie algebra splitting.

Let ei j be the i j-th elementary matrix, a = e41,b = e12 +e23 +e34, and J = az+b. From the Lie
algebra splitting (L B

+ ,L
B
−) and vacuum sequence J = {Ji|i ≥ 1}, the B-type III KdV hierarchy can

be constructed.

Let f ∈L B
− , and u f =


0 0 0 0

u 0 0 0

v 0 0 0

w kv u 0

, we have Q(u f ) = MJM−1. Write Q(u f ) in power series in

λ

Q(u f ) = MJM−1 = aλ +∑
i≤0

Qiλ i.

And the flow generated by J3 is exact B-type KdV Equation (1.1). By Theorem 2.1 (2), we have
(lnτ f )t1t j = tr(aQ j). According to the expression of Q1 , we can give explicit formulas of (lnτ f )t1t1
in terms of u f for the B-type KdV hierarchy and

(lnτ f )t1t1 = tr(aQ1) =−1
2

u. (2.5)
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3. Bilinear Integrability

Theorem 3.1. Under the transformation
u =−2(lnϕ)xx,

v =− 2
k+1

(lnϕ)xt ,

w =−(lnϕ)tt −
k−1
k+1

(lnϕ)xxt ,

(3.1)

B-type KdV equations (1.1) can be bilinearized into
(
1
3

D4
x +D2

t +DxDs)ϕ ·ϕ = 0,

(
1
3

D3
xDt −

1
2

DsDt)ϕ ·ϕ = 0,
(3.2)

where s is an auxiliary variable.

Proof. From the formula (2.5), we have

u =−2(lnϕ)xx,ϕ = τ f . (3.3)

Substituting (2.5) into (1.1), we can easily obtain the bilinear transformation (3.1).
Let p = 2lnϕ , (3.1) can be simplified into

u =−pxx,

v =− 1
k+1

pxt ,

w =−1
2

ptt −
k−1

2(k+1)
pxxt .

(3.4)

Substituting (3.4) into (1.1), we can represent the resulting equation as follows,

1
2
(pxxxx + p2

xx + ptt)t +(pxt pxx)x = 0. (3.5)

In order to write (3.5) in a local bilinear form, we introduce an auxiliary variable s and impose
subsidiary constraint items, then (3.5) becomes

1
2
(
1
3

pxxxx + p2
xx + ptt + pxs)t +(

1
3

pxxxt + pxt pxx −
1
2

pst)x = 0. (3.6)

Thus, we can assume that 
1
3

pxxxx + p2
xx + ptt + pxs = 0

1
3

pxxxt + pxt pxx −
1
2

pst = 0.
(3.7)

Finally we have the following bilinear forms
(
1
3

D4
x +D2

t +DxDs)ϕ ·ϕ = 0

(
1
3

D3
xDt −

1
2

DsDt)ϕ ·ϕ = 0.
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4. Soliton Solution

Next we construct soliton solutions of B-type KdV equation (1.1).
First, expand ϕ in the power series of a small parameter ε as follows

ϕ = 1+ εϕ (1)+ ε2ϕ (2)+ ε3ϕ (3)+ · · ·. (4.1)

Substituting it into (3.2), we have

ε :


(
1
3

D4
x +D2

t +DxDs)(ϕ (1) ·1+1 ·ϕ (1)) = 0,

(
1
3

D3
xDt −

1
2

DsDt)(ϕ (1) ·1+1 ·ϕ (1)) = 0,
(4.2)

ε2 :


(
1
3

D4
x +D2

t +DxDs)(ϕ (2) ·1+ϕ (1) ·ϕ (1)+1 ·ϕ (2)) = 0,

(
1
3

D3
xDt −

1
2

DsDt)(ϕ (2) ·1+ϕ (1) ·ϕ (1)+1 ·ϕ (2)) = 0,
(4.3)

ε3 :


(
1
3

D4
x +D2

t +DxDs)(ϕ (3) ·1+ϕ (2) ·ϕ (1)+ϕ (1) ·ϕ (2)+1 ·ϕ (3)) = 0,

(
1
3

D3
xDt −

1
2

DsDt)(ϕ (3) ·1+ϕ (2) ·ϕ (1)+ϕ (1) ·ϕ (2)+1 ·ϕ (3)) = 0,
(4.4)

...

