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08193 Bellaterra, Barcelona, Spain

jllibre@mat.uab.cat

Received 6 November 2014

Accepted 7 January 2015

It is known that the 6 models of Bianchi class A have no periodic solutions. In this article we provide a new,
direct, unified and easier proof of this result.
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1. Introduction

This paper deals with the Bianchi’s cosmological models. These models require a three dimensional
Lie algebra and Bianchi [1,2] was the first to solve the problem of classifying three dimensional Lie
algebras. There are nine types of models according with the dimension n of the algebra.

a) n = 0 Type I;
b) n = 1 Type II, III;
c) n = 2 Type IV , V , V I, V II;
d) n = 3 Type V III, IX .

Let {X1, X2, X3} be an appropriate basis of the three dimensional Lie Algebra. The classification
depends on a scalar a ∈ R and a vector (n1,n2,n3) with ni ∈ {+1,−1,0} such that

[X1,X2] = n3X3, [X2,X3] = n1X1−aX2, [X3,X1] = n2X2 +aX1,

where [, ] is the Lie bracket. In particular, for a = 0 we obtain models of type A and for a 6= 0 we
obtain models of type B. For more details see Bogoyavlensky [3].

According with [3] all cases of type A are Hamiltonian systems in the phase space pi,qi for
i = 1,2,3 with the Hamiltonian function

H =
1

(q1q2q3)
1−k

2

(
T +

1
4

VG

)
,
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Type I II V I0 V II0 V III IX
n1 0 1 1 1 1 1
n2 0 0 −1 1 1 1
n3 0 0 0 0 −1 1

Table 1. Cosmologies of types A

with 0≤ k ≤ 1 and where

T = 2
3

∑
i< j

pi p jqiq j−
3

∑
i=1

p2
i q2

i , and VG = 2
3

∑
i< j

nin jqiq j−
3

∑
i=1

n2
i q2

i .

If we rescale the time by τ defined by dτ = (q1q2q3)
−k/2dt then the system becomes

q̇1 =
2q1

(q1q2q3)(1−k)/2 (p2q2 + p3q3− p1q1),

q̇2 =
2q2

(q1q2q3)(1−k)/2 (p3q3 + p1q1− p2q2),

q̇3 =
2q3

(q1q2q3)(1−k)/2 (p1q1 + p2q2− p3q3),

ṗ1 = −
1

(q1q2q3)(1−k)/2 (2p1(p2q2 + p3q3− p1q1)+

1
2

n1(n2q2 +n3q3−n1q1))+
1− k

2
H
q1

,

ṗ2 = −
1

(q1q2q3)(1−k)/2 (2p2(p3q3 + p1q1− p2q2)+

1
2

n2(n3q3 +n1q1−n2q2))+
1− k

2
H
q2

,

ṗ3 = −
1

(q1q2q3)(1−k)/2 (2p3(p1q1 + p2q2− p3q3)+

1
2

n3(n1q1 +n2q2−n3q3))+
1− k

2
H
q3

,

with H = T +VG/4. The constants n1,n2,n3 determine the type of the model according with Table
1. Performing the change of coordinates ds = (q1q2q3)

1−k
2 dτ and qi = xi and pi = xi+3/xi, i = 1,2,3,
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we obtain the system

ẋ1 = x1(−x4 + x5 + x6),

ẋ2 = x2(x4− x5 + x6),

ẋ3 = x3(x4 + x5− x6),

ẋ4 = n1x1(n1x1−n2x2−n3x3)+
1
4(k−1)F2,

ẋ5 = n2x1(−n1x1 +n2x2−n3x3)+
1
4(k−1)F2,

ẋ6 = n3x3(−n1x1−n2x2 +n3x3)+
1
4(k−1)F2,

(1.1)

with

F2 = n2
1x2

1 +n2
2x2

2 +n2
3x2

3−2n1n2x1x2−2n1n3x1x3−2n2n3x2x3

+x2
4 + x2

5 + x2
6−2x4x5−2x5x6−2x4x6.

Note that system (1.1) is a homogeneous system of degree 2, and the first integral given by the
Hamiltonian H becomes

H = (x1x2x3)
k−1

2 (n2
1x2

1 +n2
2x2

2 +n2
3x2

3−2n1n2x1x2−2n1n3x1x3

−2n2n3x2x3 + x2
4 + x2

5 + x2
6−2x4x5−2x5x6−2x4x6).

