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In this article we study a new kind of unbounded solutions to the Novikov equation, found via a Lie symmetry
analysis. These solutions exhibit peakon creation, i.e., these solutions are smooth up until a certain finite time,
at which a peak is created. We show that the functions are still weak solutions for those times where the peak
lives. We also find similar unbounded solutions with peakon creation in the related Camassa–Holm equation,
by making an ansatz inspired by the Novikov solutions. Finally, we see that the same ansatz for the Degasperis–
Procesi equation yields unbounded solutions where a peakon is present for all times.
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1. Introduction

In 1993, Camassa and Holm [3] discovered an integrable partial differential equation within the
context of shallow water theory, an equation which has since been studied quite extensively. One
reason for the interest in this equation is that it allows (weak) explicit solutions in the form of so
called multipeakons. More recent equations with similar properties include the Degasperis–Procesi
[7] and the Novikov [13] equations. See [6] for a discussion of the role of the Camassa–Holm and
Degasperis–Procesi equations in hydrodynamics.

The results of this article originated from a Lie symmetry analysis of the Novikov equation. This
framework gives a complete list of transformations such that each solution of the equation is mapped
to another solution. In the resulting list of transformations, there are two nontrivial transformations
which we use to produce new solutions to the Novikov equation.

In fact, applying the new transformations found in this article to the Novikov one-peakon solu-
tion gives an unbounded solution displaying quite interesting behaviour. (Though the peakon is a
weak solution, it is piecewise smooth, so the transformation makes sense locally away from the
peak.) We find that this new solution depends smoothly on x for some interval in time, and has
peakon creation (or destruction, depending on the transformation) at some finite time t. We also
show that these functions are still weak solutions for those times for which the peak lives.

By making an ansatz inspired by the Novikov solutions with peakon creation, we also find such
solutions to the Camassa–Holm equation. It is interesting to note that, apparently, these solutions
cannot be found using Camassa–Holm symmetries. Another thing to note is that the same ansatz
does not give peakon creation in the closely related Degasperis–Procesi equation, instead we find a
kind of unbounded peakon solution where the peak lives for all times.
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Fig. 1. One-peakon solution

2. Novikov Solutions with Peakon Creation

The Novikov equation, given by

ut −uxxt =−4u2ux +3uuxuxx +u2uxxx, (2.1)

admits multi-peakon solutions

u(x, t) =
n

∑
i=1

mi(t)e−|x−xi(t)| (2.2)

in a weak sense. The word peakon is short for ‘peaked soliton’, where peaked means that there
is some point where the left and right derivatives do not coincide. The peakons interact in quite a
complicated way; see [9] for explicit time dependence of the functions {xi(t),mi(t)} and a weak
formulation of the problem.

Consider the one-peakon solution u(x, t) = ce−|x−c2t|. This is a peakon traveling to the right,
with constant speed equal to the square of the height of the peakon (which differs from Camassa–
Holm and Degasperis–Procesi peakons, where the speed is just equal to the height). For fixed t,
the peakon looks as in Figure 1. Peakons are important due to the fact that the travelling waves
of greatest height of the governing equations for water waves (incompressible homogeneous Euler
equations with a free boundary) present a peak at their crest, cf. [4, 5].

In the Appendix, Theorem A.3, we compute the Lie symmetries of the Novikov equation. These
correspond to transformations that take known (strong) solutions of the equation to other solutions.
We repeat here the result for convenience.

Theorem 2.1. If u = f (x, t) solves the Novikov equation (2.1), then so do

u1 = f (x− ε, t),

u2 = f (x, t− ε),

u3 = eε/2 f (x, teε),

u4 =
√

1+2εe2x f
(
−1

2
ln
(
e−2x +2ε

)
, t
)
,

u5 =
√

1+2εe−2x f
(

1
2

ln
(
e2x +2ε

)
, t
)
.

