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We discuss models for coupled wave equations describing interacting fields, focusing on the speed of travelling
wave solutions. In particular, we propose a general mechanism for selecting and tuning the speed of the corre-
sponding (multi-component) travelling wave solutions under certain physical conditions. A number of physical
models (molecular chains, coupled Josephson junctions, propagation of kinks in chains of adsorbed atoms and
domain walls) are considered as examples.
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1. Introduction

In a previous paper [4] dealing with a concrete physical model – more specifically, with the nonlin-
ear dynamics of the DNA macromolecule [5,6] – we have observed a remarkable phenomenon. This
is as follows: in the continuum limit that model reduces to two coupled nonlinear wave equations for
different fields φ1,2; if the coupling is switched off, each of the wave equations E1,2 obeyed by the
fields φ1,2 is Lorentz invariant with different limiting speed, i.e. in particular admits travelling waves
(solitons) with any speed c smaller than the limiting speed c1,2. When the full model, including the
interaction, is considered, there is no Lorentz invariance, and the travelling wave solutions admits
only a given speed (see also [7]). Thus we have a selection mechanism for the speed of travelling
wave (TW) solutions (the latter turn out to be also stable and thus physically relevant [6,7,9,10,16]).

In the present paper we want to study if this “speed selection mechanism” works also in a more
general class of equations. We will answer to this in the positive, and actually the relevant class
of equations turns out to be rather ample. An important point in this context is the fact that the
speed selection mechanism of the paper mentioned above is implemented using a constraint [4].
In general the constraint will define a submanifold of the configuration space for the associated
dynamical system. The crucial requirement for our speed selection mechanism to work is that the
constraint is natural, i.e the associated submanifold is invariant under the dynamics. In other words,
if the initial data are chosen to lie on this submanifold, the dynamics will take place entirely on it
with no need to introduce external forces to enforce the constraint.
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We note that, apart from the theoretical interest, this question also has potentially very relevant
practical consequences. In fact, for instance, it would point out a way to have transmission lines
with physically determined speed for the travelling wave packets.

As mentioned above, we will answer in the positive to the question of applicability of the speed
selection mechanism to more general equations. It turns out that, albeit we are mostly interested in
nonlinear equations, a speed selection mechanism is also present in the case of linear systems. Note
that for linear equations the uncoupled equations have each a well definite speed, so in this context
the mechanism we study amounts to a change in the value of the n allowed speeds.

We will thus start, in Section 2, by considering simple linear systems; in this case the speed
selection follows from some trivial algebraic facts and gives the possibility of tuning the speed of
TW just by changing the value of an interaction parameter.

The general setting of this note will be as follows. We investigate wave equations for N fields
φ i(x, t), i = 1 . . .N in 1+1 dimensions (one space dimension and time) described by a Lagrangian,
and we are specially interested in travelling wave solutions.

The Lagrangian will be written as

L = ∑
i

Li + Lint , (1.1)

where the Li is a Lagrangian for each of the fields φ i, and Lint is the interaction Lagrangian.
We will make “minimal” choices for Li and Lint , as we want to understand the phenomenon

of speed selection in the simplest possible terms. In particular, Lint will be made of a “gradient
interaction term”, coupling the spatial gradient φ i

x of different fields – and playing an essential role
in our analysis – and possibly of a potential term V (φi) =V (φ 1, ...,φ N).

We will consider mainly Lagrangians leading to hyperbolic wave equations. In Appendix B,
we will extend our considerations to parabolic, Schrödinger-like equations. Thus, we take first a
Lagrangian of the form

L =
1
2

N

∑
i=1

[
ρ

2
i (∂tφi)

2 − κ
2
i (∂xφi)

2
]
−

N

∑
i j=1

[γi j(∂xφi)(∂xφ j)] − V (φi) , (1.2)

where ρi, κi are constant, γi j are the components of a constant (N×N) matrix Γ, and the potential
V (which could be zero) will be appropriately chosen below (see Sect. 2 and Sect. 3). The fields and
the constants are assumed to be real; note that the speed of the waves for the fields φi we get in the
decoupled case γ =V = 0 are

ci = κi/ρi . (1.3)

The matrix Γ can be taken to be symmetric, and in the present notation we can assume it has
zero terms on the diagonal, as the corresponding terms are represented by the κi (so that Γ only
represents the interaction between gradients of different fields).

The Euler-Lagrange equations corresponding to the Lagrangian (1.2) area

ρ
2
i φ

i
tt − κ

2
i φ

i
xx − γi j φ

j
xx = − (∂V/∂φ

i) . (1.4)

aHere and below we move the field index up and down for typographical convenience.
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It is appropriate to mention immediately some physical relevant cases in which one meets
Lagrangians of the type (1.2). These include e.g., beside the “composite” model of DNA dynam-
ics [5] mentioned above and the strictly related case of long wavelength excitations in a chain
of double pendulums (this also applies to polyethylene [8]), the case of coupled Josephson junc-
tions [20, 25] and interaction between kinks in coupled chains of adsorbed atoms [21]. These cases
will be discussed later on as examples of our general mechanism; see Sections 4 and 5.

Our analysis would of course also apply to Lagrangians differing from (1.2) only by boundary
terms and total differentials, e.g by a term 1

2 ∑
N
i j=1 σi jφi∂xφ j; we focus on Lagrangians of the form

(1.2) both for these make the analysis rather transparent and for their physical relevance.
Most of our discussion will be conducted in the simplest nontrivial case, N = 2; we will then

discuss the generalization to the arbitrary N case, which will be in some case rather immediate.

2. The linear case

As mentioned above, we start discussing the case of a quadratic Lagrangian, hence of linear field
(Euler-Lagrange) equations.

Moreover, we will at first consider the case N = 2; we will then write, for ease of notation,
φ1 = ϕ and φ2 = ψ; there is only one nontrivial term in the matrix Γ, i.e. γ12 (which, with a slight
abuse of notation, we denote simply by γ). Thus we study the Lagrangian

L =
1
2
[(

ρ
2
1 ϕ

2
t + ρ

2
2 ψ

2
t
)
−
(
κ

2
1 ϕ

2
x + κ

2
2 ψ

2
x
)]
− γ ϕx ψx − V (ϕ,ψ) . (2.1)

The Euler-Lagrange field equations are then

ρ
2
1 ϕtt − κ

2
1 ϕxx − γ ψxx = −(∂V/∂ϕ) ,

ρ
2
2 ψtt − κ

2
2 ψxx − γ ϕxx = −(∂V/∂ψ) . (2.2)

In the simplest case, which we consider in this section, V will be a quadratic function of its
arguments (including the case where V is trivial) and the equations (2.2) will hence be linear.

