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In this paper we give a generalized form of the Schrödinger equation in the relativistic case, which contains a
generalization of the Klein-Gordon equation. By complex Legendre transformation, the complex Lagrangian
of electrodynamics produces a complex relativistic Hamiltonian H of electrodynamics, on the holomorphic
cotangent bundle T ′∗M. By a special quantization process, a relativistic time dependent Schrödinger equation,
in the adapted frames of (T ′∗M,H) is obtained. This generalized Schrödinger equation can be expressed with
respect to the Laplace operator of the complex Hamilton space (T ′∗M,H). Finally, under some additional
conditions on the proper time s of the complex space-time M and the time parameter t along the quantum
state, by the method of separation of variables, we obtain two classes of solutions for the Schrödinger equation,
one for the weakly gravitational complex curved space M, and the second in the complex space-time with
Schwarzschild metric.
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1. Introduction

We begin with a brief introduction to the fundamental equations of quantum mechanics, ( [9,11,14,
18], etc).

In classical mechanics the dynamic evolution of a particle is given by its trajectory x(t) gov-
erned by Newton’s law mẍ =−∇V. In quantum mechanics the analogue of the Newton’s law is the
Schrödinger equation

− h̄2

2m
∇

2
ψ = ih̄

∂ψ

∂ t
, (1.1)

where ψ(~r, t) is a complex field, called the wave function (or quantum state) of the quantum system,
~r(x,y,z) is the position vector of the state, ∇2 is the Laplacian and h̄ is Plank’s constant. This (free)
Schrödinger equation is linear with constant coefficients and a solution can be derived by Fourier
transformation, and it has the form ψ(~r, t) = A · e i

h̄ (~p·~r−Et), where ~p = (px, py, pz) is the momentum
and E is the kinetic energy.
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Considering the operator Ĥ =− h̄2

2m ∇2, which is the free Hamiltonian of the system, and taking

into account that in classical mechanics the energy is E = p2

2m , it is easy to see that Ĥψ = Eψ . This
means that the energy is an eigenvalue of the state ψ for the free Hamiltonian.

Moreover, from E− p2

2m = 0, the Schrödinger equation results exactly by the quantization pro-
cedure

E→ ih̄
∂

∂ t
; px→ ih̄

∂

∂x
; py→ ih̄

∂

∂y
; pz→ ih̄

∂

∂ z
. (1.2)

The same Schrödinger equation can be derived in terms of Lagrangian or Hamiltonian mechanics
(via the Legendre transformation H = L−~p · →̇r ) by a similar quantization H → ih̄ ∂

∂ t ; px → ih̄ ∂

∂x ;
py→ ih̄ ∂

∂y ; pz→ ih̄ ∂

∂ z , where H is the Hamiltonian function.
An immediate generalization is the Schrödinger equation in the presence of a potential energy

V (~r, t),

Ĥψ = ih̄
∂ψ

∂ t
, with Ĥ =− h̄2

2m
∇

2 +V (~r, t). (1.3)

When the potential energy V depends only on~r, (i.e. V =V (x,y,z)), (1.3) is known as the time
independent Schrödinger equation.

The next generalization is the Schrödinger equation for a particle in an electromagnetic field
(Φ,−~A) :=(Φ,−A1,−A2,−A3). In this case the Hamiltonian function is H = 1

2m(~p−q~A)2+ q2

2m Φ2,
with q the electric charge.

Finally, these things can be designed in a curved space (M,gi j), namely starting from Hamilton-
Jacobi equation, in [11], B. Carter found a more general Hamiltonian

Hq =
1

2m
gk j(pk−qAk)(p j−qA j) (1.4)

and then, by the same formal substitutions Hq → ih̄ ∂

∂ t and pk → ih̄ ∂

∂xk in (1.4), the corresponding
Schrödinger equation was obtained.

We remark that in all these situations it is worked in terms of the classical mechanics, thus the
obtained Schrödinger equation is called nonrelativistic.

Considering the relativistic mechanics, the problem is more complicated. First of all the rela-
tivistic energy and momentum are related by E2 = p2c2+m2c4 and, therefore, the same substitutions
(1.2) lead to an equation in which the right side of (1.1) contains now the second order derivatives
of the wave function ψ. The outcome is the relativistic Schrödinger equation, or otherwise known
as the Klein-Gordon equation −h̄2 ∂ 2

∂ t2 ψ = −c2h̄2
∇2ψ + c4m2ψ. Moreover, using the D’Alembert

operator �= 1
c2

∂ 2

∂ t2 −∇2, it can be rewritten as (�+ m2c2

h̄2 )ψ = 0. An extension of the Klein-Gordon
equation on holomorphic tangent bundle was analyzed by the authors in [2, 25].

