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In this paper, by using the bifurcation method of dynamical systems, we derive the traveling wave solutions of

the nonlinear equation UUτyy −UyUτy +U2Uτ + 3Uy = 0. Based on the relationship of the solutions between

the Novikov equation and the nonlinear equation, we present the parametric representations of the smooth and

nonsmooth soliton solutions for the Novikov equation with cubic nonlinearity. These solutions contain peaked

soliton, smooth soliton, W-shaped soliton and periodic solutions. Our work extends some previous results.
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1. Introduction

In this paper, we consider the Novikov equation [1]

mt +u2mx +3uuxm = 0, m = u−uxx. (1.1)

Eq. (1.1) was introduced to classify the nonlocal partial differential equations(PDEs). By using the

perturbative symmetry approach, some symmetries and a scalar Lax representation of Eq. (1.1)

are provided in [1]. Further, Hone and Wang [2] presented the matrix Lax representation, the bi-

Hamiltonian structure, an infinite number of conservation laws and established the relationship

between the Novikov equation and the Sawada-Kotera equation by a reciprocal transformation. As

Li and Liu [3] stated, Eq. (1.1) is the Camassa-Holm type equation with cubic nonlinearity and

they also introduced the two-component Novikov equation with a bi-Hamiltonian structure. As a

generalization of the Novikov equation, Geng and Xue [4] studied a coupled model with cubic

nonlinearity.

A remarkable feature of the Novikov equation is that it admits peakons whose dynamics are

shown to obey a finite dimensional integrable Hamiltonian system [2, 5, 6]. Moreover, by using a
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reciprocal transformation, Matsuno [7] presented a nonlinear equation

UUτyy −UyUτy +U2Uτ +3Uy = 0, (1.2)

which was introduced to construct a compact parametric representation of the smooth bright multi-

soliton solutions on a constant background for the Novikov equation. The parametric representation

for the multisoliton solution is of the form

u2 =u2(y,τ) = κ3 +
1

2

∂
∂τ

ln
g1

g2
,

x =x(y,τ) =
y
κ
+κ3τ +

1

2
ln

g1

g2
+d,

(1.3)

where the parameters κ , d and the tau-functions g1, g2 are given in [7].

In particular, Li [8] used the bifurcation method of dynamical systems to study the parametric

representations of cuspon and compacton solutions of Eq. (1.1) and discuss their dynamical behav-

ior. By introducing the variable χ and making the transformation ψ = u√
u2−c

, the cuspon is of the

form

ψ(χ) =ψ1 − (ψ1 −ψ0)coth2χ ,

u(χ) =
√

cψ(χ)√
ψ(χ)2 −1

,

ξ (χ) =± c√
A
[

−2

(ψ2
0 −1)

√
ψ1 −ψ0

χ +Ψ0

+

ln

(√
ψ1−1+

√
ψ1−ψ(χ)√

ψ1−ψ(χ)−√
ψ1−1

)
2(ψ0 −1)

√
ψ1 −1

−
ln

(√
ψ1+1+

√
ψ1−ψ(χ)√

ψ1−ψ(χ)−√
ψ1+1

)
2(ψ0 +1)

√
ψ1 +1

],

(1.4)

and the compacton is of the form

ψ(χ) =−1+
ψ2 −ψ3sn2(χ ,k)

cn2(χ ,k)
,

u(χ) =
√

cψ(χ)√
ψ(χ)2 −1

,

ξ (χ) =− c√
A(ψ1 −ψ2)

[
1

ψ3 −1
χ − 1

ψ3 +1
F(arcsin(sn(χ ,k)),k)

+
ψ3 −ψ2

(ψ2 −1)(ψ3 −1)
Π(arcsin(sn(χ ,k)),α2

1 ,k)

− ψ3 −ψ2

(ψ2 +1)(ψ3 +1)
Π(arcsin(sn(χ ,k)),α2

2 ,k)],

(1.5)

where the parameters are given in [8].

