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This paper is devoted to the subsurface current dynamics in equatorial regions, where the hallmark of a strong
stratification is a sharp interface (thermocline), separating two layers of different density, and whose depth is
dependent upon the strength of the winds above the ocean’s surface. We give here a few monotonicity results
concerning the dynamics of the thermocline in the equatorial region. The most important one asserts that the
level of the thermocline decreases as the strength of the wind at ten meters above the ocean surface, denoted
|Uw|, increases. Moreover, the strength of the current at the thermocline decreases as |Uw| increases.
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1. Introduction

We study the dynamics of waves in the zone of the Pacific Ocean situated within a band about 2◦ lat-
itude from the Equator. This area presents several peculiarities due to the pronounced stratification,
cf. [11], the presence of underlying non-uniform currents and the existence of a diversity of ocean
flows. The first aspect, concerning the stratification is stressed by the existence of a sharp near-
surface pycnocline/thermocline which separates a shallow layer of warm water, near the surface,
from a deeper layer of colder, denser water–the difference in density being about 1%. Concerning
the existence of underlying non-uniform currents, it is known, cf. [20] and [21], that in a strip of
approximately 300 km wide about the Equator, the underlying currents exhibit a pronounced depth-
dependence. Namely, in a layer adjacent to the surface, of about 100 m, there is a westward drift that
is triggered by the prevailing trade winds. Right below this layer lies the Equatorial Undercurrent
(EUC), an eastward pointing stream which is essentially based on the thermocline. As far as our
paper is concerned, we aim to investigate here the interactions between the two opposed currents as
described earlier. To this end, we consider an initially calm setting that undergoes a sudden west-
ward wind-stress acting on the ocean surface and which, afterwards remains constant for a long
time. Moreover, assuming a constant ocean depth, no land boundaries and a uniform wind stress,
it is matter of fact that, cf. [10] no see surface elevation will arise. However, the initial constant
pressure at the ocean surface is modified and an underlying current field occurs. It is observed,
for instance, in the context of the El Niño phenomenon that the pressure at the surface undergoes
a rapid adjustment to the constant atmospheric pressure after the wind softens. The situation just
described concerning the free surface and the pressure sets up the scenario that will be relevant to
our endeavor.
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2. Equations of motion and boundary conditions

2.1. Equations of motions

Suitable for our context, described in the introduction, is the f -plane approximation for the gov-
erning equations, cf. [6, 19] and the considerations in [2]. We point out that the latter mentioned
approximation is currently used extensively in investigations of equatorial fluid flows, cf. the dis-
cussion in the recent papers [7,16,17]. We also mention that the f -plane approximation is applicable
in regions close to the Equator, where the ocean dynamics acquires peculiar features, usually cap-
tured within the broader framework of the β -plane approximation, discussed in detail in the survey
papers [12, 14], in the book [9] and in the recent papers [3–5, 15].

We will use a coordinate system with the origin at a point on the Earth’s surface, with the x-axis
chosen horizontally due East, the y-axis horizontally due North (in the tangent plane) and the z-axis
oriented upward.

Assuming a simplified structure of the westward trade winds, a uniform wind stress, a vanishing
fluid velocity and considering the linearized equations for a forced steady-state flow, the governing
equations in the f -plane approximation in the layer adjacent to the free surface above the thermo-
cline z =−h are

0 =− 1
ρ

Px +(νuz)z, (2.1a)

−2Ωu =− 1
ρ

Pz −g, (2.1b)

ux = 0, (2.1c)

where P denotes pressure, ρ represents the density, Ω is the rotational speed of the Earth and ν(z)
is the vertical viscosity parameter, assumed here to be depth dependent, feature that is in contrast
with the classical model of uniform vertical viscosity, see [22].

In the layer below the thermocline the motion of the flow is governed by

0 =− 1
(1+ r)ρ

Px +(νuz)z, (2.2a)

−2Ωu =− 1
(1+ r)ρ

Pz −g, (2.2b)

ux = 0, (2.2c)

where r is a small positive constant accounting for the difference in density between the two layers.
Its values are typically between 4× 10−3 and 6× 10−3, cf. [11] and [18]. Moreover, according to
McCreary [20] the stress-shear relationship

τ = ρνuz (2.3)

for the wind-induced stress τ(z) holds within the fluid.
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2.2. Boundary and interface conditions

One of the boundary conditions refers to the knowledge of the surface wind stress, τ0 < 0, thus, as
a consequence of (2.3) we have

ρνuz|z=0 = τ0.