We will write, for the sake of definiteness,

V (ϕ,ψ) =
1
2
(
µ

2
1 ϕ

2 + 2λ ϕ ψ + µ
2
2 ψ

2) , (2.3)

where µ2
1,2 are the masses of the non interacting fields (λ = γ = 0) and can hence be assumed to be

positive.
Thus our Lagrangian is defined by three matrices Q(t), Q(x), Q(V ), given by

Q(t) =

(
ρ2

1 0
0 ρ2

2

)
; Q(x) =

(
κ2

1 γ

γ κ2
2

)
; Q(V ) =

(
µ2

1 λ

λ µ2
2

)
; (2.4)

we have (returning for a moment to the notation with indices)

L =
1
2

N

∑
i j=1

[(
φ

i
t Q(t)

i j φ
j

t

)
−
(

ϕ
i
x Q(x)

i j φ
j

x

)
−
(

φ
i Q(V )

i j φ
j
)]

.
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The problem – or better the source of interesting behavior – lies in that, in general, the three
matrices Q(t), Q(x) and Q(V ) do not commute with each other. More specifically, we have[

Q(t),Q(x)
]
= (ρ2

2 −ρ
2
1 )

(
0 −γ

γ 0

)
;[

Q(x),Q(V )
]
= (µ2

1 −µ
2
2 )

(
0 −γ

γ 0

)
+ (κ2

2 −κ
2
1 )

(
0 −λ

λ 0

)
; (2.5)[

Q(t),Q(V )
]
= (ρ2

2 −ρ
2
1 )

(
0 −λ

λ 0

)
.

This lack of commutativity between the different matrices, and in particular the fact we have
[Q(t),Q(x)] 6= 0, is responsible for the breaking of the space-time Lorentz symmetry, which is one
of the sources of the unusual (and interesting) features of the theory; see also the discussion in
Appendix A.

2.1. Travelling wave ansatz

If we look for travelling wave solutions, i.e. for solutions of the form

ϕ(x, t) = ϕ(x± ct) = ϕ(z) , ψ(x, t) = ψ(x± ct) = ψ(z) , (2.6)

we have then to study the equations(
ρ

2
1 c2−κ

2
1
)

ϕzz − γ ψzz = −(µ2
1 ϕ +λψ) ,(

ρ
2
2 c2−κ

2
2
)

ψzz − γ ϕzz = −(λϕ +µ
2
2 ψ) . (2.7)

These are immediately written in matrix form. Defining

A =

(
[κ2

1 −ρ2
1 c2] γ

γ [κ2
2 −ρ2

2 c2]

)
, B =

(
µ2

1 λ

λ µ2
2

)
; Φ =

(
ϕ

ψ

)
,

we recast the previous equation as

AΦzz = BΦ . (2.8)

If det(A) 6= 0, i.e. if

c2 6= 1
2ρ2

1 ρ2
2

[
(κ2

1 ρ
2
2 +κ

2
2 ρ

2
1 ) ± (κ2

1 ρ
2
2 −κ

2
2 ρ

2
1 )

√
1+

4γ2ρ2
1 ρ2

2

(κ2
1 ρ2

2 −κ2
2 ρ2

1 )
2

]
,

we can invert A and further recast (2.8) as

Φzz = M Φ ,

M := A−1 B = M

(
γλ −κ2

2 µ2
1 + c2µ2

1 ρ2
2 −κ2

2 λ + γµ2
2 + c2λρ2

2
−κ2

1 λ + γµ2
1 + c2λρ2

1 γλ −κ2
1 µ2

2 + c2µ2
2 ρ2

1

)
;

M =
1

γ2− (κ2
1 − c2ρ2

1 )(κ
2
2 − c2ρ2

2 )
,

det(M) = M (λ 2 − µ
2
1 µ

2
2 ) .

One could then diagonalize the matrix M by a change of basis Φ = ΛΦ̂ so that in the new
coordinates the equation reads Φ̂zz = M̂Φ̂ with M̂ = Λ−1MΛ = diag(δ1(c),δ2(c)) a diagonal matrix,
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and now solve easily for Φ̂(z) and hence for Φ(z) = ΛΦ̂(z). As the functions δi(c) (which of course
do also depend on the various parameters of the equations) will in general satisfy δ1(c) 6= δ2(c), we
will have two normal modes with frequencies (in z) ω

(z)
1,2 satisfying (ω

(z)
1 )2 =−δ1(c) and (ω

(z)
2 )2 =

−δ2(c). These relations correspond to the two branches of the dispersion relations we will find in
the next section using the Fourier transform.

Note that the situation is completely different in the V = 0 case, i.e. for B = 0. In this case the
equation (2.8) reduces to

AΦzz = 0 , (2.9)

which admits a solution if and only if det(A) = 0, which should be seen as a requirement on the
speed c. More specifically, this yields with simple algebra.

c2
± =

1
2

[
(c2

1 + c2
2) ± (c2

1− c2
2)
√

P
]
, (2.10)

where we have written

P = 1 + 4
[

γ

ρ1ρ2(c2
1− c2

2)

]2

;

here and below ci = |κi/ρi| is the speed of decoupled waves defined in Eq. (1.3).
The eigenvectors of the matrix A corresponding to the eigenvalues c± can be also easily com-

puted; up to a normalization factor, they are

Φ± =

(
(c1/c2)

√
(c2

2− c2
±)/(c2

1− c2
±)

1

)
. (2.11)

It is worth stressing that equations (2.10) and (2.11) describe two remarkable features of TWs
in linear coupled systems (2.7)

First, we have that the linear coupling between the ϕ and ψ field in the wave equation (2.7)
forces a synchronization of the ϕ- and ψ-waves: they have to propagate with the same speed, given
either by c+ or by c−. To see this let us first diagonalize the kinetic part of the Lagrangian (2.1).
It is not a priori evident that this is possible because the kinetic matrices Qx e Qt in Eq. (2.4) do
not commute. However, one can show that a GL(2,R) transformation S exists, which acting on the
vector Φ as Φ = SΦ̃ diagonalizes the Lagrangian (2.1) with V = 0:

L =
1
2

[(
∂t ϕ̃

c+

)2

+

(
∂tψ̃

c−

)2

− (∂xϕ̃)2 − (∂xψ̃)2

]
. (2.12)

We see that in the Φ̃ frame we have two decoupled normal modes given by (2.11) propagating
respectively at speed c+ and c− given by Eq. (2.10); however they represent disjoint sectors, which
cannot be superimposed.
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Second, we can tune the speeds of the ϕ and ψ waves between zero and a maximum value by
changing the coupling between the two fields, which is parametrized by the (positive) ratio r,

0 ≤ r :=
(

γ

ρ1ρ2

)2

≤ c2
1 c2

2 := rmax . (2.13)

In particular, let us start from the decoupled case; here r = 0 and we get c+ = c1 and c− = c2. If
we now increase r, then the value of c+ increases whereas that of c− decreases. When r→ rmax,
c+ tends to its maximum value whereas c− → 0. Notice that for r > rmax, c2

− becomes negative,
i.e we have an imaginary speed for the harmonic mode; this detects an instability of the system.
Notice also that Eq. (2.13) defines a general bound on the coupling parameters, which can be also
generalized to the case of a non vanishing potential (2.3).

2.2. Fourier transform

To solve the general linear case we well make use of the linear character of the field equations (2.2),
and pass to consider the Fourier transforms f̂ (q,ω) and ĝ(q,ω) for, respectively, the fields ϕ(x, t)
and ψ(x, t); the equations (2.2) are then recast as

−
(
ρ

2
1 ω

2−κ
2
1 q2) f̂ + γ q2 ĝ + (µ2

1 f̂ +λ ĝ) = 0 ,

−
(
ρ

2
2 ω

2−κ
2
2 q2) ĝ + γ q2 f̂ + (λ f̂ +µ

2
2 ĝ) = 0 . (2.14)

These are promptly rewritten: defining now

M =

(
[ρ2

1 ω2−κ2
1 q2−µ2

1 ] −γq2−λ

−γq2−λ [ρ2
2 ω2−κ2

2 q2−µ2
2 ]

)
, F̂ =

(
f̂
ĝ

)
,

equations (2.14) read

M F̂ = 0 . (2.15)

Again we must require the vanishing of a determinant, i.e. det(M) = 0; this will now give a relation
between ω2 and q2, i.e. we will get some dispersion relations (DRs).