The purpose of this paper is to extend the smooth and nonsmooth soliton solutions of the

Novikov equation. Firstly, we establish the relationship of the soliton solutions between the Novikov

equation and Eq. (1.2) by a transformation formula. Secondly, based on the bifurcation method of

dynamical systems [8–13], the exact traveling wave solutions of Eq. (1.2) are given. Lastly, we

construct some novel soliton solutions and their parametric representations for Eq. (1.1).
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Notice that the relationship between the Novikov equation and some nonlinear equations has

been discussed through the reciprocal transformation [7]. Here we turn our attention to the relation-

ship of the soliton solutions between the Novikov equation and Eq. (1.2). This makes it possible to

obtain exact soliton solutions of the Novikov equation easily. First, we recall some previous results

and show them by two Lemmas as follows.

Lemma 1.1. (see [7]) In accordance with [2], using the coordinate transformation (x, t)−→ (y,τ)
by

dy = m
2
3 dx−m

2
3 u2dt, dτ = dt, (1.6)

then the derivatives of x and t can be rewritten as

∂
∂x

= m
2
3

∂
∂y

,
∂
∂ t

=
∂

∂τ
−m

2
3 u2 ∂

∂y
, (1.7)

and the variable x = x(y,τ) satisfies a system of linear PDEs

xy = m− 2
3 , xτ = u2, (1.8)

then the Novikov equation can be recast into the form

mτ +3m
5
3 uuy = 0. (1.9)

On the other hand, Eq. (1.1) can be rewritten in terms of m as

u = m+m
4
3 uyy +

2

3
m

1
3 myuy. (1.10)

Lemma 1.2. (see [7]) Define the variables V and W by

V = m
2
3 , W = um

1
3 , (1.11)

then (1.9) and (1.10) can be put into the form (see [2])(
1

V

)
τ
=

(
W 2

V

)
y
, (1.12)

Wyy +UW +1 = 0, (1.13)

where

U =−Vyy

2V
+

V 2
y

4V 2
− 1

V 2
. (1.14)

By adopting the linear PDE

Uτ +3Wy = 0, (1.15)

eliminating the variable W from (1.13) and (1.15), they obtained the equation Eq. (1.2).
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Corollary 1.1. Assume that a traveling wave solution of Eq. (1.2) is of the form

U(y,τ) = ϕ(ξ ), ξ = y− cτ . (1.16)

Combining (1.8), (1.11), (1.12) and (1.15), we get the parametric representations of the solutions
of Eq. (1.1) as follows {

u2 =−g2 +
g2

1+ c
9 (ϕ+

g1
c )2 ,

x =
∫

u2dτ,
(1.17)

where c is the wave speed, g1 and g2 are the integral constants.

We notice that the unbounded traveling wave solutions of Eq. (1.2) will change to the bounded

soliton solutions of Eq. (1.1) by employing the formula (1.17). Therefore, we only need to consider

the traveling wave solution of Eq. (1.2) instead of those of Eq. (1.1) where the cubic nonlinearity

creates a great difficulty.

2. Traveling wave solutions of Eq. (1.2)

First, we substitute (1.16) into Eq. (1.2), it follows that

−cϕϕ ′′′+ cϕ ′ϕ ′′ − cϕ2ϕ ′+3ϕ ′ = 0. (2.1)

Integrating (2.1) once, we have

−cϕϕ ′′+ cϕ ′2 − c
3

ϕ3 +3ϕ +g = 0, (2.2)

where g is the integral constant.

Letting z = dϕ
dξ , we get the following planar dynamic system

{
dϕ
dξ = z,
dz
dξ = 1

cϕ (cz2 − c
3
ϕ3 +3ϕ +g).