In this section we study the functions that one gets by transforming the one-peakon solution.
Note though, that the one-peakon is not a smooth solution, so we can not say a priori whether this
approach gives valid weak solutions of the Novikov equation, this has to be checked. Applying the
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first three transformations gives us translations and scaling of a peakon, hence no essentially new
solutions come up. The fourth and fifth tranformations are more interesting. They give the functions

u4(x, t) = c
√

1+2εe2xe−|
1
2 ln(e−2x+2ε)+c2t|, (2.3a)

u5(x, t) = c
√

1+2εe−2xe−|
1
2 ln(e2x+2ε)−c2t|. (2.3b)

Note that these solutions do not tend to zero as |x| → ∞. Let us first study the function u5(x, t).

Theorem 2.2. The transformed Novikov peakon u5(x, t) = c
√

1+2εe−2xe−|
1
2 ln(e2x+2ε)−c2t| is a

smooth solution to the Novikov equation up until t0 = 1
2c2 ln(2ε), when a peak is created at x =−∞.

After time t0, the function is still a weak solution.

Proof. Let us examine the expression inside the modulus signs in u5. This expression is increasing
in x, and has the only root x = 1

2 ln(e2c2t − 2ε). Thus, there can exist a value of x for which the
expression changes sign, but only when t > t0 := 1

2c2 ln(2ε). Before time t0, the function u5 is smooth,
and is thus a solution of the Novikov equation in the usual sense. At the time t0 a peak is created
at x = −∞, so that for each time t > t0 there exists a point where the left and right derivatives are
unequal. After the creation, the peak moves in rapidly from the left.

More concretely, for t ≤ t0, the expression (2.3b) simplifies significantly, since

u5(x, t) = c
√

1+2εe−2xe−
1
2 ln(e2x+2ε)+c2t = c

√
1+2εe−2x
√

e2x +2ε
ec2t = ce−x+c2t .

For t > t0, one can simplify in a similar manner, depending on whether one is to the left or to the
right of the peak at B(t) := 1

2 ln(e2c2t −2ε), yielding

u5(x, t) =

{
ce−x+c2t , x≥ B(t)

c(ex +2εe−x)e−c2t . x≤ B(t)
(2.4)

To check that a function is still a weak solution after time t0, in the sense of [9], one needs to show
that 〈(

1−∂
2
x
)

ut +
(
4−∂

2
x
)

∂x

(
1
3

u3
)
+∂x

(
3
2

uu2
x

)
+

1
2

u3
x ,φ

〉
= 0, ∀φ(x) ∈C∞

0 ,

where 〈·, ·〉 means action on test functions in the usual sense. Using the definition of distributional
derivatives, one gets

〈
ut ,
(
1−∂

2
x
)

φ
〉
+

〈
1
3

u3,∂x
(
∂

2
x −4

)
φ

〉
+

〈
3
2

uu2
x ,−∂xφ

〉
+

〈
1
2

u3
x ,φ

〉
= 0. (2.5)

Let u+ and u− be the expressions of (2.4) to the right and left of the peak, respectively. Note that
u5(x, t) is continuous at all points, with ux and ut piecewise continuous functions, so the lefthand
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side in (2.5) equals∫
∞

B
u+t (φ −φxx) dx+

∫ B

−∞

u−t (φ −φxx) dx+
∫

∞

B

1
3
(
u+
)3
(φxxx−4φx) dx+

+
∫ B

−∞

1
3
(
u−
)3
(φxxx−4φx) dx+

∫
∞

B

3
2

u+
(
u+x
)2
(−φx)dx+

∫ B

−∞

3
2

u−
(
u−x
)2
(−φx)dx+

+
∫

∞

B

1
2
(
u+x
)3

φ dx+
∫ B

−∞

1
2
(
u−x
)3

φ dx.

Using integration by parts to move the derivatives back to u, we get two kinds of terms. First we
again get integrals, which combine to zero since u is a strong solution of the Novikov equation on
each interval. The boundary values at infinity are all zero, since we integrate against a test function
with compact support, but we also get boundary values at B:

U1(B)φ(B)+U2(B)φx(B)+U3(B)φxx(B), (2.6)

where we use the shorthand notation f (B) = f (B(t), t), and

U1(B) :=
(
u−t
)

x (B)−
(
u+t
)

x (B)+
1
3

((
u−
)3
)

xx
(B)− 1

3

((
u+
)3
)

xx
(B)

+
3
2

u+(B)(u+x (B))
2− 3

2
u−(B)(u−x (B))

2 +
4
3
(u+)3(B)− 4

3
(u−)3(B),

U2(B) :=u+t (B)−u−t (B)+
1
3

((
u+
)3
)

x
(B)− 1

3

((
u−
)3
)

x
(B),

U3(B) :=
1
3

((
u−
)3
)
(B)− 1

3

((
u+
)3
)
(B).