Consider 1-soliton solution, we suppose

ϕ (1) = eη1 , η1 = α1x+β1t + γ1s+η (1)
0 , (4.5)

where α1, β1, γ1 are constants to be determined. Substituting it into (4.2), we get

1
3

α4
1 +β 2

1 +α1γ1 = 0,

1
3

α3
1 β1 −

1
2

β1γ1 = 0.
(4.6)

From (4.6) we have

γ1 =
2
3

α3
1 , α4

1 +β 2
1 = 0. (4.7)

Choosing ϕ (2) = ϕ (3) = · · ·= 0, the expansion of ϕ is truncated with a finite sum, and exact solution
of (4.2) reads

ϕ = 1+ εeη1 , η1 = α1x+β1t +
2
3

α3
1 s+η(1)

0 , (4.8)
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where α1, β1 satisfy condition α4
1 + β 2

1 = 0. By using transformation (3.1), 1-soliton solution of
B-type KdV equations (1.1) reads(set ε = 1)

u =−2ln(1+ eη1)xx =−α2
1

2
(sinh

α1x+β1t + γ1s+η(1)
0

2
)2,

v =− 2
k+1

ln(1+ eη1)xt =− α1β1

2(k+1)
(sinh

α1x+β1t + γ1s+η(1)
0

2
)2,

w =− ln(1+ eη1)tt −
k−1
k+1

ln(1+ eη1)xxt = [−β 2
1

4
+

(k−1)α2
1 β1

4(k+1)

tanh
α1x+β1t + γ1s+η(1)

0
2

](sinh
α1x+β1t + γ1s+η (1)

0
2

)2,

(4.9)

where α1, β1, γ1 satisfy the conditions γ1 =
2
3 α3

1 , α4
1 +β 2

1 = 0.
Next we find 2-soliton solution by assuming

ϕ (1) = eη1 + eη2 , ηi = αix+βit + γi +η(i)
0 , i = 1,2. (4.10)

From (4.2), we can get

γi =
2
3

α3
i , α4

i +β 2
i = 0, i = 1,2. (4.11)

According to value of ϕ (1), solving (4.3), we have

ϕ (2) = eη1+η2+A12 , eA12 =
(α1 −α2)

2

α2
1 +α2

2
. (4.12)

By choosing ϕ (i) = 0, i ≥ 3, the expansion (4.1) is truncated with a finite sum, and exact solution of
(4.3) reads

ϕ = 1+ εeη1 + εeη2 + ε2 (α1 −α2)
2

α2
1 +α2

2
eη1+η2 , (4.13)

where

ηi = αix+βit +
2
3

α3
i s+η (i)

0 , i = 1,2. (4.14)

Utilizing transformations (3.1), we have the 2-soliton solution of B-type KdV equations(1.1)
u =−2ln(1+ eη1 + eη2 + eη1+η2+A12)xx,

v =− 2
k+1

ln(1+ eη1 + eη2 + eη1+η2+A12)xt ,

w =− ln(1+ eη1 + eη2 + eη1+η2+A12)tt −
k−1
k+1

ln(1+ eη1 + eη2 + eη1+η2+A12)xxt .

(4.15)
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And we can easily have the N-soliton solution of B-type KdV equation (1.1)



u =−2(lnϕ)xx,

v =− 2
k+1

(lnϕ)xt ,

w =− (ln f )tt −
k−1
k+1

(lnϕ)xxt ,

ϕ = ∑
µ=0,1

exp(
N

∑
i=1

µiηi +
N

∑
1≤i< j

Ai jµiµ j),

(4.16)

where

ηi = αix+βit +
2
3

α3
i s+η (i)

0 ,

γi =
2
3

α3
i , α4

i +β 2
i = 0,

eAi j =
(αi −α j)

2

α2
i +α2

j
, i, j = 1,2, · · · ,N.