We note that the class of systems (1.1), being a homogeneous system of degree 2, can be modi-
fied so that it becomes isochronous by adding in the right–hand side of each of its six equations of
motion the term iωxn (where i is the imaginary unit, ω an arbitrary real constant, and of course n
going from 1 to 6 numbers the six equations of motions). For a proof, see for instance Calogero [5].
Of course such a modification entails a doubling of the number of real dependent variables (from 6
to 12), and the physical interpretation of the resulting system is moot.

It is known that all the Bianchi class A models do not have periodic orbits. We note that in this
paper always that we talk about a periodic orbit or solution we are talking on a bounded periodic
orbit or solution. This has been proved using evolutions equations associated to these models, and
showing that such equations always have some monotone function evaluated on the orbits. Conse-
quently these models cannot exhibit periodic motion. For more details, see chapter 6 of the book by
Wainwright and Ellis [17]. Additionally Starkov in [16] provided another proof that Bianchi VIII
and IX systems has no periodic solutions. The Bianchi systems continue to be very interesting for
the research, see for instance [13, 14] and the references quoted there.

In this article we provide a new, direct and easier proof on the non-existence of periodic orbits
for the 6 models of Bianchi class A. For some additional dynamical properties of the Bianchi models
see [4, 6–8] and the references quoted there.

2. The Bianchi I system

In this section we consider the Bianchi I system. According with Table 1 we have n1 = n2 = n3 = 0.
So system (1.1) becomes

ẋ1 = x1(−x4 + x5 + x6),

ẋ2 = x2(x4− x5 + x6),

ẋ3 = x3(x4 + x5− x6),

ẋ4 =
k−1

4 (x2
4 + x2

5 + x2
6−2x4x5−2x5x6−2x4x6),

ẋ5 =
k−1

4 (x2
4 + x2

5 + x2
6−2x4x5−2x5x6−2x4x6),

ẋ6 =
k−1

4 (x2
4 + x2

5 + x2
6−2x4x5−2x5x6−2x4x6).

(2.1)
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Proposition 2.1. The Bianchi I system, given by (2.1), does not have periodic solutions.

Proof. System (2.1) has the first integrals F1 = x4 − x5 and F2 = x4 − x6. Suppose that Γ(t) =
(x1(t),x2(t),x3(t),x4(t),x5(t),x6(t)) is a periodic solution of (2.1). So, there exist two constants a
and b such that x5(t) = x4(t)+ a and x6(t) = x4(t)+ b for all t. We have that x4(t) is a periodic
solution of the equation

ẋ4 =
k−1

4
(−3x2

4−2(a+b)x4 +(a−b)2). (2.2)

Observe that the discriminant of the equation −3x2
4−2(a+b)x4 +(a−b)2 = 0 is ∆ = 4(a+b)2 +

12(a− b)2. So ∆ ≥ 0, if ∆ > 0 then equation (2.2) has two equilibrium points. One of them is an
attractor and the other one is a repeller (see Figure 1(a)). If ∆ = 0 then we have just one equilibrium
point which is semi-stable (see Figure 1(b)). In both cases the unique possibility in order to x4(t)
be periodic is that x4(t) = c constant for all t being c an equilibrium of (2.2). Substituting x4(t) = c,
x5(t) = a+ c and x6(t) = b+ c in the first three equations of (2.1), and using that x1(t), x2(t) and
x3(t) are periodic, we get that x1(t), x2(t) and x3(t) must be constant for all t. So Γ(t) is constant,
i.e. Γ(t) is an equilibrium point of (2.1), and (2.1) do not have periodic solutions.

(a) (b)

Fig. 1. Phase portrait of the differential equation (2.2).

3. The Bianchi II system

In this section we consider the Bianchi II system. According with Table 1 we have n1 = 1 and
n2 = n3 = 0. So system (1.1) becomes

ẋ1 = x1(−x4 + x5 + x6),

ẋ2 = x2(x4− x5 + x6),

ẋ3 = x3(x4 + x5− x6),

ẋ4 = x2
1 +

k−1
4 F,

ẋ5 =
k−1

4 F,
ẋ6 =

k−1
4 F,

(3.1)

where F = x2
1 + x2

4 + x2
5 + x2

6−2x4x5−2x5x6−2x4x6.