The continuity of u5 gives u+(B) = u−(B) which means that U3(B) is zero. It is not obvious, but
easy to check with computer, that U1(B) and U2(B) are also zero. For example,(

ut +
1
3
(
u3)

x

)
(B) =

−2εc3ec2t(
e2c2t −2ε

) 3
2

(2.7)

for both u+ and u−, showing that U2(B) = 0.

Note that as the peak moves in from the left, it is not actually a local maximum from the start
(so it might be more accurate to call it a corner), as we can see from Figure 2. As time increases
the corner really turns into a peak, indicated in Figure 3. The peak becomes increasingly separated
from the large wave to the left, and one can see from the expression for B(t) that, asymptotically,
the peak moves to the right with constant speed c2t like a one-peakon solution, unaffected by the
wavefront. Figure 4 shows how the peak moves in space-time.

Let us also briefly consider the function u4(x, t). By modifying the argument above, one gets
that this function also has a peak, but before a certain (finite) time, at which the position of the peak
goes to +∞. One can also check that u4 is a weak solution until the peak is destroyed, after which it
is a regular solution to the Novikov equation.

Finally, let us mention what happens if one combines the transformations above. Applying trans-
formation 5 with parameter ε , followed by transformation 4 with parameter δ , gives the following
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x

u(x, t)

Fig. 2. Wave profile of u5, shortly after the time of creation

x

u(x, t)

x

u(x, t)

Fig. 3. Wave profile of u5, snapshots at two different later times

x

t

x = B(t)

t0

Fig. 4. Movement of the peak in space-time

function:

ũ = c
√

1+2δe2x
√

1+2ε(e−2x +2δ )e−
∣∣∣ 1

2 ln
(

1
e−2x+2δ

+2ε

)
−c2t

∣∣∣
.

It turns out that this function has a peak that is both created and destroyed in finite time. The precise
interval for which the peak lives is

t ∈
(

1
2c2 ln(2ε),

1
2c2 ln

(
2ε +

1
2δ

))
.
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Outside this interval, ũ is a smooth function of x, and thus a regular solution as before. To find a
function for which the peak lives between given times t1 and t2, choose

ε = 1
2 e2c2t1 ,

δ = 1
2
(

e2c2t2−e2c2t1
) , t1 < t2.

3. Peakon Creation in Related Equations

Finding unbounded solutions with peakon creation in the Novikov equation inspires us to look for
solutions with similar behaviour in the related Camassa–Holm and Degasperis–Procesi equations.

3.1. Camassa–Holm solutions with peakon creation

The Camassa–Holm equation (CH), from [3], is given by

ut −uxxt +3uux = 2uxuxx +uuxxx. (3.1)

It is known from [2] that the CH symmetry group only consists of translations and scalings. This
means that we cannot find solutions with peakon creation just by transforming the one-peakon
solution. Still, it turns out that there are solutions with peakon creation, that one can find via an
ansatz inspired by the Novikov solutions found in the previous section.

Theorem 3.1. The function u(x, t) defined by

u(x, t) =

{
u+ = a(t)e−x, x≥ B(t),

u− = c(t)(ex + e−x), x≤ B(t),
for t > t0,

and u(x, t) = a(t)e−x for t ≤ t0, is a solution to the Camassa–Holm equation, with

a(t) =Ucosh[U(t− t0)],

B(t) = ln(sinh[U(t− t0)]),

c(t) =
U

cosh[U(t− t0)]
.