(4.17)

the notation ∑
µ=0,1

means the sum of all possible combinations of µ1 = 0,1, µ2 = 0,1, ..., µn = 0,1.

00
− 6− 6

− 15− 15

1010

− 10− 10
− 2− 2

− 5− 5

2020

t xt x
00

55

3030

22

RevRev

1010

4040

1515

5050

6060

(a)

00

− 6− 6− 15− 15
− 4− 4− 10− 10

55

− 2− 2− 5− 5

xtt x
0000

55 22

1010RevRev

1010 44
1515 66

1515

2020

(b)
Fig.1 The evolution of soliton solutions (4.16) Rev with α1 = 1,α2 = 0.5,s = 1,k = 2. (a)1-soliton (b)2-soliton.

5. Bäcklund Transformation

Based on the bilinear transformation (3.1), we can obtain the Bäcklund transformation of (1.1).
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If {u0,v0,w0} is a solution of (1.1), then

u =
2ϕ 2

x −2ϕxxϕ
ϕ 2 +u0,

v =
2

k+1
ϕxϕt −ϕxtϕ

ϕ 2 + v0,

w =
(k−1)(−2ϕ 2

x ϕt +2ϕϕxϕxt +ϕϕtϕxx −ϕxxtϕ 2)

(k+1)ϕ 3 +
ϕ 2

t −ϕϕtt

ϕ 2 +w0,

(5.1)

is another new solution of (1.1), where ϕ satisfies the following conditions
−ϕxxxxt −ϕttt +4u0ϕxxt +2(k+1)v0ϕxxx +2u0xϕxt +4(k+1)v0xϕxx = 0,

ϕxxxxϕt −2ϕxxϕxxt +4ϕxϕxxxt +3ϕtϕtt −8u0ϕxϕxt −4u0ϕxxϕt

−6(k+1)v0ϕxϕxx −2u0xϕxϕt −4(k+1)v0xϕ 2
x = 0,

2(k+1)v0ϕ 3
x +2ϕ 2

x (2u0ϕt −ϕxxt)+2ϕx(ϕxxϕxt −ϕxxxϕt)+ϕt(ϕ 2
xx −ϕ 2

t ) = 0.

(5.2)

Start with zero solution {u0,v0,w0}= {0,0,0} , (5.2) becomes into
ϕxxxxt +ϕttt = 0,

3ϕtϕtt +4ϕxϕxxxt −2ϕxxϕxxt +ϕxxxxϕt = 0,

ϕ 2
xxϕt −2ϕ 2

x ϕxxt −2ϕxϕtϕxxx −ϕ 3
t +2ϕxϕxtϕxx = 0.

(5.3)

It is not difficult to verify that if ϕ satisfies

ϕt = iϕxx, ϕxx = c0ϕx, (5.4)

where c0 is a constant, the system (5.3) holds automatically.
Remark 5.1: It is obvious that the system (5.3) is different from the bilinear equation (3.2).

But these are both special cases of (3.5) from two different angles. Actually, if we look for soliton
solutions using this Bäcklund transformation, we can obtain the same result as section 4.

Remark 5.2: These linear differential conditions may be useful to get the Wronskian determi-
nant solutions.

6. Riemann theta Function Solution

In this section, we consider Riemann theta function solution of Eq.(1.1).
In fact, we have the following general bilinear form of Eq.(1.1) based on (3.6),

L1(Dx,Dt ,Ds)ϕ ·ϕ = (
1
3

D4
x +D2

t +DxDs + c1)ϕ ·ϕ = 0,

L2(Dx,Dt ,Ds)ϕ ·ϕ = (
1
3

D3
xDt −

1
2

DsDt + c2)ϕ ·ϕ = 0.
(6.1)

where c1 = c1(x,s),c2 = c2(t,s) are constants of integration.
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In order to find one-periodic wave solutions of (1.1), we investigate the following Riemann theta
function with N = 1