Proposition 3.1. The Bianchi II system, given by (3.1), does not have periodic solutions.

Proof. Suppose that Γ(t) = (x1(t),x2(t),x3(t),x4(t),x5(t),x6(t)) is a periodic solution of (3.1). The
real function x4(t)− x5(t) is periodic. So, it is bounded. If it is not constant then there exists t0
such that ẋ4(t0)− ẋ5(t0)< 0, but from (3.1) we have that ẋ4(t0)− ẋ5(t0) = (x1(t0))2. It implies that
there exists a constant a ∈ R such that x5(t) = x4(t)+ a and x1(t) = 0 for all t. By using the same
argument we have that there exists another constant b ∈ R such that x6(t) = x4(t)+b for all t. Next
step is substitute x1(t) = 0, x5(t) = x4(t)+a and x6(t) = x4(t)+b in the equation ẋ4 = x2

1 +
k−1

4 F ,
we get ẋ4 = −3x2

4− (a+ b)x4 +(a− b)2. By using the same argument of the proof of Proposition
2.1 we conclude the proof of this proposition.
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4. The Bianchi V I0 system

In this section we consider the Bianchi V I0 system. According with Table 1 we have n1 = 1, n2 =−1
and n3 = 0. So system (1.1) becomes

ẋ1 = x1(−x4 + x5 + x6),

ẋ2 = x2(x4− x5 + x6),

ẋ3 = x3(x4 + x5− x6),

ẋ4 = x1(x1 + x2)+
k−1

4 F,
ẋ5 = x2(x1 + x2)+

k−1
4 F,

ẋ6 =
k−1

4 F,

(4.1)

where F = x2
1 + x2

2 +2x1x2 + x2
4 + x2

5 + x2
6−2x4x5−2x5x6−2x4x6.

Proposition 4.1. The Bianchi V I0 system, given by (4.1), does not have periodic solutions.

Proof. Suppose that Γ(t) = (x1(t),x2(t),x3(t),x4(t),x5(t),x6(t)) is a periodic solution of (4.1). The
real function x4(t)+x5(t)−2x6(t) is periodic. So, it is bounded. If it is not constant then there exists
t0 such that ẋ4(t0)+ ẋ5(t0)− 2ẋ6(t0) < 0, but from (4.1) we have that ẋ4(t0)+ ẋ5(t0)− 2ẋ6(t0) =
(x1(t0)+ x2(t0))2. It implies that ẋ4(t)+ ẋ5(t)−2ẋ6(t) = 0 = (x1(t)+ x2(t))2 for all t. Substituting
x1(t) = −x2(t) in (4.1) we have that ẋ4(t)− ẋ5(t) = 0 and ẋ4(t)− ẋ6(t) = 0 for all t. There exist
constants a,b ∈ R such that x5(t) = x4(t)+a and x6(t) = x4(t)+b for all t. Next step is substitute
x1(t) =−x2(t), x5(t) = x4(t)+a and x6(t) = x4(t)+b in the equation ẋ4 = x1(x1 + x2)+

k−1
4 F . By

using the same argument of the proof of Proposition 2.1 we conclude the proof of this proposition.

5. The Bianchi V II0 system

In this section we consider the Bianchi V II0 system. According with Table 1 we have n1 = 1 and
n2 = 1 and n3 = 0. So system (1.1) becomes

ẋ1 = x1(−x4 + x5 + x6),

ẋ2 = x2(x4− x5 + x6),

ẋ3 = x3(x4 + x5− x6),

ẋ4 = x1(x1− x2)+
k−1

4 F,
ẋ5 = x2(−x1 + x2)+

k−1
4 F,

ẋ6 =
k−1

4 F,

(5.1)

where F = x2
1 + x2

2−2x1x2 + x2
4 + x2

5 + x2
6−2x4x5−2x5x6−2x4x6.

Proposition 5.1. The Bianchi V II0 system, given by (5.1), does not have periodic solutions.