On the other hand, writing the square root of energy in the form√
p2c2 +m2c4 = c(γ0mc+ γ1 px + γ2 py + γ3 pz),

and by the substitutions (1.2), P. Dirac reached the equation (iγk∂k −m)ψ = 0, known as Dirac
equation.

The main purpose of the present paper is to give a generalized form of the Schrödinger equation
in the relativistic case, which obviously contains a generalization of the Klein-Gordon equation.
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Let us explain in a few words in what this generalization consists of and what are its advantages.
By complexification, the real space-time generates a two dimensional complex manifold M, with
the local coordinates (z1,z2). In the previous papers [2, 25] we studied the relativistic metrics gi j̄
of complex Finsler type, on the holomorphic tangent bundle T ′M. Two of these proved particularly
useful for relativistic applications, namely the complex weakly gravitational metric and the hyper-
bolic version of the Schwarzschild metric. Although they are purely Hermitian metrics on T ′M (i.e.
gi j̄(z) depend only on the position on M), they can be viewed as prolongations of Hermitian metrics
on M. In a curved space with a relativistic metric gi j̄, we consider the complex Lagrangian L of elec-
trodynamics (3.1) on T ′M, for which a thorough study was made in [23]. The geometry of (T ′M,L)
is ”linearized” by the adapted frames { δ

δ zk ,
∂

∂ηk }k=1,2 of a complex nonlinear connection, according
to the general theory of complex Lagrange spaces, [23]. By complex Legendre transformation, the
complex Lagrangian of electrodynamics produces complex momentum (ζk)k=1,2, which are sec-
tions in the dual holomorphic cotangent bundle T ′∗M, and also a complex relativistic Hamiltonian
H of electrodynamics, given by (3.9). The geometry of (T ′∗M,H) is ”linearized” in adapted frames
{ δ ∗

δ zk ,
∂

∂ζk
}k=1,2 of a complex nonlinear connection, according to the L−dual process, [23]. Further

on, by a special quantization process, a two times dependent Schrödinger equation, in the adapted
frames of (T ′∗M,H), is obtained. This generalized Schrödinger equation can be expressed with
respect to the Laplace operator of the complex Hamilton space (T ′∗M,H), (formula (4.2)), and, for
a special form of the wave function ψ, it is reduced to a kind of Klein-Gordon equation, (formula
(4.5)). Moreover, under the Kähler assumption we get a very closely writing of the Schrödinger
equation with the well known equation (1.3). Note that the obtained equation contains the relativis-
tic space geometry introduced by the metric tensor gi j̄ and also the electrodynamics induced by the
relativistic Lagrangian L.

Of course, the main problem remains that of finding the classes of solutions for this general-
ized Schrödinger equation. We point this out in the last section of the paper. For some additional
conditions on the proper time s of the complex space-time M and the time parameter t along the
quantum state, by separation of variables, we have obtained two classes of fundamental solutions
for the equation (4.1), one for the weakly gravitational complex curved space M, and the second in
the complex space-time with Schwarzschild metric.

Given that the base space is a curved one by a gravitational metric and that the Schrödinger
equation is derived from a complex Hamiltonian of electrodynamics, we can say that this theory,
exposed in terms of complex Hamilton geometry, describes the motion of a complex quantum par-
ticle in relativistic space-time.

2. Preliminaries

The geometries of real Lagrange and Hamilton spaces, (particularly Finsler and Cartan spaces)
(see [5,6,21,22]) know many applications in Physics (for more details see [4,7,10,12,13,16,17,20],
etc). Complex Lagrange and Hamilton geometries, (particularly Finsler and Cartan geometries) are
more recent (see [1–3,23–25,28,29]) and we hope that the subject described in this paper will attract
more interest for them.

We begin by setting the main notations and notions from the theory of two-dimensional complex
Lagrange and Hamilton geometries, although these are available for any complex dimension n. For
more details see [1, 23], etc.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

363



N. Aldea, G. Munteanu / A generalized Schrödinger equation

Let M be a two dimensional complex manifold. We consider z ∈M, and so z = (z1, z2) are the
complex coordinates in a local chart. Since zk = xk +

√
−1xk+2, k = 1,2, the complex coordinates

induce the real coordinates {x1,x2,x3,x4} on M. Let TRM be the real tangent bundle. Its complexified
tangent bundle TCM splits into the sum of holomorphic tangent bundle T ′M and its conjugate T ′′M,
under the action of the natural complex structure J on M. The holomorphic tangent bundle T ′M
is itself a complex manifold and the coordinates in a local chart will be denoted by (zk,ηk)k=1,2,

with ηk = yk +
√
−1yk+2, k = 1,2. The dual of T ′M is the holomorphic cotangent bundle and it is

denoted by T ′∗M. On the manifold T ′∗M, a point u∗ is characterized by the coordinates (zk,ζk)k=1,2,

with ζk = pk +
√
−1pk+2, k = 1,2, and a change of these has the form z′k = z′k(z) and ζ ′k =

∂ ∗z j

∂ z′k ζ j,

rank( ∂ ∗z′k
∂ zl ) = n. Here and further, we use the star notation for the partial derivatives with respect to

z, on T ′∗M, only to distinguish them from those on T ′M.
Everywhere in this paper the indices i, j,k, ... run over {1,2}.

