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We consider (classical and generalized) Massey products on the Chekanov homology of a Legendrian knot, and

we prove that they are invariant under Legendrian isotopies. We also construct a minimal A∞-algebra structure

on the Chekanov algebra of a Legendrian knot, we prove that this structure is invariant under Legendrian

isotopy, and we observe that its higher multiplications allow us to find representatives for classical Massey

products. Finally, we consider differential equations: we remark that the Massey product Legendrian invariants

admit a “dynamical interpretation”, in the sense that they provide solutions for a Maurer-Cartan equation posed

on an infinite-dimensional bigraded Lie algebra, and we show how to set up and solve a (twisted) Kadomtsev-

Petviashvili hierarchy of equations starting from the Chekanov algebra of a Legendrian knot.
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1. Introduction

We say that a manifold M of dimension 2n + 1 is a contact manifold if it admits a maximally

non-integrable distribution η ; if we write η as the kernel of a one-form α , see [11], then the non-

integrability condition translates into the fact that α ∧ (dα)n is nowhere vanishing. Legendrian
submanifolds are n-dimensional submanifolds of M which are everywhere tangent to the “contact

distribution” η . If η = ker(α), then Legendrian submanifolds correspond to n-dimensional integral

submanifolds of the exterior differential system determined by α .

We restrict to the case n = 1. In this case, compact Legendrian submanifolds are knots. A clas-

sical problem is to classify Legendrian knots in a given three-dimensional contact manifold M.

Because of their definition as integral submanifolds, the classification of Legendrian knots is differ-

ent from the classification of topological knots: if we define a Legendrian isotopy as a deformation

of a Legendrian knot through Legendrian knots, it is known that a single isotopy class of topolog-

ical knots admits infinitely many Legendrian isotopy classes of Legendrian knots, see [11]. Thus,

in order to obtain Legendrian classification results one has to go well beyond standard topological

invariants such as the Alexander or Jones polynomials.
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A powerful Legendrian invariant for Legendrian knots in M = R3 with the contact structure

determined by η = ker(α), in which α = dz+xdy, was introduced by Chekanov in [4]. This invari-

ant comes “categorified”, in contradistinction with, for instance, the classical Jones polynomial

from topological knot theory whose categorification was achieved in [17]: the Chekanov invariant

is defined via the homology of a non-commutative differential algebra determined by the contact

geometry of the ambient contact manifold (M,η). Certainly, once we have invariants determined

by homology, it is natural to investigate whether other similar invariants exist.

We show in this paper that it is indeed possible to construct further Legendrian invariants simply

by using classical Massey products, see [19,21], and their generalizations considered in [2]. We also

construct an A∞-algebra on the (co)homology ring of the Chekanov algebra of a Legendrian knot

following Kadeishvili (see [13, 22, 31]), and we remark that this A∞-algebra is a Legendrian invari-

ant as well. After [20], we then observe that (classical) Massey products are related to the higher

multiplications of the A∞-algebra just constructed. There are two reasons why this observation may

be of importance. First, it allows us to get some understanding of Massey products since these

higher multiplications can be computed in a relatively straightforward fashion, see [20,22]; second,

it may be used to advance a “dynamical interpretation” for Massey product Legendrian invariants: a

result by He, see [12], implies that the higher multiplications of the A∞-algebra constructed from the

Chekanov algebra provide a solution to a Maurer-Cartan equation posed on an infinite-dimensional

bigraded Lie algebra.

Finally, we consider a twisted Kadomtsev-Petviashvili (KP) hierarchy of equations defined with

the help of the Chekanov algebra. One reason for believing that this construction may be of inter-

est is that it provides us with instances of noncommutative integrable equations, such as the ones

investigated in [25], arising quite naturally from a non-trivial geometric context.

Our work is organized as follows. Section 2 is an introduction to A∞-algebras, and Section

3 is a rather detailed review of (generalized) Massey products after [19, 21] and [2]. Since Massey

products have been used recently in Mathematical Physics, see [18], it appears reasonable to discuss

them carefully. In Section 4 we introduce contact manifolds and Legendrian knots, we summarize

the construction of the Chekanov algebra, we explain how to construct an A∞-algebra which is a

Legendrian invariant, and we observe that classical and generalized Massey products also determine

Legendrian invariants. Finally, in Section 5 we explain in what sense the Legendrian invariants

arising from classical Massey products solve a Maurer-Cartan equation and we introduce our twisted

KP hierarchy.

Remark 1.1. While writing up our results we found out that previous work on Legendrian knot

invariants and classical Massey products (on linearized Chekanov (co)homology) had been carried

out in [5]. The existence of this interesting paper prompted us to consider generalized Massey

products after [21] and [2], which do not appear in [5]. We also note that differential equations are

not studied in this reference.

