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In this paper, by using the bifurcation method of dynamical systems, we derive the traveling wave solutions of
the nonlinear equation UUzyy — UyUry +U ZUT =+ 3Uy = 0. Based on the relationship of the solutions between
the Novikov equation and the nonlinear equation, we present the parametric representations of the smooth and
nonsmooth soliton solutions for the Novikov equation with cubic nonlinearity. These solutions contain peaked
soliton, smooth soliton, W-shaped soliton and periodic solutions. Our work extends some previous results.
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1. Introduction

In this paper, we consider the Novikov equation [1]
m,+u2mx+3uuxm:0, M= U — Uyy. (1.1)

Eq. (1.1) was introduced to classify the nonlocal partial differential equations(PDEs). By using the
perturbative symmetry approach, some symmetries and a scalar Lax representation of Eq. (1.1)
are provided in [1]. Further, Hone and Wang [2] presented the matrix Lax representation, the bi-
Hamiltonian structure, an infinite number of conservation laws and established the relationship
between the Novikov equation and the Sawada-Kotera equation by a reciprocal transformation. As
Li and Liu [3] stated, Eq. (1.1) is the Camassa-Holm type equation with cubic nonlinearity and
they also introduced the two-component Novikov equation with a bi-Hamiltonian structure. As a
generalization of the Novikov equation, Geng and Xue [4] studied a coupled model with cubic
nonlinearity.

A remarkable feature of the Novikov equation is that it admits peakons whose dynamics are
shown to obey a finite dimensional integrable Hamiltonian system [2, 5, 6]. Moreover, by using a
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reciprocal transformation, Matsuno [7] presented a nonlinear equation
UUsyy — UyUzy + U*Ur +3U, = 0, (1.2)

which was introduced to construct a compact parametric representation of the smooth bright multi-
soliton solutions on a constant background for the Novikov equation. The parametric representation
for the multisoliton solution is of the form

10
W =u*(y,7) = K+ E%ln&’
, | g; (1.3)
3 1
vt = 24t ol 4

where the parameters k, d and the tau-functions g;, g> are given in [7].

In particular, Li [8] used the bifurcation method of dynamical systems to study the parametric
representations of cuspon and compacton solutions of Eq. (1.1) and discuss their dynamical behav-
ior. By introducing the variable ) and making the transformation y = —4—, the cuspon is of the

Vi’
form
w(x) =1 — (¥1 — yo)coth’x,
() = Vv
W= et
4 C —2 14
S =+l =t T (1.4)

n Vyi—v(x)—vVyi-1 B VVi—v(x)—Vyi+l
2(wo—1)vyi —1 2(yo+ Vi +1

and the compacton is of the form

In <\/W1_1+\/V’1_W(75)> In (\/‘I’H‘H‘\/‘I/l_‘l/(?())
]

I

W) —— 14 k)

cn?(x,k) 7
() = Vv ()
W= et
=— ¢ ! _ arcsin(sn L.5)
E(x) ﬁ@ﬁ@#%—ﬁ yr 1 (aresin(sn(x.£)). &) (
(%jﬁ)—(;f_I)H(arcsin(sn(x,k)),Oclz,k)
- Vs~ ¥ I (arcsin(sn(x,k)), o5, k)]

where the parameters are given in [8].

The purpose of this paper is to extend the smooth and nonsmooth soliton solutions of the
Novikov equation. Firstly, we establish the relationship of the soliton solutions between the Novikov
equation and Eq. (1.2) by a transformation formula. Secondly, based on the bifurcation method of
dynamical systems [8—13], the exact traveling wave solutions of Eq. (1.2) are given. Lastly, we
construct some novel soliton solutions and their parametric representations for Eq. (1.1).
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Notice that the relationship between the Novikov equation and some nonlinear equations has
been discussed through the reciprocal transformation [7]. Here we turn our attention to the relation-
ship of the soliton solutions between the Novikov equation and Eq. (1.2). This makes it possible to
obtain exact soliton solutions of the Novikov equation easily. First, we recall some previous results
and show them by two Lemmas as follows.