Proof. We look for weak solutions of the kind

u(x, t) =

{
u+ = a(t)e−x, x≥ B(t),

u− = c(t)(ex + e−x), x≤ B(t),
(3.2)

where a(t) and c(t) are positive continuous functions, chosen in such a way that u is continuous at
the peak B(t) for all times. From the weak formulation of the Camassa–Holm equation found in [9],
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one has that u must satisfy〈(
1−∂

2
x
)

ut +
(
3−∂

2
x
)

∂x

(
1
2

u2
)
+∂x

(
1
2

u2
x

)
,φ

〉
= 0 (3.3)

for all test functions φ(x) ∈C∞
0 . Note that the function u(x, t) is a strong solution of (3.1) on each

interval. Thus integration by parts, as in the previous section, gives that

U1(B)φ(B)+U2(B)φx(B)+U3(B)φxx(B) = 0

must be satisfied, where

U1(B) :=
(
u−t
)

x (B)−
(
u+t
)

x (B)+
1
2

((
u−
)2
)

xx
(B)− 1

2

((
u+
)2
)

xx
(B)+

+
1
2
(
u+x (B)

)2− 1
2
(
u−x (B)

)2
+

3
2

((
u+
)2
)
(B)− 3

2

((
u−
)2
)
(B), (3.4a)

U2(B) := u+t (B)−u−t (B)+
1
2

((
u+
)2
)

x
(B)− 1

2

((
u−
)2
)

x
(B), (3.4b)

U3(B) :=
1
2

((
u−
)2
)
(B)− 1

2

((
u+
)2
)
(B). (3.4c)

The condition (3.4c) = 0 is met because of continuity. Using continuity, we can also express a(t) in
terms of B and c, since

c
(
e−B + eB)= ae−B =⇒ a = c

(
1+ e2B) =⇒ da

dt
=

dc
dt

(
1+ e2B)+2

dB
dt

ce2B.

Eliminating a and its time derivative in the conditions (3.4a) = (3.4b) = 0 gives the system

d
dt

(
ceB)= c2, (3.5a)

dB
dt

= c
(
eB + e−B) . (3.5b)

These conditions are simplified by a change of variables,{
G(t) = c(t)eB(t),

K(t) = 1
c2(t) ,

=⇒

{
dG
dt = c2 = 1

K ,
dK
dt = −2

c3
dc
dt = 2KG,

where the last line follows from the observation that

dc
dt

=
d
dt

(
G
eB

)
=

c2

eB −
Gc
(
eB + e−B

)
eB

e2B =−c2eB =−cG.

One can now get a separable differential equation and find a constant of motion:

dK
dG

=
dK
dt
dG
dt

= 2K2G =⇒
∫ dK

K2 =
∫

2GdG =⇒ − 1
K

= G2 + constant.

Apart from the trivial solution a(t) = c(t) = 0, G and 1
K are positive, so the constant has to be

negative. Let the constant be named −U2 for convenience. Then

dG
dt

=
1
K

=U2−G2 =⇒
∫ dG

U2−G2 =
∫

dt
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=⇒ 1
2U

∫ ( 1
U +G

+
1

U−G

)
dU =

∫
dt =⇒ 1

2U
ln
(

U +G
U−G

)
= t− t0

=⇒ G =U
e2U(t−t0)−1
e2U(t−t0)+1

=U tanh[U(t− t0)].

From this one gets K as

K =
1

U2−G2 =
1

U2 ·
1

1− tanh2[U(t− t0)]
=

cosh2[U(t− t0)]
U2 ,

which gives expressions for c(t), B(t), and consequently a(t):

c(t) =
1√
K

=
U

cosh[U(t− t0)]
,

B(t) = ln
(

G
√

K
)
= ln(sinh[U(t− t0)]),

a(t) = c(t)
(

1+ e2B(t)
)
=

U
cosh[U(t− t0)]

(
1+ sinh2[U(t− t0)]

)
=Ucosh[U(t− t0)].

We note that our new solution behaves similarly to the Novikov solution with peakon creation in
Theorem 2.2. Up to time t0, the expression for B(t) is undefined, so the function is a strong solution
to the Camassa–Holm equation. At t0 a peak is created at x =−∞, which then moves rapidly in from
the left. Note that the exact time dependencies are not the same as for the Novikov peakon-creation
solution, even though the qualitative behaviour is the same.