(2.3)

Assume that dξ = cϕdμ , so that (2.3) is equivalent to the system as follows:{
dϕ
dμ = cϕz,
dz
dμ = cz2 − c

3
ϕ3 +3ϕ +g,

(2.4)

which has the first integral

H(ϕ ,z) = z2 +
2

3
ϕ3 +

6

c
ϕ −hϕ2 +

g
c
. (2.5)

In what following, we also assume that

f (ϕ) =− c
3

ϕ3 +3ϕ +g. (2.6)

Then we have

f ′(ϕ) =−cϕ2 +3. (2.7)
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Solving f ′(ϕ) = 0 for c > 0, we get two roots as follows:

ϕ−
0 =−

√
3

c
, ϕ+

0 =

√
3

c
.

By using the properties of equilibrium points and bifurcation theory, we obtain three bifurcation

curves as follows:

g1(c) =−2

√
3

c
,

g2(c) = 0,

g3(c) = 2

√
3

c
.

a b

c d

e f g

Fig. 1. The phase portraits of system (2.3) under some conditions. (a) g > g3(c); (b) g = g3(c); (c) 0 < g < g3(c); (d)

g = 0; (e) g1(c)< g < 0; (f) g = g1(c); (g) g < g1(c).
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Consequently, according to the qualitative theory, we obtain the bifurcation phase portraits for

system (2.4) as Fig. 1.

Based on the dynamics of the level curves determined by H(ϕ ,z) = h and the bifurcation phase

portraits of system (2.3), we will give the explicit expressions of the traveling wave solutions for Eq.

(1.2), from which we obtain the parametric representations of the smooth and nonsmooth soliton

solutions of Eq. (1.1) with the help of the formula (1.17).

First, we introduce some marks for simplicity. For given parameters c and g, let

ϕ0 = 2

√
3

c
,

ϕ1 =−
√

3

16c
,

ϕ3 =
1

2

(
−ϕ2 −

√
ϕ2

2 −
12g
cϕ2

)
,

ϕ4 =
1

2

(
−ϕ2 +

√
ϕ2

2 −
12g
cϕ2

)
,

ϕ5 =
9− cϕ2

2

2cϕ2
,

ϕ6 =−
√

9

c
,

ϕ7 =

√
9

c
,

ϕ9 =
1

2

(
−ϕ8 −

√
ϕ2

8 −
12g
cϕ8

)
,

ϕ10 =
1

2

(
−ϕ8 +

√
ϕ2

8 −
12g
cϕ8

)
,

ϕ11 =
−3g
2cϕ2

9

,

ϕ12 =
−3g

2cϕ2
10

,

ϕ13 =−2

√
3

c
,

ϕ14 =
1

4

√
3

c
,

where ϕ6 < ϕ2 < ϕ−
0 and ϕ13 < ϕ8 < ϕ6.

The exact traveling wave solutions of Eq. (1.2) are listed in the following three cases.

Case 1. Eq. (1.2) possesses the unbounded solutions are of the expressions

ϕ1(ξ ) = ϕ−
0 − 6

ξ 2
, (2.8)
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ϕ5(ξ ) = ϕ6coth2

(√−ϕ6

6
ξ

)
, (2.9)

ϕ10(ξ ) = ϕ14 − (ϕ14 −ϕ13)coth2 η5

2
, where η5 =

√
2

3
(ϕ14 −ϕ13)ξ , (2.10)

and

ϕ11(ξ ) = ϕ+
0 − 6

ξ 2
. (2.11)

Case 2. Eq. (1.2) possesses the periodic blow-up solutions are of the expressions

ϕ2(ξ ) = ϕ1 − (ϕ0 −ϕ1)tan2 η1

2
, where η1 =

√
2

3
(ϕ0 −ϕ1)ξ , (2.12)

ϕ6(ξ ) =−ϕ7tan2

(√
ϕ7

6
ξ
)
, (2.13)

and

ϕ8(ξ ) = ϕ12 − (ϕ10 −ϕ12)tan2 η4

2
, where η4 =

√
2

3
(ϕ10 −ϕ12)ξ . (2.14)

Case 3. Eq. (1.2) possesses the solitary wave solutions are of the expressions

ϕ3(ξ ) = ϕ5 − (ϕ5 −ϕ2)tanh2 η2

2
, where η2 =

√
2

3
(ϕ5 −ϕ2)ξ , (2.15)