More precisely, these read

ω
2
± =

1
2

[
(c2

1 + c2
2)q

2 +(u2
1 +u2

2)±
√

P
]
, (2.16)

where we have written

P =
[
(c2

1− c2
2)q

2 +(u2
1−u2

2)
]2

+ 4
(γq2 +λ )2

ρ2
1 ρ2

2
,

with ui = µi/ρi and ci as above.
For a general nontrivial potential, we have two different DRs, which will also determine the

phase velocity vp
± = dω±/dq of the wave. In this generic case the DRs have a rather involved form.

They take a simpler form for some particular or limiting cases.
For a vanishing potential i.e µ1 = µ2 = λ = 0, one can easily check that the DR (2.16) becomes

linear (acoustic) and that dω±/dq = c± with c± given by (2.10). This case describes also the high
energy limit q→ ∞ of the DR (2.16), where the potential can be neglected.
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In the low-energy limit q→ 0 the DR (2.16) describes two optical branches, whose analytic
expression can be derived expanding (2.16) near q = 0.

As expected, the DR becomes simple also in the decoupling limit γ = λ = 0. In this case,
we have two branches with optical DR ω2

12 = c2
12q2 + u2

12. Another interesting particular case is
c1 = c2, u1 = u2. We obtain also in this case two optical branches:

ω
2
± =

(
c2

1±
γ

ρ1ρ2

)
q2 +u2

1±
λ

ρ1ρ2
(2.17)

The synchronization and tuning effect discussed in Sect. (2.1) for the TW speed c applies also
to the phase speed dω±/dq. Now synchronization simply means that a given phase of the ϕ and
ψ wave must propagate at the same speed, whereas tuning means that we can change the phase
velocity by acting on the coupling parameters of the two fields. In the case of acoustic and optical
dispersion relations this tuning is very simple. In the acoustic case, the group and the phase speed
are the same, and thus it has been already described in Sect. (2.1). In the optical case we have
instead dω±/dq = c±q/ω±, so that the phase velocity becomes zero whenever c± = 0 and for a
given phase, grows monotonically with c±.

2.3. The N-fields case and Lorentz symmetry

The discussion conducted above is readily generalized to the case of N fields. This is specially
transparent in terms of the travelling wave ansatz (TWA): in this case we get again a matrix equation,
but the matrix is now an (N×N) matrix. Solving the eigenvalue problem we get in general N normal
modes.

In terms of the Fourier transform, we will get N branches of the dispersion relations.
Similarly to the N = 2 case, for a vanishing potential we will have N determinations of the

allowed speeds c and we can change the values of the these speeds (for given κi, ρi and hence
“uncoupled speeds” ci = κi/ρi) by acting on the coupling parameters γi j of the model.

Let us now briefly comment on the Lorentz symmetry of our two-dimensional field theory (1.2).
Space-time Lorentz symmetry is explicitly broken in the Lagrangian (1.2). This breaking has two
sources. The first is the presence of several different limit speeds ci; the breaking of the Lorentz
symmetry in this case is expressed by the non commutativity of the matrices Q(x) and Q(t) in Eq.
(2.4). The second source is the non covariance of the kinetic coupling term, which contains the
space but not the time derivative. On the other hand, by implementing the TWA or by solving the
field equations in Fourier space the relevant matrices are not the individual Q(x) and Q(t) but a linear
combination of them.

In Fourier space the breaking of the Lorentz symmetry is evident from the form of the dispersion
relations (2.16). They are invariant under Lorentz boosts only when c1 = c2 and γ = 0. Despite of
the explicit breaking of the Lorentz symmetry, it is quite evident that some remnant of it survives in
the field theory (1.2). This is in particular evident in the massless case where the dispersion relations
remain linear, the Lagrangian can be diagonalized describing decoupled sectors and the presence
of the coupling term γ just changes the values of the two speeds c12. We will discuss this remnant
Lorentz symmetry and related group theoretical aspects in Appendix A.

3. The nonlinear case

Our discussion in Section 2 makes a substantial use of the linearity of field equations; thus it cannot
be extended to the nonlinear case.
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In the nonlinear case, the TWA produces a system of nonlinear ODEs, and TW solutions are
obtained as solutions φi(x± ct) of these nonlinear ODEs, which can be considered as describing
an equivalent mechanical system; this procedure leaves (in general, see below) the TW speed com-
pletely undetermined.

This is particularly evident when we start from a Lagrangian which is Lorentz invariant: then the
TW solution must be a function of the relativistic gamma factor, φi = φi((x±ct)/

√
1− c/c̄) (where

c̄ is the limit speed). The wave speed c can be therefore arbitrarily changed in the range [0, c̄] by
a Lorentz boost. Thus any speed selection mechanism in the nonlinear case must necessarily start
from a Lagrangian in which the Lorenz invariance is explicitly broken to remove this degeneracy in
c.

Any speed selection mechanism must constrain the dynamics of the equivalent mechanical sys-
tem to happen in a submanifold of the configuration space in which c is fixed. Moreover, if the
submanifold corresponds to a natural constraint, i.e. is invariant under the dynamics, the constraint
can also be realized as a selection on the initial data. A simple realization of such a mechanism
has been proposed in Ref. [4]. Here we discuss in detail its dynamical implications, in particular
existence of invariant submanifolds and the naturalness of the constraints that can be used to select
the speed of TW solutions. Our main goal is obviously the generalization of the results of Ref. [4].

We are now considering a Lagrangian of the form (1.2) with a generic (analytic) potential V (φi),
and Euler-Lagrange equations (1.4). In the case N = 2 these reduce to (2.1) and (2.2) respectively.

Note that the kinetic part of the Lagrangian – and hence the second order terms in the Euler-
Lagrange equations – is still characterized by the two matrices Q(t) and Q(x), which in general do
not commute. This non commutativity expresses the breaking of the space-time Lorentz symmetry
at the Lagrangian level. On the other hand, as already noticed in the discussion of the linear case,
after using the TWA (or passing to Fourier space) the relevant matrix will be a linear combination
(with coefficients depending on the speed of the TW) of Q(t) and Q(x).

With the travelling wave ansatz (2.6), we are led to consider the equations

(ρ2
i c2−κ

2
i )φ

i
zz − γi j φ

j
zz = − (∂V/∂φ

i) . (3.1)

3.1. The two-dimensional case

We will again start by considering the case N = 2; with the notation introduced above for the linear
case, we are thus dealing with the equations

(κ2
1 −ρ

2
1 c2)ϕzz + γ ψzz = (∂V/∂ϕ) := f (ϕ,ψ) ,

(κ2
2 −ρ

2
2 c2)ψzz + γ ϕzz = (∂V/∂ψ) := g(ϕ,ψ) . (3.2)

These are rewritten in matrix form as

M Φzz = F ,

having of course written

M =

(
(κ2

1 −ρ2
1 c2) γ

γ (κ2
2 −ρ2

2 c2)

)
:=
(

m1 γ

γ m2

)
; F =

(
f
g

)
.