3.2. Degasperis–Procesi solutions with peakon creation?

The Degasperis–Procesi (DP) equation [7] is given by

ut −uxxt +4uux = 3uxuxx +uuxxx. (3.6)

Like Camassa–Holm, it only has scaling and translation symmetries [15], so we try to find peakon-
creation solutions using the same method as in the last section.

Theorem 3.2. For every t ∈ R, the function

u(x, t) =

{
u+ = a(t)e−x, x≥ B(t),

u− = c(t)(ex + e−x), x≤ B(t),

where

a(t) =

√
C1

C0

(
1+C0C1e2Ut

eUt + e−Ut

UC0

)
,

B(t) = ln
√

C0C1 +Ut,

c(t) =

√
C1

C0

1

eUt + e−Ut

UC0

,

is a solution to the Degasperis–Procesi equation.
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Proof. We look for weak solutions

u(x, t) =

{
a(t)e−x, x≥ B(t),

c(t)(ex + e−x) , x≤ B(t),

where a(t) and c(t) are positive continuous functions, such that u is continuous at the peak B(t) for
all times. We stick to the weak formulation given in [9], i.e., u(x, t) must satisfy〈(

1−∂
2
x
)

ut +
(
4−∂

2
x
)

∂x

(
1
2

u2
)
,φ

〉
= 0.

As before, ut is piecewise continuous, so via integration by parts we find three conditions on u+ and
u− at the peak, one of which is satisfied because of continuity. Eliminating a(t), we end up with a
system similar to (3.5), but not the same:

d
dt

(
ceB)= 2c2,

dB
dt

= c
(
eB + e−B) .

With G(t) = c(t)eB(t), K(t) = eB(t)

c(t) , we get

dG
dt

=
2G
K

,

dK
dt

= 2GK.

Using the same method as before, we find a relation between K and G:

dK
dG

=
dK
dt
dG
dt

= K2 =⇒
∫ dK

K2 =
∫

dG =⇒ − 1
K

= G+ constant.

Let the constant be named−U . Since G and 1
K are nonnegative, U = 0 only gives the trivial solution

a(t) = c(t) = 0. Assume U 6= 0. Then

dK
dt

= 2GK = 2K
(

U− 1
K

)
=⇒ dK

dt
−2KU =−2,

which has the general solution

K =C0e2Ut +
1
U
.

This gives G(t) via

dG
dt

=
2G
K

=
2G

C0e2Ut + 1
U

=⇒ G =
C1

e−2Ut

UC0
+1

,

so we get

eB(t) =
√

GK =
√

C1

√√√√C0e2Ut + 1
U

e−2Ut

UC0
+1

=
√

C0C1e2Ut =
√

C0C1eUt

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

9



M. Kardell / Peakon creation in Camassa–Holm and Novikov

=⇒ B(t) = ln
√

C0C1 +Ut,

and

c(t) =

√
G
K

=

√√√√ C1(
e−2Ut

UC0
+1
)(

C0e2Ut + 1
U

) =√√√√ C1

C0e2Ut
(

1+ e−2Ut

UC0

)2 =

√
C1

C0

1

eUt + e−Ut

UC0

.

This gives

a(t) = c(t)
(

1+ e2B(t)
)
=

√
C1

C0

(
1+C0C1e2Ut

eUt + e−Ut

UC0

)
.

Note that B(t) here is defined for all times, so there is no peakon creation in this solution. We
have found an unbounded piece-wise defined solution though. It is possible that a more general
ansatz yields a solution with peakon creation in the DP case. It would also be interesting to investi-
gate if one can find a solution with creation of so-called shockpeakons [11].

A. Lie Symmetries

In this appendix we use the framework of symmetry groups, due to Lie, to construct transforma-
tions taking solutions of the Novikov equation (2.1) to other solutions. Similar results have been
presented for the related Camassa–Holm equation in [2] and more recently for the Degasperis–
Procesi equation in [15]. Note that computation of symmetry groups is quite cumbersome, so to
find them explicitly, the Jets package in Maple is used. For more information on the Jets algorithm
and how to use the package, see [12] and [1] respectively.

A.1. Definitions

Herein we will mainly use the notation employed in Olver’s book [14], which also contains all
details and proofs omitted in this section.

