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1. Introduction

In this paper we describe an exact three-dimensional solution for nonlinear geophysical internal

ocean waves in the Equatorial region which incorporates a transverse-Equatorial meridional current.

The solution corresponds to the classical two-layer model describing oscillations of the thermocline

(which is an interface separating two distinct vertical ocean layers of differing densities) in the

equatorial region, whereby the fluid wave motion diminishes as one ascends from the thermocline

towards the surface. This solution is valid for oceanic flows within a restricted meridional range

of approximately 2◦ latitude from the Equator, a region where the f−plane approximation of the

geophysical governing equations applies [10, 12, 27].

The solution we present is explicit in terms of Lagrangian labelling parameters, and in this,

and other, respects the solution may be termed Gerstner-like in reference to the celebrated Gerst-

ner’s wave. Gerstner’s wave is a two-dimensional wave propagating over an infinitely-deep fluid

domain— cf. [3, 5, 17], and also [2, 28] for a Gerstner-like formulation of edge-waves propagating

over a sloping bed. One of the Gerstner wave’s primary points of significance is the fact that it is

the only known explicit and exact solution of the nonlinear periodic gravity wave problem with a

non-flat free-surface.

Remarkably, considering the Gerstner wave’s rareness, and highly-prescribed mathematical

formulation, Constantin recently presented a solution [6] to the geophysical governing equations

which is Gerstner-like, in the sense that it reduces to Gerstner’s solution upon ignoring Corio-

lis effects. However, the solution in [6] embodies a significant breakthrough since it successfully

generalises to the geophysical setting, in the sense that it defines a inherently three-dimensional

eastward-propagating geophysical wave which is Equatorially-trapped and whose dispersion rela-

tion is dependant on the Coriolis parameter. Subsequently a wide variety of exact and explicit solu-

tions were derived and analysed in various papers (cf. [7–9,15,18–25]) with the respective solutions

modelling a number of different physical and geophysical scenarios.
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Among these were some exact, explicit solutions to the β−plane governing equations corre-

sponding to the classical two-layer model describing oscillations of the thermocline in the equato-

rial region [7, 8]. A feature of these particular solutions is the absence of any meridional flow, and

the aim of this paper is to present a solution fitting the two-layer model describing oscillations of the

thermocline which also admits transverse-Equatorial fluid flow, something which is only achievable

in the f−plane formulation. A well-recognised [26] and advantageous characteristic of exact finite-

amplitude solutions to a water wave problem (particularly if they are explicit) is the opportunity to

perturb these solutions to generate more complex flows. Controlling the perturbations appropriately,

it may be possible to derive detailed information about the resulting fluid motion. It is to be hoped

that allowing for transverse Equatorial fluid motion is a physically useful, and mathematically inter-

esting, extension of the f−plane solution presented in [22] in the sense that the additional physical

complexity may be beneficial with respect to potential complex generalisations of the flow.

2. Governing equations

In a frame of reference with the origin located at a point fixed on Earth’s surface and rotating with

the Earth, the governing equations for geophysical ocean waves are given by [12, 27]

ut +uux + vuy +wuz +2Ωwcosφ −2Ωvsinφ =− 1

ρ
Px, (2.1a)

vt +uvx + vvy +wvz +2Ωusinφ =− 1

ρ
Py, (2.1b)

wt +uwx + vwy +wwz −2Ωucosφ =− 1

ρ
Pz −g, (2.1c)

together with the equation of incompressibility

∇ ·U = 0, (2.2a)

where U = (u,v,w) is the velocity field of the fluid, and the equation of mass conservation

ρt +uρx + vρy +wρz = 0, (2.2b)

where ρ is the density of the fluid. Here the variable φ denotes the latitude and P is the pressure of

the fluid. The Earth is taken to be a perfect sphere of radius R = 6378km with constant rotational

speed of Ω = 73 ·10−6rad/s, and g = 9.8ms−2 is the gravitational acceleration at the surface of the