2.1. Geometry of (T ′M,L)

Consider the sections of the complexified tangent bundle of T ′M. Let V T ′M ⊂ T ′(T ′M) be the
vertical bundle, locally spanned by { ∂

∂ηk }, and V T ′′M its conjugate. The idea of complex nonlin-
ear connection, briefly (c.n.c.), is an instrument in ’linearization’ of the geometry of the mani-
fold T ′M. A (c.n.c.) is a supplementary complex subbundle to V T ′M in T ′(T ′M), i.e. T ′(T ′M) =

HT ′M⊕V T ′M. The horizontal distribution HuT ′M is locally spanned by { δ

δ zk = ∂

∂ zk −N j
k

∂

∂η j },
where N j

k (z,η) are the coefficients of the (c.n.c.). The pair {δk := δ

δ zk , ∂̇k := ∂

∂ηk } will be called the

adapted frame of the (c.n.c.), which obey the change rules δk =
∂ z′ j
∂ zk δ ′j and ∂̇k =

∂ z′ j
∂ zk ∂̇ ′j. By conju-

gation everywhere we obtain an adapted frame {δk̄, ∂̇k̄} on T ′′u (T
′M). The dual adapted bases are

{dzk,δηk} and {dz̄k,δ η̄k}.
A 2− dimensional complex Lagrange space is a pair (M,L) where L : T ′M → R is a smooth

function, which satisfies the regularity condition:

gk j̄ =
∂ 2L

∂ηk∂ η̄ j (2.1)

is nondegenerate (det(gk j̄) 6= 0, gk j̄g
j̄l = δ l

k) and it is a Hermitian metric of constant signature.
In comparison to complex Finsler spaces, the function L is smooth and defined on the whole

T ′M and the homogeneity condition is not assumed. Thus all the consequences of the homogeneity
condition are not satisfied.

A fundamental problem in the geometry of T ′M is that of the existence of a complex nonlinear
connection, depending here only on the Lagrangian function L. An interesting (c.n.c.) which is a
natural generalization of Chern-Finsler (c.n.c.) is

Nk
j = gı̄k ∂ 2L

∂ z j∂ η̄ i (2.2)

called by us the Chern-Lagrange (c.n.c.), (see [23]).
Under homogeneity condition L(z,λη) = |λ |2L(z,η), ∀λ ∈C, (i.e., (M,L) is a complex Finsler

space) there are some different nuances of the Kähler property, in [1]’s terminology. Namely, the
space (M,L) is Kähler iff T i

jkη j = 0 and weakly Kähler iff gilT
i
jkη jη l = 0, where T i

jk := gli(δkg jl−
δ jgkl). We notice that in the particular case of complex Finsler metrics which come from Hermitian
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metrics on M, so-called purely Hermitian metrics in [23], (i.e. gi j = gi j(z)), these two kinds of
Kähler structures are the same.

2.2. Geometry of (T ′∗M,H)

Now we return to the complex manifold T ′∗M. The complexified of the real tangent bundle of T ′∗M
is decomposed in the sum TC(T ′∗M) = T ′(T ′∗M)⊕T ′′(T ′∗M).

Let V T ′∗M ⊂ T ′(T ′∗M) be the vertical bundle, which has the vertical distribution Vu∗(T ′∗M),
locally spanned by { ∂

∂ζk
}. A (c.n.c.) on T ′∗M is a supplementary subbundle in T ′(T ′∗M) of V (T ′∗M)

, i.e., T ′(T ′∗M) = H(T ′∗M)⊕V (T ′∗M). The horizontal distribution Hu∗(T ′∗M) is locally spanned
by { δ ∗

δ z j }, where δ ∗

δ zk = ∂ ∗

∂ zk +N jk
∂

∂ζ j
and the functions N jk are the coefficients of the (c.n.c.) on

T ′∗M. The pair {δ ∗k := δ ∗

δ zk , ∂̇ k := ∂

∂ζk
} will be called the adapted frame of the (c.n.c.), which obey

the change rules δ ∗k = ∂ ∗z′ j
∂ zk δ ∗′j and ∂̇ k = ∂ ∗z′k

∂ z j ∂̇ ′ j. By conjugation everywhere we have obtained an

adapted frame {δ ∗k̄ , ∂̇
k̄} on T ′′u∗(T

′∗M). The dual adapted frames are {d∗zk, δζk = dζk−Nk jdz j} and
{d∗z̄k,δ ζ̄k}.