Proof. Suppose that Γ(t) = (x1(t),x2(t),x3(t),x4(t),x5(t),x6(t)) is a periodic solution of (5.1). The
real function x4(t)+x5(t)−2x6(t) is periodic. So, it is bounded. If it is not constant then there exists
t0 such that ẋ4(t0)+ ẋ5(t0)− 2ẋ6(t0) < 0, but from (5.1) we have that ẋ4(t0)+ ẋ5(t0)− 2ẋ6(t0) =
(x1(t0)− x2(t0))2. It implies that ẋ4(t)+ ẋ5(t)−2ẋ6(t) = 0 = (x1(t)− x2(t))2 for all t. Substituting
x1(t) = x2(t) in (5.1) we have that ẋ4(t)− ẋ5(t) = 0 and ẋ4(t)− ẋ6(t) = 0 for all t. There exist
constants a,b ∈ R such that x5(t) = x4(t)+a and x6(t) = x4(t)+b for all t. Next step is substitute
x1(t) = x2(t), x5(t) = x4(t)+ a and x6(t) = x4(t)+ b in the equation ẋ4 = x1(x1− x2)+

k−1
4 F . By

using the same argument of the proof of Proposition 2.1 we conclude the proof of this proposition.
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6. The Bianchi V III system

In this section we consider the Bianchi V III system. According with Table 1 we have n1 = 1 and
n2 = 1 and n3 =−1. So system (1.1) becomes

ẋ1 = x1(−x4 + x5 + x6),

ẋ2 = x2(x4− x5 + x6),

ẋ3 = x3(x4 + x5− x6),

ẋ4 = x1(x1− x2 + x3)+
k−1

4 F,
ẋ5 = x2(−x1 + x2 + x3)+

k−1
4 F,

ẋ6 = x3(x1 + x2 + x3)+
k−1

4 F,

(6.1)

where

F = x2
1 + x2

2 + x2
3−2x1x2 +2x1x3 +2x2x3+

x2
4 + x2

5 + x2
6−2x4x5−2x5x6−2x4x6.

(6.2)

Lemma 6.1. The hyperplanes {x1 = 0}, {x2 = 0}, and {x3 = 0} are invariant manifolds for system
(6.1) and there is no periodic orbits in these hyperplanes.

Proof. Clearly the hyperplanes {x1 = 0}, {x2 = 0}, and {x3 = 0} are invariant manifolds for system
(6.1), i.e. if a solution of (6.1) has a point in {xi = 0} then the whole solution is contained in {xi = 0}.
Now we prove that in the hyperplanes {x1 = 0}, {x2 = 0}, and {x3 = 0} there are no periodic orbits.
Let Γ(t) = (x1(t),x2(t),x3(t),x4(t), x5(t),x6(t)) be a periodic solution of (6.1). Suppose that Γ(t) is
in {x1 = 0}. From (6.1) we have ẋ5+ ẋ6−2ẋ4 = (x2+x3)

2. We get that x1(t) = 0 and x2(t) =−x3(t)
for all t. Substituting these conditions in the equations of (6.1) we have that ẋ4 = ẋ5 = ẋ6, and so
there exist constants a and b such that x5(t) = x4(t)+a and x6(t) = x4(t)+b for all t. Substituting
all these conditions in the fourth equation of (6.1) we obtain again the equation (2.2). So, in order
that Γ be periodic, x4(t) is constant. Now from the second and third equations of (6.1) we have that
x2(t) and x3(t) are constants, and Γ is an equilibrium point instead of a periodic orbit. In the same
way we can prove that there are no periodic orbits in {x2 = 0} and in {x3 = 0}.

Consider the three sets

F+ = {x ∈ R6 : F(x)> 0},
F0 = {x ∈ R6 : F(x) = 0} and
F− = {x ∈ R6 : F(x)< 0},

where F is given in (6.2).

Lemma 6.2. The sets F+, F0 and F− are invariant by system (6.1) and there are no periodic orbits
in the set F−.

Proof. First of all observe that if we call X the vector field associated to the system (6.1) then we
have that

XF = 〈X ,∇F〉=−1
2
(k−1)(x4 + x5 + x6)F, (6.3)

where 〈., .〉 denotes the standard inner product in R6 and ∇F is the gradient of F . From (6.3) we get
that F0 is an invariant set to (6.1), and consequently F+ and F− also are invariant.
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Now we prove that there are not periodic orbit in F−. Suppose that Γ(t) =

(x1(t),x2(t),x3(t),x4(t),x5(t),x6(t)) is a periodic orbit of (6.1) and that it is in the set F−. By
Lemma 6.1 we have that x1(t) 6= 0, x2(t) 6= 0 and x3(t) 6= 0 for all t. Consider the function

h(x) =
x4 + x5 + x6

x1x2x3
.