ϕ = ϑ(ξ ,τ) =
∞

∑
n=−∞

e2πinξ+πn2τ (6.2)

where the phase variable ξ = αx+ωt + γs+δ0 and the parameter τ < 0.
Substitute (6.2) into (6.1), by virtue of the similar result in [10,11], we have

∞

∑
n=−∞

L1(4nπiα,4nπiω,4nπiγ)e2n2πτ = 0,

∞

∑
n=−∞

L1(2πi(2n−1)α,2πi(2n−1)ω,2πi(2n−1)γ)e(2n2−2n+1)πτ = 0,

∞

∑
n=−∞

L2(4nπiα,4nπiω,4nπiγ)e2n2πτ = 0,

∞

∑
n=−∞

L2(2πi(2n−1)α,2πi(2n−1)ω,2πi(2n−1)γ)e(2n2−2n+1)πτ = 0.

(6.3)

That is, ω,γ,c1,c2 are determined by the algebraic system

2aω2 +2aαγ + c1a1 = a2α4

2bω2 +2bαγ + c1b1 = b2α4

−aγω + c2a1 =−a2α3ω

−bγω + c2b1 =−b2α3ω

where

a = 8π2
∞

∑
n=−∞

n2λ 2n2
,b = 2π2

∞

∑
n=−∞

(2n−1)2λ 2n2−2n+1,

a1 =
∞

∑
n=−∞

λ 2n2
,b1 =

∞

∑
n=−∞

λ 2n2−2n+1,λ = eπτ

a2 =
256
3

π4
∞

∑
n=−∞

n4λ 2n2
,b2 =

16
3

π4
∞

∑
n=−∞

(2n−1)4λ 2n2−2n+1

(6.4)

Solve this system, we easily get

ω2 =
a1b2 −a2b1

2ab1 −2a1b
α4,c1 =

ab2 −ba2

ab1 −a1b
α4,c2 =−ab2 −ba2

ab1 −a1b
α3ω.

It can be concluded that the B-type KdV equation (1.1) has the following Riemann-theta func-
tion 1-periodic solutions 

u =−2(lnϑ(ξ ,τ))xx,

v =− 2
k+1

(lnϑ(ξ ,τ))xt ,

w =− (lnϑ(ξ ,τ))tt −
k−1
k+1

(lnϑ(ξ ,τ))xxt

(6.5)
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where ξ = αx±
√

a1b2−a2b1
2ab1−2a1b α2t + ε0, ε0 = γs+ δ0 is an arbitrary constant and a,a1,a2,b,b1,b2

satisfy (6.4).

− 0.10− 0.10 − 10− 10

− 1− 1

− 0.5− 0.5

tt
xx

0000

Re uRe u 00

0.50.5

11

Fig.2 The Riemann-theta function 1-periodic solution (6.5) Reu with k =−2,τ =−1,α = 1,ε0 = 0.

− 0.10− 0.10

− 40− 40

− 10− 10

− 20− 20

− 0.05− 0.05

00Im wIm w

− 5− 5

2020

tt
00

4040

xx
00

0.050.05 55

0.100.10 1010

Fig.3 The Riemann-theta function 1-periodic solution (6.5) Imw with k =−2,τ =−1,α = 1,ε0 = 0.

Remark 6.1: If we take the limit of Riemann-theta function 1-periodic solution as λ → 0, we
can get the 1-soliton solution (4.9). It is not surprised, but it is worthwhile to say that both c1 and c2

approach to zero as λ → 0. That is, c1 and c2 are not necessary to get soliton solutions. This is why
we only need use the simplest bilinear form (3.2) in section 3 and 4.
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7. Conclusion

In sum, we have discussed bilinear integrability of the B-type KdV equation. By using the relation
between flow and tau function, we constructed the Hirota bilinear formulation and Bäcklund trans-
formation. In additon, the N-soliton solution and Riemann-theta function 1-periodic solutions have
been constructed. This idea can be extended to other B-type KdV hierarchy even more NLPDEs.
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