This matrix M combines the Q(x) and Q(t).
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Provided det(M) 6= 0, i.e. γ2 6= m1m2, we can now consider a linear change of coordinates in the
fields space,

φ
i = Ai

j η
j ,

which diagonalizes (3.2).b

We can actually ask more, i.e. that AT MA = I. This is obtained e.g. for

A =

(
α −

√
q(α)/

√
m2(m1m2− γ2)

−[αγ +
√

q(α)]/m2 [αγ2−m1m2α + γ
√

q(α)]/[m2
√

m1m2− γ2

)
,

where α is a free parameter and

q(α) := m2 +(γ2−m1m2)α
2 .

In terms of the fields η , our equations (3.2) read now simply

d2ηi

dz2 = −∂W
∂ηi

;

thus the dynamics of the system is described by the motion of a particle of unit mass in the effective
potential W (η) :=V [φ(η)].

In dealing with PDEs one should also specify a function space for the search of solutions. In
view of the physical meaning of the equations, it is natural to look for solutions of finite energy.
In the case of a natural Lagrangian like (1.2), this means that the solutions ϕ(x, t) should go to a
minimum of the potential for x→±∞; once we proceed to reduction to a system of ODEs via the
TWA, this means that we look for solutions which go to a minimum of V (we stress the condition
is on V , not on W ) for z→±∞.

It is easily seen that if minima of V correspond to minima of the effective potential W , these
solutions are necessarily trivial. If, on the other hand, minima of V correspond to maxima of W ,
nontrivial solutions with the prescribed asymptotic behavior can exist; moreover they can either be
doubly asymptotic to the same local minimum of V , or connect two distinct local minima, corre-
sponding to the same energy level.

Thus the existence of TW solutions with the relevant behavior depends on the sign of V/W , i.e.
on the sign of the determinant of the Jacobian matrix A. This in turn will depend on the value of c2.
(The discussion of concrete examples will better clarify this point.)

Provided this condition is satisfied, we are thus searching for solutions to our equivalent mechan-
ical system with prescribed limit conditions for η(z) and ηz(z) at z→±∞. In particular, we require

lim
z→±∞

ηz(z) = 0 ; lim
z→±∞

ηz(z) = η±

with η± corresponding to (necessarily degenerate) local minima of the potential V .
Such solutions are in general not unique (nor stable, even in the realm of solutions satisfying the

same limit conditions), as immediately shown by the example of a doubly periodic potential, i.e. of
a dynamical system on the torus [1, 2, 28].

bWith Ṽ (η) = V [φ(η)], the latter reads MAηzz = (A−1)T (∂Ṽ/∂η), so that we have to look for A such that AT MA is
diagonal.
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The situation – and hence our analysis – is greatly simplified if there are some one-dimensional
invariant submanifolds connecting two degenerate minima. Needless to say, this is a non-generic
feature, and in general the existence of such invariant submanifolds is related to the presence of
some symmetry in the potentialc. This could be a Noether symmetry, guaranteeing the presence of
a conserved quantity and hence the reduction to a lower dimensional effective dynamics; or even a
discrete symmetries – such as a reflection symmetry – in the potential. More generally it suffices to
have a conserved or even a conditionally conserved quantity [29]; the existence of this is implied
e.g. by the presence of a reflection symmetry.

Albeit in general a conditionally conserved quantity and hence a low-dimensional invariant
manifold is not necessarily associated to a symmetry, in practice this is most often the case.

In this paper we will limit our considerations to the case in which the system has a reflection
symmetry, so that we are guaranteed of the existence of a low-dimensional invariant submanifolds.
We have now to distinguish between three possible cases:

1) The system is fully invariant under Lorentz symmetry, i.e. we have c1 = c2 = c̄ and γ = 0 in
Eq. (3.2). In this case the invariant submanifold exists for every value of the soliton speed c
below the limit speed c̄. We do not have selection of the soliton speed. The soliton speed is
fully protected by the Lorentz symmetry. We will give examples of this situation in Sects.
5.2 and 5.4.

2) Lorentz symmetry is broken by γ 6= 0 but we still have a single limit speed, i.e c1 = c2 = c̄.
Also in this case the invariant submanifold exists for every value of the soliton speed c below
a limit speed and the soliton speed is protected by the Lorentz symmetry but the limit speed
is changed by the kinetic interaction term. This is fully consistent with the discussion of the
linear case of Sect. 2, where we have shown that the kinetic interaction term changes the
wave speed according to Eq. (2.10). This situation is realized in an example discussed in
Sect. 5.2.

3) Lorentz symmetry is broken by c1 6= c2. In this case the soliton speed is not protected by
the Lorentz symmetry. This is the case in which we can have speed selection for the soliton;
the invariant submanifold exists only for selected values of c. This situation is met in the
examples discussed in Sections 5.1, 5.3 and 5.4.

Summarizing, a sufficient condition for the speed selection mechanism considered here to work
is the presence of a reflection symmetry defining invariant submanifolds connecting two degenerate
minima of the potential W existing only for specific values of the soliton speed. Whereas a necessary
condition for this speed selection mechanism to work is an explicit breaking of the Lorentz symmetry
at the Lagrangian level trough the presence of different limiting speeds.

The practical implementation of the speed selection mechanism requires the determination of
the invariant manifold associated with the reflection symmetry. This is a rather involved problem,
which we will tackle using an ansatz. Obviously the manifold we are looking for must be invariant
not only under the dynamics but also under the action of the reflection transformation. Because the
kinetic part of the field equations (3.2) is linear the most natural ansatz for determining the invariant
manifold is a linear equation involving the fields ϕ and ψ . This will be our choice for the examples

cStrictly speaking, we are here concerned with symmetries of the effective potential; these will however correspond to
symmetries of the original physical potential, as the transformation mapping the latter into the former is smooth (and
actually linear).
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described in Sects. 5.1, 5.2, 5.3. It is also possible to search for invariant manifolds using non linear
invariant functions involving the fields ϕ and ψ . This will be our choice for the system described in
Sect. 5.4.

As a final step in the practical implementation of the speed selection mechanism we need to
restrict the dynamics on the invariant submanifold. This can be achieved in two different ways. A
first way is through a constraint simply given by the ansatz we have used to determine the invari-
ant manifold. Another way, making use of the fact we have a dynamically invariant manifold and
hence a natural constraint, is to suitably select the initial conditions, i.e. choose them (position and
velocity) along the chosen invariant manifold.

3.2. The N-dimensional case

The analysis can be conducted along the same lines also in the general N-dimensional case. Needless
to say, even the preliminary step of diagonalizing the matrix M may be a substantial problem for
high dimension; but we may in principles proceed along the same lines.

Note that for dimension N a Noether symmetry will reduce the dynamics to a problem in dimen-
sion N−1; thus we need N−1 Noether symmetries in involution in order to reduce our problem to
a one-dimensional one. Similarly, the presence of a reflection symmetry will in general only guar-
antee the existence of an invariant submanifold of dimension N−1 (i.e. of codimension 1); thus we
will need N−1 reflection symmetries across planes with a nontrivial intersection to be sure of the
existence of an invariant one-dimensional manifold. Note this is e.g. the case if the potential V (φi)

actually depends only on the squares φ 2
i of the fields, or at least of N−1 among them.

Another situation which guarantees the existence of invariant one-dimensional submanifolds
is that of a separable potential, V (φ1, ...,φN) = V1(φ1)+ ...+VN(φN), provided each Vk(φk)) has a
minimum in φk = 0; in this case we do not have to require reflection symmetry of the Vk.