Observe that h ◦Γ is defined for all t and it is a periodic function. So there exists at least a point
t = t0 such that ˙(h◦Γ)(t0) = 0. We have

˙(h◦Γ)(t) = 〈∇h, Γ̇(t)〉= Xh(Γ(t)).

But

Xh(x) = (1+3k)F(x)−8(x2
4 + x2

5 + x2
6), (6.4)

which is always negative in the set F−. So the periodic orbit Γ(t) cannot be contained in F−.

Let U be a subset of R6. Let h : U → R be a C1 function. By S(h) we denote the set {x ∈
R6 : Xh(x) = 0}. Suppose that we are interested in the localization of the periodic orbits of system
ẋ = X(x) located in the set U . We define hin f = in f{h(x) : x ∈ U ∩ S(h)}, hsup = sup{h(x) : x ∈
U ∩S(h)}.

The following two propositions are inspired by the formulation and proofs of localization the-
orems which were proposed and developed by Krishchenko and Starkov, firstly, for periodic orbits
in [9, 10], and later for compact invariant sets in [11], see also [12]. Particular cases of these results
can be found in [15].

Proposition 6.1. All the periodic orbits of system ẋ = X(x) located in U are contained in the set
{x ∈U : hin f ≤ h(x)≤ hsup}.

Proof. Let Γ(t) be a periodic orbit of system ẋ = X(x) contained in the set U . Denote by γ = {Γ(t) :
t ∈R}. The set γ is compact and so the C1 function h, restricted to the set γ , has a maximum M and
a minimum m. In particular γ ⊂{x∈U : m≤ h(x)≤M}. For all points t = t1 such that h(Γ(t1)) = m
we have that Γ(t1) ∈ S(h). It implies that m = in f{h(x) : x ∈ γ ∩S(h)}. On the other hand we have
that γ ∩S(h)⊂U ∩S(h) implies m≥ hin f . Analogously we have hsup ≥M. So we have

γ ⊂ {x ∈U : m≤ h(x)≤M} ⊂ {x ∈U : hin f ≤ h(x)≤ hsup}.

Proposition 6.2. Let U be a set in R6. If S(h)∩U = /0 then system ẋ = X(x) has no periodic orbits
contained in U.

Proof. Suppose that Γ(t) is a periodic orbit of system ẋ = X(x) contained in the set U . As we saw
in the proof of Proposition 6.1, for all points t = t1 such that h(Γ(t1)) = m we have that Γ(t1) ∈
S(h)∩U . And so S(h)∩U 6= /0, which is a contradiction.

Lemma 6.3. There are no periodic orbits of system (6.1) located in F0.
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Proof. Consider the set U = F0∩{x1 6= 0}∩{x2 6= 0}∩{x3 6= 0} and the function

h(x) =
x4 + x5 + x6

x1x2x3
.

Accordingly to (6.4) we have that S(h) = {x ∈ R6 : x4 = x5 = x6 = 0}. So hin f = hsup = 0. From
Proposition 6.1 all compact invariant sets of (6.1) located on U are contained in B = {x4+x5+x6 =

0}.
Suppose that Γ(t) = (x1(t),x2(t),x3(t),x4(t),x5(t),x6(t)) is a periodic orbit of (6.1) and it is in

the set F0. By using the fact that this orbit is contained in B we have that ẋ4 + ẋ5 + ẋ6 = 0. From
system (6.1) and the fact that Γ are in F0 we have that x2

1 + x2
2 + x2

3− 2x1x2 + 2x1x3 + 2x2x3 = 0,
and consequently x2

4 + x2
5 + x2

6− 2x4x5− 2x4x6− 2x5x6 = 0. Substituting x6 = −x4− x5 in the last
equation we get

2x2
4 +2x2

5 +2(x4 + x5)
2 = 0,

and so x4(t) = x5(t) = x6(t) = 0 for all t. Now substituting these values in system (6.1) we get that
x1(t), x2(t) and x3(t) are constant functions. So Γ is not a periodic orbit.