ϕ4(ξ ) = ϕ6tanh2

(√−ϕ6

6
ξ

)
. (2.16)

ϕ7(ξ ) = ϕ11 − (ϕ11 −ϕ9)tanh2 η3

2
, where η3 =

√
2

3
(ϕ11 −ϕ9)ξ , (2.17)

and

ϕ9(ξ ) = ϕ14 − (ϕ14 −ϕ13)tanh2 η5

2
. (2.18)

The correctness of these solutions is tested as well by using the software Mathematica. We notice

that some explicit solitons of this kind of equation as (1.2) can be obtained by the singular manifold

method(see [14]). Next, we will give the demonstrations on Cases 1-3.
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(1) When g = g3(c), the curves Γ0 and Γ1 possess the following expressions:

Γ0 : z = sign(z)

√
2

3
(ϕ−

0 −ϕ)
√

ϕ−
0 −ϕ , where ϕ < ϕ−

0 , (2.19)

Γ1 : z = sign(z)

√
2

3
(ϕ0 −ϕ)

√
ϕ1 −ϕ, where ϕ < ϕ1. (2.20)

Substituting (2.19) and (2.20) into
dϕ
dξ = z and integrating them along Γ0 and Γ1 respectively, we

have ∫ ϕ

−∞

ds

(ϕ−
0 − s)

√
ϕ−

0 − s
=

√
2

3
sign(z)ξ (alongΓ0), (2.21)

∫ ϕ1

ϕ

ds
(ϕ0 − s)

√
ϕ1 − s

=−
√

2

3
sign(z)ξ (alongΓ1). (2.22)

In (2.21) and (2.22) completing the integrals yields (2.8) and (2.12) respectively.

(2) When 0 < g < g3(c), the curve Γ2 possesses the following expression:

z = sign(z)

√
2

3
(ϕ −ϕ2)

√
ϕ5 −ϕ , where ϕ2 < ϕ ≤ ϕ5. (2.23)

Substituting (2.23) into
dϕ
dξ = z and integrating it along Γ2, we have

∫ ϕ5

ϕ

ds
(s−ϕ2)

√
ϕ5 − s

=−
√

2

3
sign(z)ξ . (2.24)

In (2.24), completing the integral yields (2.15).

(3) When g = 0, the curves Γ3, Γ4 and Γ5 have the following expressions:

Γ3 : z = sign(z)

√
2

3
(ϕ −ϕ6)

√−ϕ, where ϕ6 < ϕ ≤ 0, (2.25)

Γ4 : z = sign(z)

√
2

3
(ϕ6 −ϕ)

√−ϕ, where ϕ < ϕ6, (2.26)

Γ5 : z = sign(z)

√
2

3
(ϕ7 −ϕ)

√−ϕ , where ϕ < 0. (2.27)

Substituting (2.25), (2.26) and (2.27) into
dϕ
dξ = z and integrating them along Γ3, Γ4 and Γ5, respec-

tively, it follows that

∫ 0

ϕ

ds
(s−ϕ6)

√−s
=−

√
2

3
sign(z)ξ (along Γ3), (2.28)

∫ ϕ

−∞

ds
(ϕ6 − s)

√−s
=

√
2

3
sign(z)ξ (along Γ4), (2.29)
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∫ 0

ϕ

ds
(ϕ7 − s)

√−s
=−

√
2

3
sign(z)ξ (along Γ5). (2.30)

In (2.28), (2.29) and (2.30), completing these integrals yields (2.16), (2.9) and (2.13) respectively.