One can of course also have a combination of the two situations mentioned above, i.e. a potential
which is separable in potentials depending on several groups of field variables, each of them having
suitable (continuous or discrete) symmetries.

Provided the potential has a sufficient degree of symmetry or separability, we are reduced to a
one-dimensional analysis and we can proceed substantially as in the N = 2 case above.

It is also possible that no symmetry is present, but that for specific values of the speed some
one-dimensional invariant submanifold is present We expect however that this becomes increasingly
unlikely – and anyway that it would be increasingly difficult to determine the allowed c in concrete
terms – with increasing dimension N.

4. Examples. Linear equations

In this section we briefly apply our speed selection mechanism developed for the linear case to two
examples. These describe the region of linear dynamics for some of the non linear systems to be
considered in full in the next Section.
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4.1. Kinks in coupled chains of adsorbed atoms

In the situation to be considered in Section 5.2, the linearized equations at (ϕ,ψ) = (0,0) read
(setting β = γ to comply with our nomenclature of coupling constants for the linear case)

ϕtt − ϕxx = −ϕ − α (ϕ−ψ) + γ ψxx

ψtt − ψxx = −ψ − α (ψ−ϕ) + γ ϕxx . (4.1)

This linear system has exactly the form considered in Sect. 2, with special values of the param-
eters:

ρ1 = ρ2 = κ1 = κ2 = 1, µ
2
1 = µ

2
2 = 1+α, λ =−α (4.2)

Here c1 = c2 = c̄ = 1, u1 = u2; thus Eq. (2.17) applies, giving the optical DRs

ω
2
± = (1± γ)q2 + (1+α)∓α ,

from which we get the phase speeds for the two branches

c−(q) =
1− γ√

1+2α +(1− γ)q2
q ; c+(q) =

1+ γ√
1+(1+ γ)q2

q .

Note that as a consequence of Eq. (2.13) we must have |γ| ≤ 1 and, as expected, for γ = 1 (γ =−1)
only the ω+ ( ω−) branch is present, whereas the ω− (ω+) branch disappears.

In the low-energy limit we get

c−(q)'
1− γ√
1+2α

q , c+(q)' (1+ γ)q ;

and in the high-energy limit

c−(q)'
√

1− γ , c+(q)'
√

1+ γ .

4.2. Coupled Josephson junctions

In the situation to be considered in Section 5.3, the linearized equations at (ϕ,ψ) = (0,0) read
(setting α =−γ , again to comply with our general notation)

ϕtt − ϕxx = −ϕ + γ ψxx

µ
2

ψtt − ψxx = −ν
2

ψ + γ ϕxx . (4.3)

This linear system has the form considered in Sect. 2 with special values of the parameters:

ρ1 = κ1 = κ2 = 1, ρ2 = µ, µ1 = 1, µ2 = ν , λ = 0 (4.4)

The dispersion relations (2.16) give

ω
2
± =

(µ2 +ν2 +(1+µ2)q2)

2µ2

[
1 ±

√
1−4µ2 ν2 +(1+ν2)q2 +(1− γ2)q4

(µ2 +ν2 +(1+µ2)q2)2

]
.

The low-energy limit (q' 0) for the speeds c± = dω±/dq are given by

c−(q) '
1

µν
q + O(q3) ; c+(q) ' q + O(q3) .
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In the high-energy limit (q→ ∞) both speeds go to finite limits; the explicit expressions can be
computed but are rather cumbersome and thus not reported.

5. Examples. Nonlinear equations

In this section we apply our TW speed selection mechanism developed for the non linear case to
several examples. For all of these examples we look for an invariant submanifold of the dynamics
for the associated mechanical system.

5.1. Double pendulums chains

The speed selection mechanism for TW solutions was originally proposed [4] in the context of
mesoscopic models for non linear DNA torsion dynamics [5–7]. In particular, this was in studying
the “composite Y model” [5] of DNA, in which the state of DNA is described by two angular
variables ϕ(x, t) and ϑ(x, t), which can be thought as describing (in the long wavelength limit, and
thus using a continuum description) a chain of double pendulums. The peculiar geometry of DNA
produces rather involved equations. The model is described by the Lagrangian density

L =
1
2
{

Iϑ
2
t −ωtϑ

2
x + r2[mϑ

2
t +

−ωsϑ
2
x +2(mϑt(ϕt +ϑt)−ωs(ϕx +ϑx))cosϕ

+m(ϕt +ϑt)
2−ωs(ϕx +ϑx)

2]
}
+

+4r2Kp[cosϑ + cos(ϕ +ϑ)− (1/2)cosϕ− (3/2)] , (5.1)

and we refrain from writing the Euler-Lagrange equations for this Lagrangian; the reader is referred
to [4] for the physical meaning of the various parameters appearing in L .

Under the TWA, the Euler-Lagrange equations reduce to

µ ϕzz + µ(1+ cosϕ)θzz =

=−4Kp sin(ϕ +θ)−µ sin(ϕ)(θ ′)2 + 2Kp sin(ϕ) ;

µ (1 + cosϕ)ϕzz + [(J/r2)+2µ(1+ cosϕ)]θzz =

=−4Kp(sinθ + sin(ϕ +θ))+µ sin(ϕ)[(ϕz)
2 +2ϕzθz] , (5.2)

where µ := (mc2−ωs), J := (Ic2−ωt), ωt = Ktδ
2, ωs = Ksδ

2.
The system in invariant under the reflection symmetry θ →−θ , ϕ →−ϕ . In the Lagrangian

(5.1) appear two different limit speeds, thus space-time Lorentz symmetry is broken and we expect
case 3) of Sect. 3.1 to apply, i.e that the invariant submanifold associated with the reflection symme-
try exists only for fixed value of c. The natural candidates as invariant submanifolds of the dynamics
are therefore θ = 0 and ϕ = 0. One can easily check that this is not the case for θ = 0, whereas
setting ϕ = 0 in Eq. (5.2), and dividing the second by a factor 4, we get

µ θzz = −2Kp sinθ ,

(
J

4r2 +µ

)
θzz = −2Kp sinθ . (5.3)

Thus ϕ = 0 is an invariant manifold if and only if J = 0; this fixes the speed of the TW to c = ωt/I.
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5.2. Kinks in coupled chains of adsorbed atoms

Let us now consider chains of adsorbed atoms (also called “adatoms”), and in particular the interac-
tion between kinks in such chains [3, 21]. In our notation, these are described by the equations [21]

ϕtt − ϕxx = −sinϕ − α sin(ϕ−ψ) + β ψxx ,

ψtt − ψxx = −sinψ − α sin(ψ−ϕ) + β ϕxx . (5.4)

(These are also studied in [22] in the case β = 0.) These correspond to the Lagrangian

L =
1
2
[
(ϕ2

t −ϕ
2
x ) + (ψ2

t −ψ
2
x )
]
− β ϕx ψx + [cos(ϕ)+ cos(ψ)+ cos(ϕ−ψ)] . (5.5)

The TWA produces the equations

(c2−1)ϕzz = βψzz− sinϕ−α sin(ϕ−ψ)

(c2−1)ψzz = βϕzz − sinψ − α sin(ψ−ϕ) ,

which are written in the form

M Φ
′′ = F

by setting

M =

(
c2−1 −β

−β c2−1

)
, F =

(
−sinϕ − α sin(ϕ−ψ)

−sinψ − α sin(ψ−ϕ)

)
;

note that det(M) = (c2−1)2−β 2. Under the condition c2 6= 1±β , the equation is rewritten as

ϕzz = −
(1− c2) sinϕ + α(1+β − c2)sin(ϕ−ψ) − β sinψ

β 2 − (1− c2)2 ,

ψzz = −
(1− c2) sinψ + α(1+β − c2)sin(ψ−ϕ) − β sinϕ

β 2 − (1− c2)2 .