A 2− dimensional complex Hamilton space is a pair (M,H) where H : T ′∗M→ R is a smooth
function, which satisfies the regularity condition:

h j̄k(z,ζ ) =
∂ 2H

∂ζk∂ ζ̄ j
(2.3)

is nondegenerate (det(h j̄k) 6= 0, h j̄lhk j̄ = δ l
k) and it is a Hermitian metric of constant signature.

A main problem for a complex Hamilton space is that of determining a complex nonlinear
connection depending only on the fundamental function H of the space. Due to [23], the following
functions

N jl =−hlk̄
∂ 2H

∂ z j∂ ζ̄k
(2.4)

are the coefficients of a (c.n.c.) on T ′∗M, depending only on the complex Hamilton function H.

Moreover, if the function H satisfies the homogeneity condition H(z,λζ ) = |λ |2H(z,ζ ), ∀λ ∈
C, then the space (M,H) becomes a complex Cartan space. A usual example of complex Cartan
space is the so called purely Hermitian complex Cartan space, this means that h j̄i = h j̄i(z). Also,
a complex Cartan space (M,H) is called Kähler-Cartan iff T ∗ijk = 0 and weakly Kähler-Cartan if
T ∗ijk ζiζ

j = 0, where T ∗ijk := H i
jk−H i

k j, H i
jk := hm̄i(δ ∗k h jm̄) and ζ j := hm̄ jζm̄. Note that these nuances

of Kähler-Cartan are the same with ∂h jm̄
∂ zi = ∂him̄

∂ z j , in the particular case of a purely Hermitian complex
Cartan metric.

2.3. L− dual process

Another approach of the complex Hamilton spaces is given by the correspondence between the
various geometrical objects on a complex Lagrange space (M,L) and those of a complex Hamilton
space (M,H), via the complex Legendre transformation, (the L− dual process).

In [23] the complex Legendre transformation was introduced as a local diffeomorphism Φ×
Φ̄ with Φ : U ⊂ T ′M → Ū∗ ⊂ T ′′∗M, Φ(zk,ηk) = (zk, ∂̇k̄L), and Φ̄ : Ū ⊂ T ′′M → U∗ ⊂ T ′∗M,

Φ̄(zk, η̄k) = (zk, ∂̇kL). Further on, for simplicity the complex Legendre transformation is denoted
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only by Φ and the distinction between the open sets U and Ū is not specified, but we have assumed
that it is defined on whole TCM. The properties obtained by Φ or by Φ−1are called L− dual one to
another. Further on, we denote by ’∗’ the image by Φ of various geometric objects on U ⊂ T ′M and
by ’ ◦ ’ the image by Φ−1 of geometric objects on U∗ ⊂ T ′∗M, (see [23], p. 163).

Setting the local tangent maps dΦ : TC(T ′M)→ TC(T ′′∗M) and dΦ̄ : TC(T ′′M)→ TC(T ′∗M),

in [23] we established the conditions under which dΦ sends the complex tangent vectors in T ′M
into the complex tangent vectors in T ′∗M, such that the image by complex Legendre transformation,
of a complex Lagrange space (M,L) is locally a complex Hamilton space (M,H), and conversely
( [23], p. 164), i.e.,

(
L(zk,ηk)

)∗
= H(zk,ζk) ;

(
H(zk,ζk)

)◦
= L(zk,ηk),

(gi j̄(z,η))∗ = hi j̄(z,ζ ) ; (h j̄k(z,ζ ))◦ = g j̄k(z,η),

with

L(z,η) = ζiη
i + ζ̄iη̄

i−H(z,ζ ) ; η
k = ∂̇

kH ; ζk = ∂̇kL. (2.1)

Moreover, the image by complex Legendre transformation of the Chern-Lagrange (c.n.c.) is
Chern-Hamilton (c.n.c.), (for more details, see [23], p. 166).

3. The dual of the complex Lagrangian of electrodynamics

Since complex Lagrangians appear frequently in quantum mechanics or in gauge theory, we con-
sider a complex version of a Lagrangian model of electrodynamics ( [23, 24]), on the complex
manifold T ′M

L(z,η) = gk j̄η
k
η̄

j +q[Ak(z)ηk +A j̄(z)η̄
j]+V (z) ; k, j = 1,2, (3.1)

where gk j̄ = gk j̄(z) is a purely Hermitian metric on M and A := Ak(z)dzk is a (1,0)− form on
M, which comes from the electromagnetic potential (Φ, −A1, −A2, −A3), with A1 = Φ− iA1,

A2 = −A2− iA3, A j̄ := Ā j. V (z) is a real valued function and q is a real number which represents
the electric charge. Also, by L̃ := gk j̄η

kη̄ j is induced a complex Finsler metric or pseudo-Finsler
metric on M and L and L̃ have the same fundamental metric tensor, namely this is gk j̄. Thus, the
local coefficients of the Chern-Lagrange (c.n.c.) associated to the complex Lagrangian (3.1) are
the following

Ni
j = Ñi

j +qgk̄i ∂Ak̄

∂ z j , (3.2)

where Ñi
j := gk̄i ∂glk̄

∂ z j η l are the local coefficients of the Chern-Finsler (c.n.c.) associated to L̃.