Earth. In the Equatorial region the Coriolis terms in (2.1) are rendered more tractable by employing

the small-latitude approximation

sinφ ≈ φ ,cosφ ≈ 1,

reducing the governing equations to the β−plane approximation form:

ut +uux + vuy +wuz +2Ωw−βyv =− 1

ρ
Px,

vt +uvx + vvy +wvz +βyu =− 1

ρ
Py,

wt +uwx + vwy +wwz −2Ωu =− 1

ρ
Pz −g,
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where β = 2Ω/R = 2.28 · 10−11m−1s−1. Effectively, the Coriolis terms for the curved Earth’s sur-

face which appear in (2.1) are approximated by a planar model. If we restrict our focus to purely

Equatorial waves then the governing equations are further simplified [12] giving us the f−plane

approximation

ut +uux + vuy +wuz +2Ωw =− 1

ρ
Px, (2.2ca)

vt +uvx + vvy +wvz =− 1

ρ
Py, (2.2cb)

wt +uwx + vwy +wwz −2Ωu =− 1

ρ
Pz −g. (2.2cc)

In this paper we present a solution of (2.2c) that satisfies a two-layer model incorporating the ther-

mocline, which is an interface separating two distinct vertical ocean layers of differing densities.

L(t)

M(t)

z = η+(x− ct, y)

density ρ0

density ρ+

z = η(x− ct, y) (thermocline)

near-surface layer

motionless fluid

Fig. 1. Schematic of the two-layer model

This model may be described as follows. The fluid layer which lies above the thermocline is sub-

divided into two parts, which we denote L (t) and M (t), with both regions having a constant fluid

density ρ0. The near-surface layer, labelled L (t), is the region to which wind effects are confined.

Typical values for the mean-depth of L (t) are 80m. Beneath L (t) is a layer where the fluid motion

is entirely due to the propagation of equatorial waves, this layer is denoted M (t), and typical values

for the mean-depth of M (t) are 40m, cf. [7]. The thermocline is an interface lying at the boundary

of M (t) and the deeper, motionless layer of fluid which has density ρ+ > ρ0. The relative mag-

nitudes of the fluid densities may be deduced from observing that the reduced gravity, defined by

g̃= g ρ+−ρ0

ρ0
, has a typical value of 6 ·10−3m s−2 [13]. We denote the thermocline by z= η(x−ct,y),

while the interface separating L (t) and M (t) is denoted z = η+(x− ct,y), where c is the constant

wave phasespeed. Beneath the thermocline the fluid is assumed motionless, and so u≡ v≡w≡ 0 for

z < η(x− ct,y). The stillness of fluid beneath the thermocline, coupled with (2.2c), leads naturally

to the boundary condition

P = P0 −ρ+gz on z = η(x− ct,y), (2.2d)

for some constant P0. In this paper we present an exact solution of the governing equations (2.2)

which describes fluid flow in the M region.
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3. Exact solution of (2.2)

The equations of motion (2.2c) may be reformulated (where D/Dt is the material or convective

derivative) as

Du
Dt

+2Ωw =− 1

ρ
Px, (3.1a)

Dv
Dt

=− 1

ρ
Py, (3.1b)

Dw
Dt

−2Ωu =− 1

ρ
Pz −g. (3.1c)

In the following we present an exact solution for fluid motion in the M (t) region, which is explicit

in a Lagrangian formulation using the labelling parameters q,r,s. Here q ∈ R, s ∈ [−s0,s0] for

s0 =
√

c0/β ≈ 250km the equatorial radius of deformation [12], and r ∈ [r0,r+], where r = r0

determines the thermocline η and r = r+ determines the interface η+ which separates the M (t) and

L (t) region. It is shown below that r+(s) > r0(s) > 0. In this section we show that the following

system of Eulerian coordinates for the flow, defined in terms of these Lagrangian labelling variables

(q,r,s) and time t, represent a solution of the governing equations (2.2):

x = q− 1

k
e−kr sin [k(q− ct)], (3.2a)

y = s+ψ(q,r)t, (3.2b)

z = r− 1

k
e−kr cos [k(q− ct)]. (3.2c)