Lemma 6.4. If there exists a periodic orbit for system (6.1), then it intersects the set {x ∈ R6 :
x4 + x5 + x6 = 0}.

Proof. Consider the set B = {x ∈ R6 : x1 6= 0,x2 6= 0,x3 6= 0 and x4 + x5 + x6 6= 0} and the function
h(x) = x1x2x3. We have that

Xh(x) = x1x2x3(x4 + x5 + x6),

and so S(h)∩B = /0. According with Proposition 6.2 system (6.1) has no periodic orbits in B. If
system (6.1) has a periodic orbit then it intersects {x ∈ R6 : x4 + x5 + x6 = 0}.

Lemma 6.5. There are no periodic orbits for system (6.1) located in F+.

Proof. Suppose that Γ(t) = (x1(t),x2(t),x3(t),x4(t),x5(t),x6(t)) is a periodic orbit of system (6.1)
and that it is in the set F+. By Lemma 6.4 we have that Γ intersects the set {x4 + x5 + x6 = 0}.
Consider the function h(x) = x1x2x3(x4+x5+x6). By Lemma 6.1 we have that x1(t) 6= 0, x2(t) 6= 0,
and x3(t) 6= 0 for all t. Observe that the zeroes of the function h ◦Γ occur for the values t such
that the orbit Γ intersects the set {x4 + x5 + x6 = 0}. Computing the derivative of h ◦Γ we have

˙(h◦Γ)(t) = 〈∇h, Γ̇(t)〉= Xh(Γ(t)) where

Xh(x) = (1+3k)F(x)+16(x4x5 + x4x6 + x5x6).

We observe that in the set {x4 + x5 + x6 = 0} we have x4x5 + x4x6 + x5x6 = 0. We get that in all
zeroes of the real periodic function h ◦Γ its derivative is positive. This is a contradiction, because
we cannot have a periodic real function with positive derivative in all of its zeroes.

Proposition 6.3. The Bianchi V III system, given by (6.1), does not have periodic solutions.

Proof. It follows from lemmas 6.2, 6.3, and 6.5.
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7. The Bianchi IX system

In this section we consider the Bianchi IX system. According with Table 1 we have n1 = 1 and
n2 = 1 and n3 = 1. So system (1.1) becomes

ẋ1 = x1(−x4 + x5 + x6),

ẋ2 = x2(x4− x5 + x6),

ẋ3 = x3(x4 + x5− x6),

ẋ4 = x1(x1− x2− x3)+
k−1

4 F,
ẋ5 = x2(−x1 + x2− x3)+

k−1
4 F,

ẋ6 = x3(x1 + x2− x3)+
k−1

4 F,

(7.1)

where

F = x2
1 + x2

2 + x2
3−2x1x2−2x1x3−2x2x3+

x2
4 + x2

5 + x2
6−2x4x5−2x5x6−2x4x6.

(7.2)

Lemma 7.1. The hyperplanes {x1 = 0}, {x2 = 0}, and {x3 = 0} are invariant manifolds for system
(7.1) and there are no periodic orbits in these hyperplanes.

Proof. The proof is very similar to the proof of Lemma 6.1.

Consider the three sets

F+ = {x ∈ R6 : F(x)> 0},
F0 = {x ∈ R6 : F(x) = 0} and
F− = {x ∈ R6 : F(x)< 0},

where F is given in (7.2).

Lemma 7.2. The sets F+, F0 and F− are invariant by system (7.1) and there are no periodic orbit
in the set F−.

Proof. The proof is very similar to the proof of Lemma 6.2.

Lemma 7.3. There are no periodic orbits for system (7.1) located in F0.

Proof. The proof is very similar to the proof of Lemma 6.3.

Lemma 7.4. If there exists a periodic orbit for system (7.1) then it intersects the set {x ∈ R6 :
x4 + x5 + x6 = 0}.

Proof. It is the same proof of Lemma 6.4

Lemma 7.5. There are no periodic orbits for system (7.1) located in F+.

Proof. The same construction in the proof of Lemma 6.5 works in this case.

Proposition 7.1. The Bianchi IX system, given by (7.1), does not have periodic solutions.

Proof. It follows from lemmas 7.2, 7.3, and 7.5.
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