Let c(t), with t a real parameter, be a curve on M and (zk(t),ηk(t) := dzk

dt ), k = 1,2, its extension
on T ′M. The Euler-Lagrange equation ∂L

∂ z j − d
dt (

∂L
∂η j ) = 0, corresponding to the complex Lagrangian
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(3.1), can be rewritten as

d2zk

dt2 +Nk
h(z(t),

dz
dt

)
dzh

dt
(3.3)

= θ
∗k(z(t),

dz
dt

)+gh̄k(qEh̄r̄
dz̄r

dt
+qEh̄l

dzl

dt
+

∂V
∂ z̄h ); k = 1,2,

where θ ∗k := gh̄k(
∂gl j̄

∂ z̄h −
∂glh̄
∂ z̄ j )η

lη̄ j and Eh̄l := ∂Al
∂ z̄h , Eh̄r̄ := ∂Ar̄

∂ z̄h −
∂Ah̄
∂ z̄r are the local coefficients of a

complex electromagnetic field

E =
1
2

E jkdz j ∧dzk +Eh̄kdz̄h∧dzk,

satisfying E = dA.
Note that if the charge q vanishes and V is constant valued, then the equations (3.3) lead to the

geodesic curves of the complex Finsler metric L̃ on M, (see [1, 23]).
In order to point out a physical significance of the complex Lagrangian (3.1), we choose s(t) the

arc length of the curve c on T ′M with respect to the purely Hermitian metric gk j̄, which means that
ds2 = L̃(z(t), dz

dt )dt2. If the parameter t is normalized with respect to the proper distance (so called
the proper time) s, by s = mt, then the complex Lagrangian (3.1), together with the equation (3.3),
give rise to the equation of motion of a particle of the mass m and the charge q, under the action
of the Lorentz force, due to the electromagnetic field E, with an additional force (gravitational or
inertial, for example) represented by some derivatives of the function V (z):

d2zk

ds2 +Nk
h(z(s),

dz
ds

)
dzh

ds
(3.4)

= θ
∗k(z(s),

dz
ds

)+
1
m

gh̄k(qEh̄r̄
dz̄r

ds
+qEh̄l

dzl

ds
+

∂V
∂ z̄h ); k = 1,2.

Thus, an immediate consequences of the normalizing condition is L̃(z(t), dz
dt ) = m2.

An important example of purely Hermitian metric is the one used in the study of the weakly
gravitational fields in complex Finsler geometry [25], given by the fundamental metric tensor

(
g jk̄

)
j,k=1,2

=

(
1+2Φ

c2 −i(1−2Φ

c2 )

i(1−2Φ

c2 ) −(1− 2Φ

c2 )

)
, with i :=

√
−1, (3.5)

where here Φ = Φ(z) is a real valued smooth function, Φ > c2

2 , c 6= 0, (i.e., det(gi j̄) > 0) and the
inverse matrix of (3.5) is

(
gk̄ j
)

j,k=1,2
=

1
2

1 −i

i −
1+ 2Φ

c2

1− 2Φ

c2

 . (3.6)

Note that the purely Hermitian metric (3.5) is Kähler if and only if iΦ2 = Φ1, where Φk :=
∂Φ

∂ zk , k = 1,2.
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Also, the hyperbolic version of the Schwarzschild metric induces a Hermitian pseudo-Finsler
metric on M ⊂C2, called the complex Hermitian Schwarzschild metric (see [25]), given by(

g jk̄

)
j,k=1,2

=

(
−ϕ4 0
0 ϕ4

)
, (3.7)

with the inverse matrix (
gk̄ j
)

j,k=1,2
=

(
−1/ϕ4 0
0 1/ϕ4

)
, (3.8)

and g := det(gi j̄) =−ϕ8 < 0, where ϕ(r1) =
1√

kr1±1 , k ∈ R, r1 := 1
2

√
(z1− z̄1)2 +4|z2|2.

A suggestion for unifying quantum theory and relativity was given by M. Born in [8], using
Reciprocity Principle which is based on a primary symmetry between the space-time coordinates
(x1,x2,x3,x4) and momentum-energy coordinates (p1, p2, p3, p4). Based on the complex Legendre
transformation (the L− dual process), we pass from the complex space-time coordinates zk = xk +√
−1xk+2, k = 1,2, to the complex momentum-energy coordinates ζk = pk +

√
−1pk+2, k = 1,2.