Denoting ξ =−kr, θ = k(q−ct), the Jacobian matrix of the transformation (3.2) takes the following

form
⎛
⎜⎝

∂x
∂q

∂y
∂q

∂ z
∂q

∂x
∂ s

∂y
∂ s

∂ z
∂ s

∂x
∂ r

∂y
∂ r

∂ z
∂ r

⎞
⎟⎠=

⎛
⎝

1− eξ cosθ ψq(q,r)t eξ sinθ
0 1 0

eξ sinθ ψr(q,r)t 1+ eξ cosθ

⎞
⎠ . (3.3)

The Jacobian has a time independent determinant 1− e2ξ (which is non-zero since r0 > 0) thus it

follows that the flow defined by (3.2) must be volume preserving, ensuring that (2.2a) holds in the

Eulerian setting, cf. [1]. We note for future reference that the inverse of the Jacobian (3.3) is given

by
⎛
⎜⎝

∂q
∂x

∂ s
∂x

∂ r
∂x

∂q
∂y

∂ s
∂y

∂ r
∂y

∂q
∂ z

∂ s
∂ z

∂ r
∂ z

⎞
⎟⎠=

1

1− e2ξ

⎛
⎝

1+ eξ cosθ −t[ψq(1+ eξ cosθ)−ψreξ sinθ ] −eξ sinθ
0 1− e2ξ 0

−eξ sinθ −t[ψr(1− eξ cosθ)−ψqeξ sinθ ] 1− eξ cosθ

⎞
⎠ . (3.4)

Calculating directly from (3.2) we get

u =
Dx
Dt

= ceξ cosθ , (3.5a)

v =
Dy
Dt

= ψ(q,r), (3.5b)

w =
Dz
Dt

=−ceξ sinθ . (3.5c)
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It is apparent from (3.5) that the solution (3.2) comprises a travelling wave-like term in the

zonal direction, determined by the velocity components (3.5a) and (3.5c), moving with constant

wave phasespeed c (given by dispersion relations (3.11) below) and constant wavelength L, with

wavenumber k = 2π/L. The velocity component (3.5b) represents a meridional transverse current

term ψ(q,r) which is both latitudinally- and time-independent. It is also clear from (3.5) that the

wave motion is three-dimensional if ψ �≡ 0. Furthermore, if the current term ψ is non-constant then

the vorticity is also three-dimensional with a steady periodic time-dependence, since we have

ωωω = ∇×U = (wy − vz,uz −wx,vx −uy)

=
1

1− e−2kr

(
ψqe−kr sinθ +ψr(1− e−kr cosθ),2kce−2kr,ψq(1+ e−kr cosθ)+ψre−kr sinθ

)
,

where the vorticity component may be easily obtained from the velocity gradient tensor

⎛
⎜⎝

∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂ z

∂v
∂ z

∂w
∂ z

⎞
⎟⎠=

⎛
⎜⎝

∂q
∂x

∂ s
∂x

∂ r
∂x

∂q
∂y

∂ s
∂y

∂ r
∂y

∂q
∂ z

∂ s
∂ z

∂ r
∂ z

⎞
⎟⎠

⎛
⎜⎝

∂u
∂q

∂v
∂q

∂w
∂q

∂u
∂ s

∂v
∂ s

∂w
∂ s

∂u
∂ r

∂v
∂ r

∂w
∂ r

⎞
⎟⎠

=
1

1− e2ξ

⎛
⎝

−ckeξ sinθ ψq(1+ eξ cosθ)+ψreξ sinθ −ckeξ (cosθ + eξ )

0 0 0

−ckeξ (cosθ − eξ ) −ψqeξ sinθ −ψr(1− eξ cosθ) ckeξ sinθ

⎞
⎠ .