Let X = {x̄ =
(
x1, . . . ,xp

)
} and U = {ū =

(
u1, . . . ,uq

)
} be the spaces of independent and depen-

dent variables, respectively, involved in a system of differential equations. The n-th prolongation
of a scalar function u is defined as a tuple, denoted u(n), containing u and all its derivatives up
to order n, where derivatives are arranged by order and then lexicographically. For example, with
independent variables x1 = x,x2 = t one gets u(2) = (u,ux,ut ,uxx,uxt ,utt). Furthermore, we define
for vector-valued functions

ū(n) =
(
(u1)(n), . . . ,(uq)(n)

)
,

and set U (n) = {ū(n) | ū ∈U}.
An n-th order system of differential equations can then be given as

∆r

(
x̄, ū(n)

)
= 0, r = 1, . . . , l, (A.1)

where the system has maximal rank if the Jacobian J∆

(
x̄, ū(n)

)
has rank l for all points

(
x̄, ū(n)

)
that

are solutions to the system.
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If G is a local group of transformations on M ⊂ X ×U and g ∈ G, one defines the prolonged
action g(n) on a point

(
x̄, ū(n)

)
∈ M(n) ⊂ X ×U (n) as transforming x̄ and ū, and then re-evaluating

derivatives. What we are looking for are symmetry groups, i.e., local groups of transformations on
M such that their prolongations take solutions of the system (A.1) to other solutions.

To a one-parameter group G there corresponds an infinitesimal generator v, which is a vector
field defined on M, with the property that orbits of the group action are maximal integral curves of v.
Similarly, to an m-parameter group there corresponds a set of m infinitesimal generators v1, . . . ,vm,
which has the property that it is closed under taking Lie bracket, and that each infinitesimal gener-
ator corresponds to a generator of the group G.

We define the prolongation of an infinitesimal generator v of a group G to be the vector field
v(n), defined on M(n), which is the infinitesimal generator of the group G(n) := {g(n)|g ∈ G}. We
want to give a formula for computing v(n).

Let J be a multi-index of the form

J = ( j1, . . . , jk), 1≤ jk ≤ p, 1≤ k ≤ n,

where p is the number of independent variables. Then one can introduce a compact notation for
derivatives as

uα
j =

∂uα

∂x j
and uα

J =
∂ kuα

∂x j1 · · ·∂x jk
,

and we shall also use the notation

D jφ(x̄, ū) =
∂φ

∂x j +
q

∑
α=1

uα
j

∂φ

∂uα

for total derivatives, and DJ = D j1D j2 · · ·D jk for multi-indices J.
The following theorem (Theorem 2.36 in [14]) gives the general formula for v(n):

Theorem A.1. Let

v =
p

∑
i=1

ξ
i(x̄, ū)

∂

∂xi +
q

∑
α=1

φα(x̄, ū)
∂

∂uα
(A.2)

be a vector field on M ⊂ X×U. Then

v(n) = v+
q

∑
α=1

∑
J

φ
J
α

(
x̄, ū(n)

)
∂

∂uα
J
, (A.3)

where the second sum is over all multi-indices J, and φ J
α is given by

φ
J
α

(
x̄, ū(n)

)
= DJ

(
φα −

p

∑
i=1

ξ
i ∂uα

∂xi

)
+

p

∑
i=1

ξ
i ∂uα

J
∂xi . (A.4)

The next theorem (Theorem 2.31 in [14]) is the main tool for finding symmetry groups:
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Theorem A.2. Suppose

∆r

(
x̄, ū(n)

)
= 0, r = 1, . . . , l,

is a system of differential equations of maximal rank defined over M ⊂ X×U. If G is a local group
of transformations acting on M, with infinitesimal generator v, and

v(n)
(

∆r

(
x̄, ū(n)

))
= 0, r = 1, . . . , l, whenever ∆

(
x̄, ū(n)

)
= 0,

then G is a symmetry group of the system.

Thus, the method for finding symmetry groups is to make the ansatz (A.2) for v, prolong it
using expressions (A.3) and (A.4), apply it as a differential operator to the system (A.1), and find
the conditions for which this expression is zero. Then v is an infinitesimal generator of the symmetry
group, so finding G is just a matter of exponentiating the vector field.