Taking into account that the image of a complex Lagrangian by complex Legendre transfor-
mation is locally a complex Hamiltonian H(z,ζ ) = ζkηk + ζ̄kη̄k−L(z,η), and conversely, where
ζk := ∂̇kL, it is trivial to produce the momenta

ζk = gk j̄η̄
j +qAk ; k = 1,2,

which yields η j = gm̄ j(ζm̄−qAm̄). Further on, we obtain the complex Hamiltonian

H(z,ζ ) = g j̄k(ζk−qAk)(ζ j̄−qA j̄)−V (z) (3.9)

on the complex manifold T ′∗M, with the fundamental tensor metric h j̄k := g j̄k = ∂ 2H
∂ζk∂ ζ̄ j

which
depends only on z, (i.e. it is purely Hermitian). Moreover, the fundamental tensor metric induces
a purely Hermitian complex Cartan structure H̃(z,ζ ) = h j̄kζkζ j̄, with Ñ jk = −h jm̄

∂hm̄l

∂ zk ζl the local
coefficients of the Chern-Cartan (c.n.c.). A straightforward computation leads to the local expres-
sions of Chern-Hamilton (c.n.c.) corresponding to (3.9):

N jk = Ñ jk +q(
∂A j

∂ zk −h jm̄
∂hm̄l

∂ zk Al). (3.10)

Subsequently, the adapted frame δ ∗k is with respect to this Chern-Hamilton (c.n.c.) given in
(3.10).

By the L−dual process, corresponding to the curves c : t → (zk(t),ηk(t) = dzk

dt )k=1,2 on T ′M

are the curves c∗ : t→ (zk(t),ζk(t) = gk j̄(t)
dz̄
dt

j
+qAk(t))k=1,2 on T ′∗M, which we can see that satisfy

the Hamilton-Jacobi equations iff c is a geodesic, i.e. a solution for (3.3).

4. Schrödinger equation

In quantum mechanics the analogue of Newton’s law is Schrödinger equation for quantum system
(usually atoms, molecules and subatomic particles whether free, bound or localized). It is a partial
differential equation which describes the wave function of the system. The most general form of
the Schrödinger equation is time dependent, which gives a description of the system evolving with
time.
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Among the space-time coordinates (x1,x2,x3,x4), we consider x1 as the usual coordinate time τ,

and then in the complex coordinate z1 we have z1 = τ+ iu, where u := x3. Moreover, along the curve
c(t) described by (3.4), the proper time s depends on an auxiliary time t, which means a quantum
time.

Now, if we substitute the complex Hamiltonian and the complex momenta from (3.9) by the
following operators

H→−ih̄
∂

∂ t
; ζk→−

h̄√
2m

δ
∗
k ; k = 1,2,

the outcome is a two times (the parameter time t and, by means of z1, the coordinate time τ)
Schrödinger equation

ih̄
∂ψ

∂ t
= [−h j̄k(

h̄√
2m

δ
∗
k +qAk)(

h̄√
2m

δ
∗
j̄ +qA j̄)+V (z)]ψ, (4.1)

where ψ = ψ(t,z,ζ ) is the wave function.
According to [29] we can write the local expression of the horizontal Laplace operator of the

complex Lagrange space (3.1),

∆ =
1
g

δk(gg j̄k
δ j̄) = g j̄k[δk(δ j̄)+(Ll

kl−Ll
lk)δ j̄],

where g = det(gk j̄) and δk is with respect to Chern-Lagrange (c.n.c.) (3.2). By L− dual process, it
results that the local expression of the horizontal Laplace operator of the complex Hamilton space
(3.9) is

∆
∗ =

1
h

δ
∗
k (hh j̄k

δ
∗
j̄ ) = h j̄k[δ ∗k (δ

∗
j̄ )+(H l

kl−H l
lk)δ

∗
j̄ ],

where h = det(hk j̄).

Taking into account

h j̄k
δ
∗
k (δ

∗
j̄ ) = ∆

∗−h j̄k(H l
kl−H l

lk)δ
∗
j̄ = ∆

∗−h j̄kT ∗lkl δ
∗
j̄ ,

the equation (4.1) becomes

ih̄
∂ψ

∂ t
= − h̄2

2m
∆
∗
ψ− h̄√

2m
h j̄k{[qAk−

h̄√
2m

T ∗lkl ](δ
∗
j̄ ψ)+qA j̄(δ

∗
k ψ)}

−{h j̄kq[
h̄√
2m

(δ ∗k A j̄)+qA j̄Ak]−V (z)}ψ. (4.2)