Indeed even if ψ ≡ 0 the flow is inherently rotational, an observation which may be inferred from

the closed (circular) particle trajectories resulting from (3.2), which are redolent of Gerstner’s wave

solution— see [14]. It has recently been shown that a characteristic of irrotational flow (at least in

the gravity wave setting) is the non-closed nature of particle paths, cf. [4,11,16]. To prove that (3.2)

defines an exact solution of (3.1), we calculate

Du
Dt

= kc2eξ sinθ , (3.6a)

Dv
Dt

= 0, (3.6b)

Dw
Dt

= kc2eξ cosθ , (3.6c)

and inserting the terms from (3.5) and (3.6) into (3.1) gives us

Px =−ρ0(kc2eξ sinθ −2Ωceξ sinθ), (3.7a)

Py = 0, (3.7b)

Pz =−ρ0(kc2eξ cosθ −2Ωceξ cosθ +g). (3.7c)

Multiplying both sides of (3.7) by the Jacobian matrix (3.3) we derive the following expression for

the pressure gradient in terms of the Lagrangian variables

⎛
⎝

Pq

Ps

Pr

⎞
⎠=−ρ0

⎛
⎝

(kc2 −2Ωc+g)eξ sinθ
0

(kc2 −2Ωc)e2ξ +(kc2 −2Ωc+g)eξ cosθ +g

⎞
⎠ . (3.8)

To conclude our demonstration that (3.2) is an exact solution of the governing equations (2.2),

we must prescribe a suitable pressure function P which satisfies (3.8) and which satisfies suitable
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boundary conditions on the interface η . To this end we propose

P̃ = ρ0
kc2 −2Ωc

2k
e2ξ −ρ0gr+ρ0

kc2 −2Ωc+g
k

eξ cosθ + P̃0 (3.9)

whose gradient takes the form

P̃q =−ρ0(kc2 −2Ωc+g)eξ sinθ
P̃s = 0

P̃r =−ρ0(kc2 −2Ωc)e2ξ −ρ0g−ρ0(kc2 −2Ωc+g)eξ cosθ ,

which correctly matches the right hand side of (3.8). The pressure function itself must also match

the boundary condition (2.2d) at the thermocline η(x − ct), so we work as follows. Let us first

suppose that the thermocline is determined by setting r = r0, for some r0, then (2.2d) together with

(3.2c) gives us

P|z=η(x−ct) = P0 −ρ+gr0 +
ρ+g

k
eξ0 cosθ , (3.10)

and comparing the time-dependent θ term in (3.10) with that in (3.9) leads us to impose the match-

ing condition

ρ0(kc2 −2Ωc+g) = ρ+g,

or kc2 −2Ωc = g̃, a quadratic in c which we solve to get the dispersion relations

c =
Ω±

√
Ω2 + kg̃
k

. (3.11)

Choosing the plus sign in (3.11) gives c > 0 for which the wavelike term is eastward propagating,

whereas choosing the minus sign gives c < 0 and so the wavelike term is then propagating west-

wards. This apparent freedom in propagation direction is unique to the f−plane formulation, as

similar exact solutions in the β−plane are exclusively eastward propagating [7,8], in the sense that

westward propagating waves exist theoretically, but would exhibit an amplitude growth proportional

to the meridional distance from the Equator, being thus physically unrealistic. With the wave speed

c prescribed by (3.11), rematching the interface pressure condition (3.10) with (3.9) leads to the

equation

e−2kr0

2k
+ r0 =

1

g(ρ+−ρ0)

(
P0 − P̃0

)
. (3.12)

This relation implies that for a given P̃0, if a unique solution r0 exists for which (3.12) holds, then

the parameter choice r = r0 uniquely determines the thermocline. Since the mapping

r �→ e−2kr

2k
+ r

is strictly increasing, and since r > 0, it follows that if

1

g(ρ+−ρ0)

(
P0 − P̃0

)
>

1

2k

then there is a unique value r0 > 0 where (3.12) holds, and accordingly the parameter choice r = r0

prescribes the thermocline. A similar analysis shows that we can determine the interface z = η+
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which separates L and M by fixing some constant

P∗ >
1

g(ρ+−ρ0)

(
P0 − P̃0

)
>

1

2k
,

and the unique solution of

P∗ =
e−2kr

2k
+ r,

given by r = r+ > r0, will specify this interface. This shows that the solution (3.2) allows some

freedom in locating both interfaces η and η+, in the sense that we have some choice in the constants

P̃0 and P∗. We further remark that, reasoning along similar lines as the β−plane setting (cf. [7, 8]),

these interfaces will be troichoidal (and therefore inherently nonlinear) in appearance.
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