This obviously admits two discrete symmetries:

(ϕ,ψ)→ (ψ,ϕ) and (ϕ,ψ)→ (−ϕ,−ψ) .

The latter is of no use (the invariant set it identifies is just ϕ = ψ = 0, which gives the trivial
solution), while the former suggests to pass to field coordinates

η :=
ϕ−ψ

2
, ξ :=

ϕ +ψ

2
.

In terms of these, the equations are rewritten as

ηzz = −
α sin(2η) + sin(η) cos(ξ )

(c2−1)+β
= − sin(η)

2α cos(η) + cos(ξ )
(c2−1)+β

ξzz = − sin(ξ )
cos(η)

(c2−1)−β
.

We see immediately that both the submanifolds identified by ξ = 0 and by η = 0 are invariant.
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In the equation of motion (5.4) appears one single limit speeds, which with the units used in
(5.4) is c1 = c2 = c̄ = 1, and a non vanishing kinetic coupling term β , with |β | ≤ 1. Thus space-
time Lorentz symmetry is broken only by this coupling term, and case 2) of Sect. 3.1 applies. We
therefore expect that the invariant submanifold associated with the discrete symmetry exists for
every value of c below a limit value depending on β . We will now show that this is indeed the case.

For β = 0 we would have a motion in an effective potential

W = − 1
c2−1

[cos(ξ +η) + cos(ξ −η) + α cos(2η)] ;

the analysis would be rather simple. The case β = 0 corresponds to not having the kinetic interaction
term, see (5.4), (5.5).

By restricting to η = 0 and writing h+ = [c2−1−β ]−1 we obtain

ξzz = −h+ sin(ξ ) , (5.6)

i.e. a standard sine-Gordon equation, which will support the standard sine-Gordon solitons [17,26].
Note however that we have h+ < 0 if and only if c2 < 1+β ; thus ξ -waves are possible if and

only if the speed |c| is smaller than a critical value, |c|< cξ =
√

1+β .
By restricting instead to ξ = 0 and writing now h− = [(c2−1)+β ]−1 we get

ηzz = −h− sin(η) [1+2α cos(η)] , (5.7)

i.e. a double sine-Gordon equation, which will also support solitons [11].
Note that here too h− < 0 is not automatic: this is the case if and only if c2 < 1−β , i.e. again

η-waves are possible if and only if the speed is smaller than a limit value, which is now |c|< cη =√
1−β .
Consistently with our discussion of the linear case, in order to have a real speed c we must

require |β | ≤ 1 (corresponding to the condition |γ| ≤ 1 used in Sect. 4).
It should also be noted that for β = 0 space-time Lorentz invariance if fully preserved, i.e it is

realized the case 1) described in Sect. 3.1. The invariant submanifold exists for every value of the
soliton speed smaller than c̄ = 1.

5.3. Coupled Josephson junctions

A weakly coupled system of two long Josephson junctions is described, in suitable units, by the
equations [20]

ϕtt − ϕxx = −sin(ϕ) − α ψxx − σ1 ϕt + f1 ,

µ
2

ψtt − ψxx = −ν
2 sin(ψ) − α ϕxx − σ2 µνψt + ν

2 f2 ;

we refer to [20] for the physical meaning of the different constants. Note that here σi describes
dissipation effects, and fi are external forcing needed to counterbalance dissipation. Considering
the idealized case where dissipation is zero (and hence setting to zero also the external forcing
terms fi), we are reduced to

ϕtt − ϕxx = −sin(ϕ) − α ψxx ,

µ
2

ψtt − ψxx = −ν
2 sin(ψ) − α ϕxx . (5.8)

This corresponds to a potential V =− [cos(ϕ)+ν2 cos(ψ)].
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The TWA reduces (5.8) to

(c2−1)ϕzz + α ψzz = −sin(ϕ) ,

(µ2c2−1)ψzz + α ϕzz = −ν
2 sin(ψ) ; (5.9)

This is written as MΦzz = F if we define

M =

(
c2−1 α

α µ2c2−1

)
, Φ =

(
ϕ

ψ

)
, F =

(
−sinϕ

−ν2 sin(ψ)

)
.

Provided det(M) := [(c2−1)(µ2c2−1)−α2] 6= 0, and writing then h = [det(M)]−1, the equations
(5.9) are rewritten as Φzz = M−1F , i.e. as

ϕzz = −h
[
(1−µ

2c2)sin(ϕ) + α ν
2 sin(ψ)

]
ψzz = −h

[
ν

2(1− c2)sin(ψ) + α sin(ϕ)
]
. (5.10)

We would like to determine one-dimensional invariant submanifolds for the dynamics (5.10).
We look for discrete symmetries of the model. The system (5.8) is invariant under the reflection
symmetry ϕ→−ϕ, ψ→−ψ . The most natural candidates for invariant submanifolds are therefore
ϕ = 0 and ψ = 0. These are, however, of no use, because correspond to trivial solutions of the field
equations. Thus in general the determination of the invariant submanifold is a hard problem, but we
can look for linear invariant submanifolds.

That is we will look for linear combinations of the fields, ξ = d1ϕ +d2ψ and η = d3ϕ +d4ψ ,
such that the submanifolds ξ = 0 and η = 0 are invariant under (5.10). The inverse transformation
can be written asd

ϕ = k1 η + k2 ξ , ψ = k3 η + k4 ξ ;

in this way, and setting

H =
h

k1k3− k2k4
= h ρ ,

the equations (5.10) are written as

ξzz = −H
[
[(αk1− k4(1− c2

µ
2)]sin(k1η + k2ξ )

+ [(1− c2)k1−αk4]ν
2 sin(k4η + k3ξ )

]
ηzz = −H

[
[(1− c2

µ
2)k3−αk2]sin(k1η + k2ξ )

− [(1− c2)k2 +αk3]ν
2 sin(k4η + k3ξ )

]
.

On the line η = 0 these reduce to

ξzz = −H
[
[(αk1− k4(1− c2

µ
2)]sin(k2ξ ) + [(1− c2)k1−αk4]ν

2 sin(k3ξ )
]

ηzz = −H
[
[(1− c2

µ
2)k3−αk2]sin(k2ξ ) − [(1− c2)k2 +αk3]ν

2 sin(k3ξ )
]

;

thus the line η = 0 is invariant if and only if

(1− c2
µ

2)k3−αk2 = 0 and (1− c2)k2 +αk3 = 0 . (5.11)

dWriting ρ = (k1k3 − k2k4)
−1, the relation between the di and the ki coefficients is given by d1 = −k4ρ , d2 = k1ρ ,

d3 = k3ρ , d4 =−k2ρ .
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This can be cast in the form of a matrix equation Qξ Kξ = 0, where we have defined

Qξ =

(
−α (1− c2µ2)

(1− c2) α

)
, Kξ =

(
k2

k3

)
.

The solution exists provided det(Qξ ) = 0, and this condition considered as an equation for c pro-
vides

c2 = c2
(ξ ,±) =

(1+µ2) ±
√
(1−µ2)2 +4α2µ2

2 µ2 .