In particular, if the charge q vanishes, then the equation (4.2) is reduced to

ih̄
∂ψ

∂ t
=− h̄2

2m
[∆∗ψ−h j̄kT ∗lkl (δ

∗
j̄ ψ)]+V (z)ψ. (4.3)

Moreover, if h j̄k is Kähler, then the Schrödinger equation (4.3) is

ih̄
∂ψ

∂ t
=− h̄2

2m
∆
∗
ψ +V (z)ψ, (4.4)

with ∆∗ψ = h j̄kδ ∗k (δ
∗
j̄ ψ).
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Here, some remarks are entailed.
1. The auxiliary time t is a real parameter, while the coordinate time τ is the real part of the

complex coordinate z1, z1 = τ + iu. These two times may be independent or not. Of course, the most
convenient case is that in which we take τ = t, this being to highlight the naturalness generalization
of the classical Schrödinger equation and also, from viewpoint of the computation of solutions.

2. Clearly, the generalization (4.1) of the Schrödinger equation is a relativistic one, because the
fundamental metric tensor h j̄k coincides with g j̄k which is relativistic (g j̄k is the weakly gravita-
tional metric or Hermitian Schwarzschild metric) and also, the complex momenta and implicitly the
adapted frames δ ∗k depend on the geometry of this relativistic space.

3. Moreover, if gi j̄(z) is the Euclidian metric δi j̄, then δ ∗k = ∂

∂ zk and ∆∗ = ∆. So, as we pointed
out in the introduction, we obtain Ĥψ = Eψ. Therefore, going back to the reasoning, we can say
that ∆∗ψ has the meaning of an energy that depends on the geometry of the relativistic space-time(
M,gi j̄(z)

)
.

4. For this generalized Schrödinger equation we suppose that the wave function ψ is in
C 1(Rt ,L2(M,dz1dz2)).

5. Now we use an idea from [11]. Taking the wave function ψ in the form

ψ = ei m
h̄ s

Ψ,

where Ψ is independent of the proper time s(t) = mt, the equation (4.1) is reduced to

[−h j̄k(
h̄√
2m

δ
∗
k +qAk)(

h̄√
2m

δ
∗
j̄ +qA j̄)+V (z)]Ψ+m2

Ψ = 0, (4.5)

which is a generalization of Klein-Gordon equation similar to that studied by us in [2, 25], for
V (z) = 0. This relation between Klein-Gordon equation and two times Schrödinger equation is
similar with the (t, t ′)−method used in the description of the light-matter interaction in atomic and
molecular physics, [15, 19, 26, 27].

5. Some solutions for generalized Schrödinger equation

In order to point out some solutions for the Schrödinger equation by the method of separation
of variables, we consider the convenient case t = τ and so, z1 = t + iu. Also, we impose some
other additional conditions: the wave function depends only on the space-time coordinates, i.e.
ψ = ψ(z1,z2), the charge q vanishes and the function V is independent of t, that is V = V (u,z2).
Thus, the equation (4.1) is reduced to

ih̄
∂ψ

∂ t
= [− h̄2

2m
h j̄k

δ
∗
k (δ

∗
j̄ )+V (u,z2)]ψ(z1,z2).

Moreover, because ψ(z1,z2), we have δ ∗k ψ = ∂ψ

∂ zk and so,

ih̄
∂ψ

∂ t
= {− h̄2

2m
h j̄k ∂

∂ zk (
∂

∂ z̄ j )+V (u,z2)}ψ(z1,z2). (5.1)

Next, for the Schrödinger equation (5.1) we seek a solution of the form

ψ(z1,z2) = f (t)g(u,z2),

where t = 1
2(z

1 + z̄1) and u = 1
2i(z

1− z̄1). Hence
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∂ψ

∂ t = g(u,z2) ∂ f
∂ t , ∂ψ

∂ z1 =
1
2(g(u,z

2) ∂ f
∂ t − i f (t) ∂g

∂u),
∂ψ

∂ z2 =
∂g
∂ z2 ,

∂ψ

∂ z1∂ z̄1 =
1
4(g(u,z

2) ∂ 2 f
∂ t2 + f (t) ∂ 2g

∂u2 ),
∂ψ

∂ z1∂ z̄2 =
1
2(

∂g
∂ z̄2

∂ f
∂ t − i f (t) ∂ 2g

∂u∂ z̄2 ),
∂ψ

∂ z2∂ z̄2 = f (t) ∂g
∂ z̄ j ,

∂ 2ψ

∂ z2∂ z̄2 = f (t) ∂ 2g
∂ z2∂ z̄2 , etc., and then the equation (5.1) becomes

ih̄g
∂ f
∂ t

= − h̄2

2m
[
1
4

h1̄1(g
∂ 2 f
∂ t2 + f

∂ 2g
∂u2 )+

1
2

h1̄2(
∂g
∂ z2

∂ f
∂ t

+ i f
∂ 2g

∂u∂ z2 ) (5.2)

+
1
2

h2̄1(
∂g
∂ z̄2

∂ f
∂ t
− i f

∂ 2g
∂u∂ z̄2 )+ f h2̄2 ∂ 2g

∂ z2∂ z̄2 ]+V (u,z2) f g.