Lemma 1.1. (see [7]) In accordance with [2], using the coordinate transformation (x,t) — (y,7T)
by

dy = midx —m3u*dt, dt = dt, (1.6)

then the derivatives of x and t can be rewritten as

o _ 39 9_9 3.9 (1.7)

ax | dy o dt dy’

Wit

and the variable x = x(y, T) satisfies a system of linear PDEs

Xy=m %, xrzuz, (1.8)

then the Novikov equation can be recast into the form
e+ 3m3 uuy = 0. (1.9)

On the other hand, Eq. (1.1) can be rewritten in terms of m as
4 2 1
u:m—i—m3uy),+§m3myuy. (1.10)
Lemma 1.2. (see [7]) Define the variables V and W by
1

V=mi, W=um?, (1.11)

then (1.9) and (1.10) can be put into the form (see [2])

). (%)
) =(=), (1.12)
(v) - (),

Wy, +UW +1=0, (1.13)
where
Vi Vi1
U=-24+ 2 . 1.14
2V + 4vz  y? (1.14)
By adopting the linear PDE
U +3W, =0, (1.15)

eliminating the variable W from (1.13) and (1.15), they obtained the equation Eq. (1.2).
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Corollary 1.1. Assume that a traveling wave solution of Eq. (1.2) is of the form

Uy,7)=¢(§), E=y—cT. (1.16)

Combining (1.8), (1.11), (1.12) and (1.15), we get the parametric representations of the solutions
of Eq. (1.1) as follows

ur=—

= &t g (1.17)
x= [u’dr,

where c is the wave speed, g\ and g» are the integral constants.

We notice that the unbounded traveling wave solutions of Eq. (1.2) will change to the bounded
soliton solutions of Eq. (1.1) by employing the formula (1.17). Therefore, we only need to consider
the traveling wave solution of Eq. (1.2) instead of those of Eq. (1.1) where the cubic nonlinearity
creates a great difficulty.

2. Traveling wave solutions of Eq. (1.2)
First, we substitute (1.16) into Eq. (1.2), it follows that

—c0@" +c'¢" —co*¢' +3¢' =0. (2.1)
Integrating (2.1) once, we have

c(p(p +c(p q) +3p+g=0, 2.2)

where g is the integral constant.
Letting z = d 5 we get the following planar dynamic system

dﬁ_Z
s 2.3
{;’ga(,,(cz —50°+3p+g). @

Assume that dé = c@dp, so that (2.3) is equivalent to the system as follows:

10 _
au — v 2.4)
i = cz? <p +3¢p+g,

which has the first integral
2 6
H(p,2) =2+ ¢ + -9 —he>+ 5. (2.5)
3 c c
In what following, we also assume that

flo)= —§<p3+3<p+g. (2.6)

Then we have
(@) = —c@?+3. (2.7)
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Solving f'(¢) = 0 for ¢ > 0, we get two roots as follows:

_ 3 3
(pO :_\/:7 (PJ:\/:

By using the properties of equilibrium points and bifurcation theory, we obtain three bifurcation
curves as follows:

3
= /=
gl(c) ¢’
gZ(C) = Ov
3
=2/
g3(c) .

Fig. 1. The phase portraits of system (2.3) under some conditions. (a) g > g3(c); (b) g = g3(c); (¢) 0 < g < g3(c); (d)
g=0;() gi(c) <g<0;(f) g=gi(c); () g < g1(c).
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Consequently, according to the qualitative theory, we obtain the bifurcation phase portraits for
system (2.4) as Fig. 1.

Based on the dynamics of the level curves determined by H(¢@,z) = h and the bifurcation phase
portraits of system (2.3), we will give the explicit expressions of the traveling wave solutions for Eq.
(1.2), from which we obtain the parametric representations of the smooth and nonsmooth soliton
solutions of Eq. (1.1) with the help of the formula (1.17).

First, we introduce some marks for simplicity. For given parameters ¢ and g, let

3
(P0:2 >
C
_ /3
O1 l6¢°

_9—c(p22
¢s = 2C(P2 )
9
P = — Ev
9
(p7: ]
C
1 , 12g
_ o 12
(P10—2< @3+ 4/ Og c@g)’
?11 26(P92’
Q12 )
ZC(plzo

where @5 < @2 < @y and @13 < Qg < .
The exact traveling wave solutions of Eq. (1.2) are listed in the following three cases.
Case 1. Eq. (1.2) possesses the unbounded solutions are of the expressions

01(8) =@y — ;, (2.8)
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¢5(&) = ggcoth? ( _6%€> ,

2
@10(&) Z(P14—((P14—<P13)00th2%, where 15 = 3((P14—<P13)<§‘,

and
ou(E) = 9 ~ g

Case 2. Eq. (1.2) possesses the periodic blow-up solutions are of the expressions

0(8) = o1 — (9o — wl)tanz%, where M1 =4/ %((Po— »)E,
@6(§) = —@ytan’ (ﬁ&)

2
@8(5):(P12_((P10_(P12>tan2%a where M4 = \/g(fplo—m)é-

Case 3. Eq. (1.2) possesses the solitary wave solutions are of the expressions

2
03(&) = o5 — (5 — @z)tanhz%, where 1M = 4/ g(‘l’s - )&,

@4(§) = pgtanh’ < _6%5> :