(4) When g1(c)< g < 0, the curves Γ6 and Γ7 have the following expressions:

Γ6 : z = sign(z)

√
2

3
(ϕ −ϕ9)

√
ϕ11 −ϕ, where ϕ9 < ϕ ≤ ϕ11, (2.31)

Γ7 : z = sign(z)

√
2

3
(ϕ10 −ϕ)

√
ϕ12 −ϕ, where 0 < ϕ ≤ ϕ12. (2.32)

Substituting (2.31) and (2.32) into
dϕ
dξ = z and integrating them along Γ6 and Γ7 respectively, it

follows that ∫ ϕ11

ϕ

ds
(s−ϕ9)

√
ϕ11 − s

=−
√

2

3
sign(z)ξ (along Γ6), (2.33)

∫ ϕ12

ϕ

ds
(ϕ10 − s)

√
ϕ12 − s

=−
√

2

3
sign(z)ξ (along Γ7). (2.34)

In (2.33) and (2.34), completing these integrals yields (2.17) and (2.14) respectively.

(5) When g = g1(c), the curves Γ8, Γ9 and Γ10 have the following expressions:

Γ8 : z = sign(z)

√
2

3
(ϕ −ϕ13)

√
ϕ14 −ϕ, where ϕ13 < ϕ ≤ ϕ14, (2.35)

Γ9 : z = sign(z)

√
2

3
(ϕ13 −ϕ)

√
ϕ14 −ϕ, where ϕ < ϕ13, (2.36)

Γ10 : z = sign(z)

√
2

3
(ϕ+

0 −ϕ)
√

(ϕ+
0 −ϕ), where ϕ < ϕ+

0 . (2.37)

Substituting (2.35), (2.36) and (2.37) into
dϕ
dξ = z and integrating them along Γ8, Γ9 and Γ10 respec-

tively, it follows that

∫ ϕ14

ϕ

ds
(s−ϕ13)

√
ϕ14 − s

=−
√

2

3
sign(z)ξ (along Γ8), (2.38)

∫ ϕ

−∞

ds
(ϕ13 − s)

√
ϕ14 − s

=

√
2

3
sign(z)ξ (along Γ9), (2.39)

∫ ϕ

−∞

ds

(ϕ+
0 − s)

√
ϕ+

0 − s
=

√
2

3
sign(z)ξ (along Γ10). (2.40)

In (2.38), (2.39) and (2.40), completing these integrals yields (2.18), (2.10) and (2.11) respectively.
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3. Some soliton solutions of Eq. (1.1)

Here we calculate the parametric representations of the smooth and nonsmooth soliton solutions for

Eq. (1.1) by virtue of the formula (1.17). If we take c= 3, y= 1, g1 = 0 and g2 =−1, i.e. ξ = 1−3τ ,

our main results under different parametric conditions are listed in the following three propositions.

Proposition 3.1. Eq. (1.1) has the smooth soliton solution(see Fig. 2(a))

{
u =

√
1− 9

9+cϕ1(ξ )2 ,

x = τ − 1
4
(−1+3τ)+ 1

4
arctanη6,

(3.1)

where η6 =
3(1−3τ)

−3+(1−3τ)2 .

a b c

d e f

g h i

Fig. 2. The portraits of the soliton solutions of Eq. (1.1).

Proposition 3.2. Eq. (1.1) has peaked soliton solution(see Fig. 2(b))

⎧⎨
⎩

u =
√

1− 9
9+cϕ4(ξ )2 ,

x = τ + 1
2

1
33/4

(
arctan

[
−1+

√
2tanhη7

]
−arctan

[
1+

√
2tanhη7

])
− 1

2
√

2

1
33/4 ln

∣∣∣−1+tanhη7

1+tanhη7

∣∣∣ ,
(3.2)
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the smooth soliton solution(see Fig. 2(c))⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u =
√

1− 9
9+cϕ5(ξ )2 ,

x = τ + 1
2

1
33/4

(
arctan

[
−1+

√
2cothη7

]
−arctan

[
1+

√
2cothη7

])
− 1

2
√

2

1
33/4 ln

∣∣∣−1+cothη7

1+cothη7

∣∣∣ ,
(3.3)

and the periodic solution(see Fig. 2(d))⎧⎨
⎩

u =
√

1− 9
9+cϕ6(ξ )2 ,

x = τ +
√

2
2

1
33/4 arctan |tanη7|− 1

4
1

33/4 ln
∣∣∣−1+

√
2tanη7−tan2η7

1+
√

2tanη7+tan2η7

∣∣∣ , (3.4)

where η7 =
1−3τ√
231/4

.