If f (t) = e−i 12m
h̄ t , then the equation (5.2) can be rewritten as

12mg = − h̄2

2m
[
1
4

h1̄1(−144m2

h̄2 g+
∂ 2g
∂u2 )+

i
2

h1̄2(−12m
h̄

∂g
∂ z2 +

∂ 2g
∂u∂ z2 ) (5.3)

+
i
2

h2̄1(−12m
h̄

∂g
∂ z̄2 −

∂ 2g
∂u∂ z̄2 )+h2̄2 ∂ 2g

∂ z2∂ z̄2 ]+V (u,z2)g,

Now, to obtain the solutions for the equation (5.3), we choose two different forms for the fun-
damental metric tensor h j̄k, the first case is the inverse of the weakly gravitational metric (3.5) and
then in the second case h j̄k is the inverse matrix of the complex Hermitian Schwarzschild metric
(3.7).

Case 1. If we set h j̄k as in (3.6) and V (u,z2) = 0, the equation (5.3) becomes

−48m2

h̄2 g =
1
4
(−144m2

h̄2 g+
∂ 2g
∂u2 )+

1
2
(−12m

h̄
∂g
∂ z2 +

∂ 2g
∂u∂ z2 )

−1
2
(−12m

h̄
∂g
∂ z̄2 −

∂ 2g
∂u∂ z̄2 )−

1+2Φ

c2

1− 2Φ

c2

∂ 2g
∂ z2∂ z̄2 ,

which admits the particular solution

g(u) = ei 2
√

3m
h̄ u.

Thus, a solution of the Schrödinger equation (5.3), with h j̄k as in (3.6) and V (u,z2) = 0 is

ψ(z1,z2) = e−i 12m
h̄ t+

√
3m
h̄ (z1−z̄1).

Case 2. With
(

h j̄k
)
=

(
−1/ϕ4 0
0 1/ϕ4

)
, where ϕ = ϕ(r1) = 1√

kr1±1 , k ∈ R, and r1 =√
|z2|2−u2, the equation (5.3) is the following

1
ϕ4 (−

144m2

h̄2 g+
∂ 2g
∂u2 −4

∂ 2g
∂ z2∂ z̄2 ) =

8m
h̄2 [12m−V (r1)]g. (5.4)

To solve (5.4), we look for solutions

g(u,z2) = eΩ(r1),
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which reduces the equation (5.4) to

Ω
′2 +Ω

′′+
2
r1

Ω
′ =−8m

h̄2 [18m+
12m−V (r1)

(kr1±1)2 ], (5.5)

where Ω′ := dΩ

dr1
, Ω′′ := d2Ω

dr2
1
.

The substitution w := Ω′, transforms (5.5) into a Ricatti equation:

w′ =−w2− 2
r1

w− 8m
h̄2 [18m+

12m−V (r1)

(kr1±1)2 ]. (5.6)

If we assume that V (r1) =
m[(kr1±1)2(18k2r2

1−α)+12k2r2
1 ]

k2r2
1

, where α ∈ R, then the equation (5.6) can be
rewritten as

w′ =−w2− 2
r1

w− 8mα

h̄2k2

1
r2

1
. (5.7)

The Ricatti equation (5.7) admits a particular solution w0 = B
r1
, where B is a solution of the

algebraic equation B2 +B+ 8mα

h̄2k2 = 0. This leads us to the general solution of the equation (5.7)

w =
a(2B+1)2(r1)

2B

a(2B+1)(r1)2B+1−1
− B+1

r1
,

where a is a constant. Then, Ω = lnb a(2B+1)(r1)
2B+1−1

(r1)B+1 and so, the general solution of the equation
(5.4) is

g(u,z2) = eΩ(r1) = ab(2B+1)r1−
b

(r1)B+1 ,

where b is a constant.
Therefore, a solution of the Schrödinger equation (5.1), with h j̄k as in (3.8) and V (u,z2) =

m[(kr1±1)2(18k2r2
1−α)+12k2r2

1 ]

k2r2
1

is

ψ(z1,z2) = b[a(2B+1)r1−
1

(r1)B+1 ]e
−i 12m

h̄ t .

In particular, if α = h̄2k2

32m , then B =−1
2 and

ψ(z1,z2) =−be−i 12m
h̄ t

√
r1

=− b
√

2e−i 6m
h̄ (z1+z̄1)

[(z1− z̄1)2 +4|z2|2] 1
4
.

is the solution of the Schrödinger equation (5.1).
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