A.2. Using Jets

The computations required to determine v become increasingly more involved as the number of
variables or the number of equations in the system grows. A semi-automatic process, called Jets, is
used here to solve this problem. Jets is implemented in Maple, and it is well suited for dealing with
large symbolic expressions appearing in the ansatz for v(n). More concretely, what happens is the
following:

Let v be defined as in (A.2). As a computational trick, define

Qα

(
x̄, ū(1)

)
= φα(x̄, ū)−

p

∑
i=1

ξ
i(x̄, ū)uα

i , α = 1, . . . ,q.

We call Q = (Q1, . . . ,Qq) the characteristic of v. Note that one can recover v from Q through the
relations {

ξ i(x̄, ū) =− ∂

∂uα
i

Qα ,

φα(x̄, ū) = Qα
(
x̄, ū(1)

)
+∑

p
i=1 ξ i(x̄, ū)uα

i .
(A.5)

Jets is built to produce Q, so that we can recover v and exponentiate it to find the symmetry group.
The Novikov equation, as stated before, is

uxxt −ut = 4u2ux−3uuxuxx−u2uxxx.

We note that this is just a single third-order partial differential equation, with two independent and
one dependent variable. This means that one can drop the α’s and the bar on ū in the equations
above. Also, let x1 = x, x2 = t, so that the ansatz for v becomes

v = ξ
x(x, t,u)

∂

∂x
+ξ

t(x, t,u)
∂

∂ t
+φ(x, t,u)

∂

∂u
,

and its third prolongation

v(3) = v+φ
x ∂

∂ux
+φ

t ∂

∂ut
+φ

xx ∂

∂uxx
+φ

xt ∂

∂uxt
+φ

tt ∂

∂utt
+

+φ
xxx ∂

∂uxxx
+φ

xxt ∂

∂uxxt
+φ

xtt ∂

∂uxtt
+φ

ttt ∂

∂uttt
.
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If one wanted to do the work manually one would now compute the coefficients φ x, etc., using
Theorem A.1, apply v(3) to the Novikov equation, and find conditions on the ξ ’s and φ . Instead,
let’s go with Jets, and study the characteristic

Q(x, t,u,ux,ut) = φ(x, t,u)−ξ
x(x, t,u)ux−ξ

t(x, t,u)ut .

With the following setup, Jets will generate all conditions for Q being the characteristic of the
Novikov equation:

> read("Jets.s");

> coordinates([x,t], [u], 3);

> equation (’u_xxt’ = u_t + 4*u^2*u_x - 3*u*u_x*u_xx - u^2*u_xxx);

> S := symmetries(u = Q);

> dependence(Q(x, t, u, u_t, u_x));

> unknowns(Q);

> run(S);

> dependence();

> S1 := clear(pds);

We find that Q depends on all variables in general, and must satisfy the following conditions:

∂ 2

∂ t2 Q =
∂ 2

∂u2
x

Q =
∂ 2

∂u2
t

Q = 0, (A.6a)

∂ 2

∂ t∂x
Q =

∂ 2

∂ux∂ t
Q =

∂ 2

∂ut∂x
Q =

∂ 2

∂ut∂ux
Q = 0, (A.6b)[

∂ 2

∂ut∂ t
− 1

ut

∂

∂ t

]
Q = 0, (A.6c)[

∂

∂u
+

1
u

(
ux

∂

∂ux
+ut

∂

∂ut
−1
)]

Q = 0, (A.6d)[
∂ 2

∂ux∂x
+

2
u

(
1−ux

∂

∂ux
−ut

∂

∂ut

)
− 1

ut

∂

∂ t

]
Q = 0, (A.6e)[

∂ 2

∂x2 +
2ux

u
∂

∂x
+

2(u2−u2
x)

uut

∂

∂ t
+

4(u2−u2
x)

u2

(
ux

∂

∂ux
+ut

∂

∂ut
−1
)]

Q = 0. (A.6f)

It follows from (A.6a) and (A.6b) that the characteristic Q is a polynomial of first degree in both ux

and t, with no mixed terms, so one can split it into three parts, denoted Q0, Q1 and Q2, that only
depend on u, x and ut , so that Q = Q0ux +Q1t +Q2. This simplifies the dependence of Q, so we run
Jets again:

> Q := Q0*u_x + Q1*t + Q2;

> dependence(Q0(u, x, u_t), Q1(u, x, u_t), Q2(u, x, u_t));

> unknowns(Q0, Q1, Q2);

> run(S1);

> dependence();

> S2 := clear(pds);

This time, Jets is able to reduce the dependencies, so that Q0 now only depends on x, while Q1

only depends on ut . However, Q2 still depends on u, x, and ut . The list of conditions is now more
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manageable:

(
∂ 3

∂x3 −4
∂

∂x

)
Q0 = 0, (A.7a)(

∂

∂ut
− 1

ut

)
Q1 = 0, (A.7b)

u
2

∂ 2

∂x2 Q0 +
∂

∂x
Q2 = 0, (A.7c)

1
2

∂

∂x
Q0−

1
2ut

Q1 +
∂

∂u
Q2 = 0, (A.7d)

− u
2ut

∂

∂x
Q0 +

u
2u2

t
Q1 +

(
∂

∂ut
− 1

ut

)
Q2 = 0. (A.7e)

Now, conditions (A.7a) and (A.7b) imply that

Q0 = Q00e2x +Q01e−2x +Q02,

Q1 = Q10ut ,

where Q00 up to Q10 are constants. Inserting these expressions into conditions (A.7c) through (A.7e)
and solving for Q2 gives

Q2 =−uQ00e2x +uQ01e−2x +
u
2

Q10 +utQ20,

where Q20 is also constant.
We conclude that the most general characteristic for the Novikov equation is

Q =
(
−ue2x +uxe2x)Q00 +

(
ue−2x +uxe−2x)Q01 +uxQ02 +

(
1
2

u+ tut

)
Q10 +utQ20. (A.8)

Note that it has five degrees of freedom, which correspond to five different generators for the sym-
metry group. From the characteristic, we recover five infinitesimal generators, using (A.5).

v1 =−
∂

∂x
,

v2 =−
∂

∂ t
,

v3 =−
∂

∂ t
+

u
2

∂

∂u
,

v4 =−e2x ∂

∂x
− e2xu

∂

∂u
,

v5 =−e−2x ∂

∂x
+ e−2xu

∂

∂u
.

Exponentiating the vector fields, we find the symmetry group of the Novikov equation.
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Theorem A.3. If u = f (x, t) solves the Novikov equation (2.1), then so do

u1 = f (x− ε, t),

u2 = f (x, t− ε),

u3 = eε/2 f (x, teε),

u4 =
√

1+2εe2x f
(
−1

2
ln
(
e−2x +2ε

)
, t
)
,

u5 =
√

1+2εe−2x f
(

1
2

ln
(
e2x +2ε

)
, t
)
.

It is easy to check the first three by inspecting the equation; the last two are best checked by
computer.

Finally, while computing the Lie symmetries of the Novikov equation, we also did the same for
its two-component generalization due to Geng–Xue [8]. While not directly relevant to this article,
this might be a good place to mention the results. The Geng–Xue system is given by{

uxxt −ut = (ux−uxxx)uv+3(u−uxx)vux,

vxxt − vt = (vx− vxxx)uv+3(v− vxx)uvx.

Proceeding with the help of Jets as before, we find the following symmetries.

Theorem A.4. If {
u = f (x, t),

v = g(x, t),

solves the Geng–Xue system (A.2), then so do{
u1 =

√
1+2εe2x f

(
−1

2 ln
(
e−2x +2ε

)
, t
)
,

v1 =
√

1+2εe2xg
(
−1

2 ln
(
e−2x +2ε

)
, t
)
,{

u2 =
√

1+2εe−2x f
(1

2 ln
(
e2x +2ε

)
, t
)
,

v2 =
√

1+2εe−2xg
(1

2 ln
(
e2x +2ε

)
, t
)
,{

u3 = f (x− ε, t),

v3 = g(x− ε, t),

{
u4 = f (x, t− ε),

v4 = g(x, t− ε),{
u5 = f (x, teε),

v5 = eεg(x, teε),

{
u6 = eε f (x, t),

v6 = e−εg(x, t).
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