Proposition 3.3. Eq. (1.1) has the novel W-shaped soliton solution(see Fig. 2(e))⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u =
√

1− 9
9+cϕ9(ξ )2 ,

x = 1
14

(
8τ −√

2arctan
[

1

3
√

3
sech

[
3
√

3
2
τ
](

−6coshη8 −8sinhη8 + sinh
[

3
√

3
2
τ
])])

−√
2

(
arctan

[
1

3
√

3
sech

[
3
√

3
2
τ
](

6coshη8 −8sinhη8 + sinh
[

3
√

3
2
τ
])])

,

(3.5)

the smooth soliton solution(see Fig. 2(g))⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u =
√

1− 9
9+cϕ10(ξ )2 ,

x = 1
14

(
8τ −√

2arctan
[

1

3
√

3
sech

[
3
√

3
2
τ
](

−6coshη8 +8sinhη8 + sinh
[

3
√

3
2
τ
])])

−√
2

(
arctan

[
1

3
√

3
sech

[
3
√

3
2
τ
](

6coshη8 +8sinhη8 + sinh
[

3
√

3
2
τ
])])

,

(3.6)

the novel W-shaped soliton solution(see Fig. 2(h))⎧⎨
⎩

u =
√

1− 9
9+cϕ11(ξ )2 ,

x = τ − 1
4
(−1+3τ)− 1

8
ln
∣∣∣ 3+3(1−3τ)+(1−3τ)2

3−3(1−3τ)+(1−3τ)2

∣∣∣ , (3.7)

where η8 =
√

3
2
(2−3τ).

Remark 3.1. (1) The reason that the cuspidal points arise is the square root of the function u2,

while on x−u2 plane, the soliton solutions are smooth (see Figs. 2(f, i)).

(2) Like the other functions ϕ2(ξ ), ϕ3(ξ ), ϕ7(ξ ) and ϕ8(ξ ), we can’t finish the indefinite inte-

grals x =
∫

u2dτ . Therefore, we couldn’t give the parametric representations of these solutions of

Eq. (1.1) which needs to deal with further.

4. Conclusions

In this paper, based on the relationship of the solutions between the Novikov equation and Eq.

(1.2), we derived the parametric representations of the soliton solutions for the Novikov equation.
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We obtained the traveling wave solutions of Eq. (1.2) by adopting the bifurcation method of dynam-

ical systems. Further, in terms of the formula (1.17), we obtained the parametric representations of

the smooth and nonsmooth soliton solutions of the Novikov equation. From the above analysis,

we compare our results with previous studies through the soliton solutions and their research tech-

niques.

1. Matsuno [7] transformed the Novikov equation to Eq. (1.2) by the reciprocal transformation

and revealed that the smooth multisoliton solutions can be solved in terms of the tau-function asso-

ciated with the N-soliton solution of a model equation [15], whose modified versions are obtained

by the reciprocal transformations [16, 17]. By means of the traveling wave solutions of Eq. (1.2)

and combining the formula (1.17), we investigated the smooth and nonsmooth soliton solutions of

the Novikov equation which include peaked soliton, smooth soliton, W-shaped soliton and periodic

solutions.

2. Li [8] obtained cuspons and compactons of the Novikov equation by applying the bifurcation

method of dynamical systems to directly. While we discussed Eq. (1.2) by using the same method

and derived its solitary wave, blow-up wave and periodic wave solutions. Some novel soliton solu-

tions of the Novikov equation obtained in this paper didn’t find in [7, 8]. Therefore, our results

extend the previous studies.

In this sense, we partly enrich the properties of the Novikov equation and demonstrate the appli-

cability of the proposed approach. To the best of our knowledge, this is probably the first time to

discuss these novel soliton solutions of the Novikov equation.
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