Following the arguments in [23] we assume that ν(0) = σ |τ0|, for some (dimensional) constant σ .
From the latter equation we have

uz|z=0 =− 1
ρσ

. (2.4)

The boundary conditions associated to the layer below the thermocline refer to the continuity of the
horizontal velocity component, of the pressure and of the shear stress across the thermocline , and
the no-slip condition

u = 0 on the ocean bed z =−d. (2.5)

Differentiating equation (2.1a) with respect to z, equation (2.1b) with respect to x and taking
into account (2.1c) we find that

(νuz)zz = 0 for −h ≤ z ≤ 0.

Thus, using the assumption of vanishing shear at the thermocline and relation (2.4), we find that

νuz =−ν(0)
ρσ

(
1+

z
h

)
for −h ≤ z ≤ 0. (2.6)

We infer from the previous relation that

u(z) = u(0)+
ν(0)
ρσ

∫ 0

z

1+ s
h

ν(s)
ds for −h ≤ z ≤ 0. (2.7)

Remark 2.1. Between the wind speed at 10 meters above the sea, denoted Uw, and the speed of the
flow at the free surface u(0) =: u0, there exists, cf. [1, 13], the following relation

Uw =
1
k

u0 ln
(

10g
au2

0
+1

)
, (2.8)

where k ∼= 0.4 is the Kárman constant and a ∼= 0.0185 is also a constant. Since the wind blows from
east to west Uw < 0, thus u0 is also negative, as it follows from (2.8).

From the dynamic boundary condition at the free surface we obtain

P(x,z) =−ν(0)
σh

x−ρgz−2ρΩ
∫ 0

z
u(s)ds+Patm for −h ≤ z ≤ 0. (2.9)

Using now the equations in (2.2) we can infer that

(νuz)zz = 0

in the layer below the thermocline. The assumption of vanishing shear along the thermocline yields

νuz =C
(

1+
z
h

)
for −d ≤ z ≤−h, (2.10)
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for some constant C that is to be determined from the interface conditions along the thermocline
in the following way. Since P is continuous along the thermocline z = −h we have that also Px is
continuous across it. Thus, using (νuz)z =

C
h , formula (2.9) and the first equation in (2.2) we find

that

C =− ν(0)
(1+ r)ρσ

,

and consequently

u(z) =− ν(0)
(1+ r)ρσ

∫ z

−d

1+ s
h

ν(s)
ds for −d ≤ z ≤−h, (2.11)

where we have also made use of formula (2.5). Moreover, from (2.2) we obtain that for the pressure
in the layer below the thermocline we have the formula

P(x,z) =−ν(0)
σh

x−ρg[(1+ r)z+ rh]−2ρΩ
∫ 0

−h
u(s)ds−2ρΩ(1+ r)

∫ −h

z
u(s)ds+Patm

From the continuity of the horizontal velocity component along the thermocline we have

u(0)+
ν(0)
ρσ

∫ 0

−h

1+ s
h

ν(s)
ds =− ν(0)

(1+ r)ρσ

∫ −h

−d

1+ s
h

ν(s)
ds. (2.12)

From the already derived formulas a few remarks are in order. Concerning the monotonicity of the
horizontal velocity u we have the following

Remark 2.2. From (2.6) we see that u is a decreasing function in the layer above the thermocline,
thus, as the depth decreases from z = 0 to z = −h the value of u increases from the negative u0 to
the positive value u(−h). From (2.10) we notice that u is increasing in the layer below the thermo-
cline, thus, as the depth increases from z =−d to z =−h, the value of u increases from u(−d) = 0
to u(−h) > 0. Consequently, u achieves its minimum at the free surface and its maximum at the
interface. See figure Figure 1 for a better understanding of the monotonicity of the equatorial under-
current.

Remark 2.3. Formula (2.12) in conjunction with (2.8) indicates an implicit dependence of the
thermocline depth, −h, on the wind speed Uw. We will pursue this dependence in greater detail for
special choices of the viscosity function ν .