2
©7(&) = @11 — (P11 — %)taﬂhz%, where 13 = | g(‘Pll — )&,

215
L.

and

and

©9(&) = @14 — (@14 — @13)tan

(2.9)

(2.10)

2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

2.17)

(2.18)

The correctness of these solutions is tested as well by using the software Mathematica. We notice
that some explicit solitons of this kind of equation as (1.2) can be obtained by the singular manifold

method(see [14]). Next, we will give the demonstrations on Cases 1-3.
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(1) When g = g3(c), the curves I'y and I'} possess the following expressions:

. 2, - _
[p: z=sign(z) g(‘Po —¢)\/@, —¢, where ¢ < @, (2.19)
. 2
Iy : z=sign(z) \/;((po — Q)1 — @, where ¢ < Q. (2.20)

Substituting (2.19) and (2.20) into j—g = z and integrating them along I'y and I'; respectively, we
have

¢ ds \/E .
=/ =sign(z)& (alongly), (221
/- (5~ Joo —s 3

/:1 ((Po—sé)lj/m = —\/gsign(z)ﬁ (alongl'y). (222)

In (2.21) and (2.22) completing the integrals yields (2.8) and (2.12) respectively.
(2) When 0 < g < g3(c), the curve I'; possesses the following expression:

. 2
= SIgn(z)\g(rp— )/ @5 — @, where @ < @ < @s. (2.23)

Substituting (2.23) into Z—g = z and integrating it along I, we have

/(P(P5 (S—q}z;lf/@ = —\/gsign(z)é. (2.24)

In (2.24), completing the integral yields (2.15).
(3) When g = 0, the curves I'3, I'4 and I's have the following expressions:

2
I';: z=sign(z) \/g((p —@6)v/—@, where Qg < ¢ <0, (2.25)
. 2
I'y: z=sign(z) \/;(% —@)\/—¢@, where ¢ < g, (2.26)
2
I's: z=sign(z) \/;((m —@)y/—¢, where ¢ <O0. (2.27)

Substituting (2.25), (2.26) and (2.27) into Z—fg = z and integrating them along I'5, I'4 and I's, respec-
tively, it follows that

/(PO @—(;iis)\/js = —\/?Sign(z)‘g' (along I'3), (2.28)
' /_ ‘i (%_‘SJ; - \/gsign(z)é (along Ty), (2.29)
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/(po ((p7—is)\/—7s = —\/gsign(z)é (along Ts). (2.30)

In (2.28), (2.29) and (2.30), completing these integrals yields (2.16), (2.9) and (2.13) respectively.
(4) When g;(c) < g < 0, the curves I'¢ and I'7 have the following expressions:

. 2

I6: z= s1gn(z)\[3(¢>— ®)v/ @11 — @, where @y < @ < @y, (2.31)
. 2

I7: z= s1gn(z)\/g((plo —0)\/¢12— @, where 0 < @ < ¢ys. (2.32)

Substituting (2.31) and (2.32) into Z—g = z and integrating them along I'¢ and I'; respectively, it
follows that

P11 d )
/w (s— @)Jﬁ - _\ﬂﬁgn@g (along ), (2.33)
P12 d 2
-/fp (@10 —S)f/m - —\/;s1gn(z)<§ (along I'7). (2.34)

In (2.33) and (2.34), completing these integrals yields (2.17) and (2.14) respectively.
(5) When g = g1 (c), the curves I'g, I'g and I'jy have the following expressions:

. 2
I'g: z= 51gn(z)\/g((p — @13)V/ Q14— @, where @13 < @ < @4, (2.35)
. 2
[g: z=sign(z) \/?(‘Pm —0)V/P1s— @, where @ < @3, (2.36)
. 2
I': z=sign(z) \/;((pJ —9)\/ (9] — @), where ¢ < o - (2.37)

Substituting (2.35), (2.36) and (2.37) into Z—(g = z and integrating them along I'y, I'g and I";( respec-
tively, it follows that

P14 d 2

/<p (s—(PIS)f/m - —\ﬂﬂgn(Z)i (along Ty), (2.38)
[ d 2

/—oo (¢13 —s)f/m - \ﬁSIgH(Z)i (along TY), (2.39)

? ds \/5
=4/ =sign(z)& (along T'yp). (2.40)
eyt

“ (@ —s
In (2.38), (2.39) and (2.40), completing these integrals yields (2.18), (2.10) and (2.11) respectively.
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3. Some soliton solutions of Eq. (1.1)

Here we calculate the parametric representations of the smooth and nonsmooth soliton solutions for
Eq. (1.1) by virtue of the formula (1.17). If we take c=3,y=1,g; =0and g, = —1,i.e. £ =1—37,
our main results under different parametric conditions are listed in the following three propositions.