Notice that, in accordance with our results in the linear case, in order to have a real speed c we
must require |α| ≤ 1 (corresponding to the condition |γ| ≤ 1 used in Sect. 4).

Denoting by Q(ξ ,±) the matrix Qξ with c2 = c2
(ξ ,±), the kernel of Q(ξ ,±) is spanned respectively

by

v(ξ ,±) =

(
(1−µ2) ±

√
(1−µ2)2 +4α2µ2

2α

)
.

One can check that with these choices for c and for k1,k4 the line η = 0 is invariant, and the
evolution of ξ is governed by an equation of the form

ξzz = p1 sin(2αξ ) + p2 sin(ωξ ,±ξ ) ,

where pi are coefficients depending on (k1,k4), whose explicit expression can be easily computed
but is not interesting here, and

ω(ξ ,±) =−(1+µ
2) ±

√
(1−µ2)2 +4α2µ2 .

One could analyze in the same way the invariance of the line ξ = 0. Note however that there is no
physical difference between the two fields, as they are just generic linear combinations of ϕ and ψ;
thus the ξ = 0 case will reproduce – with an exchange of roles between ξ and η – the same results
obtained for η = 0.

Note that in the case analyzed here the Lorentz symmetry is broken by the presence of two
different limit speeds in the field equations (5.8). Thus, case 3) of Sect. 3.1 applies. The invariant
submanifold associated with the discrete symmetry exists only for selected values of the speed c.

5.4. Modified Katsura model

Our last example is a “two speeds of light” generalization of the model of Katsura [19]; this has
been proposed to describe the coupling of magnetic and ferroelectric domain walls [18, 19]. The
model we consider is described by the Lagrangian (for simplicity we set in the model of Ref. [19]
the coupling constant λ = µ = 1)

L =
1
2

(
ϕ2

t

c2
1
−ϕ

2
x +

ψ2
t

c2
2
−ψ

2
x

)
−V (ϕ,ψ) , V (ϕ,ψ) =

ϕ4

4
−ϕ cosβψ. (5.12)

The Lagrangian has the discrete symmetry ψ→−ψ , so that the natural candidate for the invari-
ant submanifold for the dynamical system one obtains after the TWA is ψ = 0. Indeed such invari-
ant manifold exists for every value of the parameters and the reduced dynamics is described by
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ϕzz = ϕ3−1. However, this equation does not support solitonic solutions because the potential does
not have the required minima structure.

The model also has another reflection symmetry, described by

ϕ →−ϕ , ψ → π

β
−ψ .

If we look for analytic functions invariant under such a reflection, they are necessarily built as
(algebraic) functions of the basic invariants

ϕ
2 , cos2(βψ) , ϕ cosβψ .

In fact, another invariant manifold for the dynamics can be found using the results of Ref. [19],
where exact kink solutions have been found for β 2 = 1/2 using the ansatz

ϕ = cosβψ. (5.13)

One can easily show that Eq. (5.13) with β 2 6= 1/2 determines an invariant manifold for the equiv-
alent mechanical system describing the TW dynamics stemming from (5.12), if the TW speed is
fixed by

c = c2 c1

√
1−2β 2

c2
1−2β 2c2

2
. (5.14)

Note that again we have two limiting speeds in the Lagrangian (5.12); thus the model falls in
case 3) of section 3.1, and we do indeed have the behavior predicted there. On the other hand, in the
case c1 = c2 and β 2 = 1/2, consistently with the results of Katsura [19], equation (5.13) describes
an invariant manifold of the dynamics for every value of c; thus in this special case the system falls
in case 1) of the classification given in Sect. 3.1.

6. Discussion. Field theoretical considerations

This paper focused on the description of TW dynamics in macroscopic and mesoscopic systems.
This is particular evident in the examples we have chosen in Sects. 4 and 5 to elucidate our mech-
anism. They represent macroscopic or mesoscopic models for molecular, biological or condensed
matter systems.

Nevertheless, at least some of the results of these paper have a much broader relevance and can
be applied, generically, to any two-dimensional (2D) field theory. This is particularly true for the
first part of paper, which concerned linear dynamics.

An important point in this context is the presence in the action for the 2D field theory (1.2)
of N different “speeds of light” ci, see Eq. (1.3). This is a natural condition for macroscopic and
mesoscopic systems, where different modes propagating in a medium experience different effective
physical parameters ρi,κi (elastic, optical, magnetic and so on) of the media so that at the linear level
their perturbations propagate at different speeds. On the other hand a fundamental, microscopic, 2D
field theory has to be Lorentz invariant, thus characterized by a single speed of light.

The case of a single limit speed is a particular case of the description of linear waves given in
the first part of this paper (see e.g Eq. (2.17)). Thus, our results including those related to synchro-
nization and tuning of the wave speed hold true for c1 = c2.
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From the field theoretical point of view a particularly important case is that of a non interacting
theory. When V = γ = 0 and ci = c̄ the theory (1.2) is a 2D conformal field theory (CFT) . It describes
CFTs with N scalar fields (i.e. CFTs with central charge N), which play a fundamental role in several
contexts such as string theory [27], critical points of phase transitions [12], microscopic explanation
of black hole entropy [14], just to mention only few of them. The conformal invariance of the
Lagrangian (1.2) is fully evident by passing to light cone coordinates x±= x±ct. In this coordinates
the theory is explicitly invariant under the action of 2D-diffeomorphisms (the conformal group in
2D) and the field equations read ∂x+∂x−ϕ = 0, whose general solution is a generic combination of
right and left moving TW ϕ = f (x+)+ f (x−). The conformal invariance is a general feature of the
massless case. In fact it is also evident from Eq. (2.9), which does not fix the dependence on z of
the fields ϕ(z), ψ(z) but just gives a linear relation between the two fields.

As a final remark we note an analogy between the synchronization mechanism for TW in the
linear regime we have found in the first part of this paper, and Quantum Mechanics; this goes as
follows.

Let us consider for simplicity the field equations (2.7) with vanishing potential (our considera-
tions can be easily extended to the V 6= 0 case). The system can be described in two different frames
of the field space ϕ,ψ: a frame in which the two fields decouple completely i.e. in which the kinetic
matrices are diagonal; and a frame in which the two fields interact with the interaction term γ . In
the first frame TW for the two fields can propagate independently, hence with different speeds c+
and c− given by Eq. (2.10). Owing to the interaction, in the second frame the ϕ− and ψ-waves are
forced to travel with the same speed (synchronization).

This relationship between TW waves in the two frames bears a strong analogy with the eigen-
states of two non-commuting quantum mechanical operators, acting on a 2D Hilbert spaces and
associated to two non compatible physical observables.

7. Conclusions

In previous work, dealing with a concrete model for the nonlinear dynamics of DNA [5], we
observed a peculiar mechanism which fixed the speed of solitons [4]. In this paper we investigated
if this mechanism could extend to a more general class of equations, answering this question in the
positive. More generally, we have considered systems of coupled wave equations; when decoupled
each of them is Lorentz invariant with a limit speed ci, with possibly different limit speeds and we
have studied how the speed of travelling waves is affected by the coupling.

In particular we have considered systems admitting a variational (Lagrangian) description, and
in which the coupling between the different equations could involve a kinetic term, see Eq. (1.2).