It is known, cf. Cronin and Kessler, [8], that for moderate and high wind speeds a good choice
of the viscosity function is

ν(z) = ν(0) f
( z

d

)
, for −d ≤ z ≤ 0, (2.13)

for a (non-dimensional) function f that decays exponentially with depth in the layer above the ther-
mocline. We will prove in the sequel a monotonicity result concerning the level of the thermocline
with respect to the strength of Uw.

Proposition 2.1. We assume that the viscosity coefficient ν is of the form described in (2.13). Then
the level of the thermocline, −h, decreases as the strength of the wind speed (typically measured at
ten meters above the ocean’s surface), denoted |Uw|, increases.
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Fig. 1. Typical vertical profile of the equatorial current field in the Pacific region. The horizontal axis points from West to
East, along the Equator

Proof. From (2.12) and (2.13) we see that

u0 =− 1
ρσ

(∫ 0

−h

1+ s
h

f (s/d)
ds+

1
1+ r

∫ −h

−d

1+ s
h

f (s/d)
ds
)
< 0.

Let us set ξ := |u0|, that is, we look at the strength of the flow at the free surface. A calculation
shows that

dξ
dh

=
1

ρσ

(
− 1

h2

∫ 0

−h

sds
f (s/d)

− 1
h2(1+ r)

∫ −h

−d

sds
f (s/d)

)
> 0, (2.14)

relation that shows that ξ is an invertible function of h, from which we can conclude that h is a
function of ξ and

dh
dξ

=

(
dξ
dh

)−1

> 0. (2.15)

Denote now β :=−Uw, that is, β stands for the strength of the wind at ten meters above the ocean
surface. From the relation (2.8) we have that

β =
1
k

ξ ln
(

10g
aξ 2 +1

)
. (2.16)

We have first that

dβ
dξ

=
1
k

[
ln
(

10g
aξ 2 +1

)
− 20g

10g+aξ 2

]
. (2.17)
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To determine the sign of the above expression we see first that 20g
10g+aξ 2 < 2 and therefore e

20g
10g+aξ 2 <

e2, for all ξ > 0. On the other hand notice that

e2 <
10g
aξ 2 +1 for ξ 2 <

10g
a(e2 −1)

∼= 829.966(m/s).

Since the latter inequality is equivalent to ξ < 28.80(m/s), we now see that for ξ < 28.80 the
bracket on the right hand side of (2.17) is strictly positive, thus the function β is invertible and the

derivative of the inverse is dξ
dβ =

(
dβ
dξ

)−1
> 0 and the interval of definition for ξ as a function of β

is (0,βmax) where βmax := β (28.80).
From the previous considerations we see that h can be thought as a function of β and

dh
dβ

=
dh
dξ

dξ
dβ

> 0. (2.18)

The latter inequality means that if the strength of the wind at ten meters above the ocean surface
increases then h increases, therefore, the level of the thermocline, −h, decreases.

Remark 2.4. The value of βmax computed from formula (2.16) is approximately 518.54 Km/h.
According to the World Meteorological Organization, “the record of wind gusts not related to tor-
nados registered to date is 408 km/h during Tropical Cyclone Olivia on 10 April 1996 at Barrow
Island, Australia”. Thus, our considerations accommodate even stronger storms.

We conclude by a monotonicity result concerning the current at the thermocline u(−h) as a
function of the strength of the wind above the surface.

Proposition 2.2. The strength of the current at the thermocline decreases as the strength of the wind
above the ocean’s surface increases. On the other hand, the difference u(−h)−u(0), measuring the
strength of the flow reversal, increases as |Uw| increases.

Proof. The first assertion emerges using (2.18), the relation

d(u(−h))
dβ

=
d(u(−h))

dh
dh
dβ

and since

d(u(−h))
dh

=
1

(1+ r)ρσ
1
h2

∫ −h

−d

sds
f (s/d)

ds < 0.

The second assertion follows from

u(−h)−u(0) =
1

ρσ

∫ 0

−h

1+ s
h

f (s/d)
ds

and since

d
dh

(∫ 0

−h

1+ s
h

f (s/d)
ds
)
=− 1

h2

∫ 0

−h

sds
f (s/d)

> 0.
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