Proposition 3.1. Eq. (1.1) has the smooth soliton solution(see Fig. 2(a))

_ _ 9
u= 1= o (3.1)

x=1—3(—1+37)+ farctanng,

3(1-37)
34 (1-37)2"

where Ng =

a-is -10 -5 0 5 10 15 bfo,4 -02 02 04 C

08
0.6

0.4

5

Fig. 2. The portraits of the soliton solutions of Eq. (1.1).

Proposition 3.2. Eq. (1.1) has peaked soliton solution(see Fig. 2(b))

_ 9
U=\~ s
X=7T+ %33% (arctan [—1 + \@tanhm] — arctan [1 + ﬁtanhm]) - ﬁ 331/4 In ‘ 71:;‘:]’1}7’1?7 ,

(3.2)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
317



C. Pan and Y. Yi / Soliton solutions for the Novikov equation

the smooth soliton solution(see Fig. 2(c))

_ o 9
u= /1= gpm@m

xX=T+ %33% (arctan -1+ \@cothm] —arctan [1 + ﬂcothm} ) 3.3)
— 1 _1 g, |=Zltcothy
2./2 33/4 1+cothn; |

and the periodic solution(see Fig. 2(d))

_ /1 _ 9
n= 1 9+cps(€)?° (34)

e V2 1 11 g | = 1V2eany —tan’ny
X =T+ 5 pgarctan|tant| — g 5zln v 2tanmy |

_ 137
where 17 = NG

Proposition 3.3. Eq. (1.1) has the novel W-shaped soliton solution(see Fig. 2(e))
_ _ 9
4=\ e
X = 11—4 <8’E —2arctan %ﬁsech 3\/517] <—6coshn8 — 8sinhng + sinh 3\/51'] )] > (3.5)
2 <arctan [%}gsech 3\/517] 6coshng — 8sinhng + sinh {3 \/ET} )] ,

the smooth soliton solution(see Fig. 2(g))

— _ 9
Y ! 9+ce10()*’
x= ﬁ (817 —\2arctan f\lﬁsech 3\/517] (—6coshng + 8sinhng + sinh 3\/51'] )] ) (3.6)
-2 (arctan [%lﬁsech 3\/517] 6coshng + 8sinhng + sinh {3 \/g’c} >] ,

the novel W-shaped soliton solution(see Fig. 2(h))

_ /1 _ 9
u= 1 49+c(p11(§)2’ (37)

XxX=1T— %(_1 +37)— %ln ‘ 34+3(1-37)+(1-37)?

9

3-3(1-37)+(1-37)2

where Mg = \/g(Z— 37).
2

Remark 3.1. (1) The reason that the cuspidal points arise is the square root of the function u~,
while on x — u? plane, the soliton solutions are smooth (see Figs. 2(f, 1)).

(2) Like the other functions ¢,(&), @3(&), @7(&) and @g(&), we can’t finish the indefinite inte-
grals x = [u*dt. Therefore, we couldn’t give the parametric representations of these solutions of
Eq. (1.1) which needs to deal with further.

4. Conclusions

In this paper, based on the relationship of the solutions between the Novikov equation and Eq.
(1.2), we derived the parametric representations of the soliton solutions for the Novikov equation.
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We obtained the traveling wave solutions of Eq. (1.2) by adopting the bifurcation method of dynam-
ical systems. Further, in terms of the formula (1.17), we obtained the parametric representations of
the smooth and nonsmooth soliton solutions of the Novikov equation. From the above analysis,
we compare our results with previous studies through the soliton solutions and their research tech-
niques.

1. Matsuno [7] transformed the Novikov equation to Eq. (1.2) by the reciprocal transformation
and revealed that the smooth multisoliton solutions can be solved in terms of the tau-function asso-
ciated with the N-soliton solution of a model equation [15], whose modified versions are obtained
by the reciprocal transformations [16, 17]. By means of the traveling wave solutions of Eq. (1.2)
and combining the formula (1.17), we investigated the smooth and nonsmooth soliton solutions of
the Novikov equation which include peaked soliton, smooth soliton, W-shaped soliton and periodic
solutions.

2. Li [8] obtained cuspons and compactons of the Novikov equation by applying the bifurcation
method of dynamical systems to directly. While we discussed Eq. (1.2) by using the same method
and derived its solitary wave, blow-up wave and periodic wave solutions. Some novel soliton solu-
tions of the Novikov equation obtained in this paper didn’t find in [7, 8]. Therefore, our results
extend the previous studies.

In this sense, we partly enrich the properties of the Novikov equation and demonstrate the appli-
cability of the proposed approach. To the best of our knowledge, this is probably the first time to
discuss these novel soliton solutions of the Novikov equation.
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