We observed that the general Lagrangian under consideration here, (see Eq. (1.2)) could fall in
different classes according to its properties under Lorentz transformations. That is, Lorentz invari-
ance could be unbroken (case 1), in which case there is of course no speed selection mechanism; it
could be broken, albeit the coupled equations admit the same limit speed, by coupling terms (case
2), in which case there is still no speed selection but the limit speed can be changed due to the
coupling; or finally the Lorentz invariance can be broken by the presence of different limit speeds
and kinetic coupling terms (case 3), in which case we have a full selection of the speed of travelling
wave solutions, which can only take a finite – and rather small, being limited by the number of
coupled equations – set of values.
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In the latter – and more interesting – case, simple travelling wave solutions can be described as
dynamically invariant one-dimensional manifolds for a mechanical system (parametrically depen-
dent on the speed c of travelling waves) associated to the system of PDEs under study, joining two
extremal points for an effective potential which comply with limit conditions dictated by the finite
energy condition for the PDEs system. Such manifolds only exist for special values of c, and this
ignites the speed selection mechanism.

We have then validated our general discussion by a number of physically significant examples;
in particular, in Sects. 5.1, 5.3 and 5.4 we have shown that the speed selection mechanism here
considered is present in double pendulum chains, coupled Josephson junctions, and in a modified
Katsura model for the coupling of magnetic and ferroelectric domain walls.

It is interesting that the mechanism described here – and which has a partial counterpart for
linear equations as well – has some points of contact with general field-theoretic questions, as
discussed in Sect. 6.

In the Appendices, we give a closer look at some group-theoretical questions (Appendix A); and
argue that, albeit here we worked specifically with hyperbolic PDEs, the same mechanism can be at
work in some type of parabolic equations (Appendix B).
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Appendix A. Lorentz symmetry and group theoretical considerations

In Sect. 2.3 we have noted that in the Lagrangian (1.2) the usual space-time Lorentz symmetry is
explicitly broken by the presence of several limiting speeds ci. However, there is some remnant of
the Lorentz invariance; this can be described as follows.

The Lorentz transformation

x→ x̃ =
(x− vt)√
1− v2/c2

, t→ t̃ =
(t− (v/c2)x)√

1− v2/c2
(A.1)

is generated by the vector field

X = − x
c2

∂

∂ t
− t

∂

∂x
.

The evolutionary representative [15, 23, 24, 30] for this is the (generalized) vector field

Xev =
( x

c2 ut + t ux

)
∂

∂u
,

where u is the dependent variable (the physical field).
Thus if we consider the Lorentz symmetry with several limit speeds ci acting on the field φ i,

this is generated in the evolutionary representation by

X i
ev =

(
x
c2

i
φ

a
t + t φ

a
x

)
∂

∂φ a .

If now we consider a generalized vector field

XL = X1
ev + ...+XN

ev ,
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which (unless c2
1 = ...= c2

N) will not be the evolutionary representative of any Lie-point vector field
acting on the space of the (x, t;φ 1, ...,φ N) variables, this will be a symmetry for the Lagrangian
L1 + ...+LN , where we define the partial Lagrangians as

Li =
1
2
[
ρ

2
i (φ

i
t )

2 − κ
2
i (φ

i
x)

2] ,
and for the corresponding field equations φ i

tt − c2
i φ i

xx = 0 as well.e

Note however that this will not leave the interaction Lagrangian, nor the corresponding interac-
tion terms in the field equations, invariant.

The symmetry properties of the Lagrangian and field equations described above can be also
understood in terms of the commutation relations (2.5) of the matrices Q(t),Q(x) defined in (2.4).
We have a symmetry of the Lagrangian when the matrices can be diagonalized simultaneously, i.e
when γ = 0 (corresponding to absence of coupling in the kinetic sector) and ci = c̄, i.e the same
limit for the TW of different fields.

The N-field components TW will belong to the representation of the Lorentz symmetry gener-
ated by the generalized vector field XL. More specifically they will transform via reducible repre-
sentations

T = T1⊕T2⊕ ...⊕TN ,

where each Ta is a two-dimensional representation made of the Lorentz group. The TW solutions
of the model with vanishing, respectively non-vanishing, potential belong to massless, respectively
massive, representations of the Lorenz group.

Appendix B. Extension to parabolic equations

We have so far considered coupled hyperbolic equations; on the other hand the treatment of the
linear case is based on basic algebraic facts and does not involve hyperbolicity; it thus appears
that our discussion can be extended to more general (time-evolution) equations, and in particular to
parabolic ones.

Here, we will not discuss the general case but only consider, for the sake of concreteness, TW
dynamics described by coupled linear Schrödinger equations; this can be thought as emerging from
the linearization of the nonlinear Schrödinger equations

iψt = − 1
2

ψxx + κ |ψ|2 ψ . (B.1)

This is known to describe, among others, optical solitons and, upon introducing a potential term
V (x)ψ , Bose-Einstein condensates. As usual we will consider the N = 2 case, the generalization to
the N-fields case being performed along the lines described in Sect. 2.3.

eActually, here only derivatives of first (for the Lagrangian) and second (for the field equations) order matter; so we
could as well consider only transformations of the field derivatives, e.g. prescribing these are undergoing a hyperbolic
rotation irrespective of any transformation on the field themselves. In this way one would be led to consider “hidden
symmetries” [13].
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Let us consider the system of two coupled linear Schrödinger equations,

i
c1

ϕt +
1
2

ϕxx −
γ

2
ψxx = −

∂V
∂ϕ

,

i
c2

ψt +
1
2

ψxx −
γ

2
ϕxx = −

∂V
∂ψ

, (B.2)

where ci,γ are some parameters and now the fields ϕ,ψ are generically complex. In analogy with
the hyperbolic case we have introduced a quadratic potential of the form given by Eq. (2.3). As in
the hyperbolic case, to solve this equations we pass to the Fourier transforms.

In the decoupled case γ = λ = 0 we get two dispersion relations ωi(q), i = 1,2 and the related
phase velocities v(p)

± = dω±/dq,

ωi =
1
2

ci
(
q2−µ

2
i
)
, v(p)

i = ciq ; (B.3)

thus ci characterizes the phase velocity of the wave packet.
In the generic coupled case γ 6= 0,V 6= 0, we get dispersion relations similar to (2.16), i.e.

ω± =
1
2

[
1
2
(c1 + c2)q2− (c1µ

2
1 + c2µ

2
2 )±

√
P(q2)

]
, (B.4)

P(q2) =
1
4
(c1 + c2)

2q4− (c1µ
2
1 + c2µ

2
2 )(c1 + c2)q2 +

+(c1µ
2
1 + c2µ

2
2 )

2− c1c2(q2−2µ
2
1 )(q

2−2µ
2
2 )+ c1c2(q2

γ +λ )2. (B.5)

Notice also that in the case of vanishing potential we get the dispersion relations

ω± =
1
2

c±q2 , (B.6)

where c± has exactly the same form (2.10) found in the hyperbolic case with squared-velocities
replaced by the parameters ci :

c± =
1
2

[
c1 + c2 ± (c1− c2)

√
1+

4γ2 c1 c2

(c1− c2)2

]
. (B.7)

As in the hyperbolic case this equation tells us that we can tune the phase velocity of the ϕ

and ψ waves just by changing the parameter |γ| in the range [0,1], (see Eq. (2.13)). In particular,
the phase velocity of a given phase in ω+ (ω−) changes from a maximum (minimum) value when
γ = 0, given by the smallest (greatest) of c±, to zero (a maximum value) when |γ|= 1.
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