2. A∞-algebras

Let K be a field, and A a Z-graded K-vector space, A = ⊕i∈ZAi. An A∞-algebra structure on A
is a family of graded linear maps mn : A ⊗n → A , n ≥ 1, such that the degree of mn is 2−n and the
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identities

∑
r+s+t=n
r,t≥0;s≥1

(−1)rs+tmr+1+t ◦ (id⊗r ⊗ms ⊗ id⊗t) = 0 (2.1)

hold for all n ≥ 1. Here and henceforth (see for example Equations (2.3) and (2.6) below) we follow

Koszul’s sign rule if we evaluate on specific elements of a tensor product space. For example,

( f ⊗ g)(x⊗ y) = (−1)deg(g)deg(x) f (x)⊗ g(y), where f and g are homogeneous maps and x,y are

homogeneous elements in the domains of f and g respectively.

We consider some specific instances of (2.1). If n = 1 then r, t = 0 and s = 1, so that m1 is a

degree 1 map and the identity (2.1) is simply m1 ◦m1 = 0, that is, (A ,m1) is a cochain differential

complex. Also, if n = 2, then (2.1) can be written as

m1 ◦m2 = m2 ◦ (id ⊗m1)+m2 ◦ (m1 ⊗ id) ,

and therefore m2 is a bilinear map which behaves as a multiplication and the differential m1 satisfies

the graded Leibnitz rule with respect to m2. Note that m2 is not necessarily associative. Indeed, the

third identity arising from (2.1) is

m2 ◦ (m2 ⊗ id)−m2 ◦ (id ⊗m2) = m1 ◦m3 +m3 ◦ (id⊗2 ⊗m1 + id ⊗m1 ⊗ id +m1 ⊗ id⊗2) , (2.2)

so that m2 is associative if the right hand side of this equation is identically zero. Thus, if m3 = 0,

then we conclude that (A ,m1,m2) is a differential graded algebra with a differential of degree 1.

Conversely, every differential graded algebra is an A∞-algebra with m3 = m4 = · · ·= 0.

Remark 2.1. Let us write d = m1 and d3 = m1⊗ id⊗2+ id⊗m1⊗ id+ id⊗2⊗m1. It is trivial to see

that d3 ◦d3 = 0, so that (A ,d) and (A ⊗3,d3) are cochain differential complexes. In this notation,

identity (2.2) becomes, simply,

m2 ◦ (m2 ⊗ id)−m2 ◦ (id ⊗m2) = d ◦m3 +m3 ◦d3 .

Now, the functions f = m2 ◦ (m2⊗ id) and g = m2 ◦ (id⊗m2) are cochain maps of degree zero from

A ⊗3 to A , and m3 is a map of degree −1 satisfying the above equation. This says precisely that

m3 is an homotopy between the maps f and g. In other words, m2 is associative up to an homotopy

which is also a part of the A∞-algebra structure.

A∞-algebras first appeared in topology, more precisely in the theory of loop spaces, see [27,28].

A short review of their properties —and a guide to earlier literature— is in [20].

Definition 2.1. Let (A ,mn) and (B,m′
n) be two A∞-algebras. An A∞-morphism f : A → B is a

family of linear maps fn : A ⊗n → B, in which n ≥ 1, such that for each n ≥ 1 the degree of fn is

1−n and the following Stasheff morphism identities hold:

∑
r+s+t=n

r,t≥0; s≥1

(−1)rs+t fr+1+t(id⊗r ⊗ ms ⊗ id⊗t) =
n

∑
j=1

∑
i1+···+i j=n

(−1)um′
j( fi1 ⊗ fi2 ⊗·· ·⊗ fi j) , (2.3)

where ik ≥ 1 for all k and u = (i j−1 −1)+2(i j−2 −1)+ · · ·+( j−2)(i2 −1)+( j−1)(i1 −1).

Note that the first Stasheff morphism identity is simply f1 m1 = m′
1 f1 that is, it says that f1 is

a cochain map. We say that a morphism f is a quasi-isomorphism if f1 is a quasi-isomorphism of

complexes, i.e. the induced map H( f1) : H(A )→ H(B) is an isomorphism.
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Now we review Merkulov’s construction, see [22], of an A∞-algebra starting from a differential

graded algebra. As we already explained, every differential graded algebra (A ,d) is an A∞-algebra,

but the importance of [22] is that it allows us to construct an explicit A∞-algebra structure with non-

zero higher multiplications. We recall that if φ ,ψ are two graded linear maps on the differential

graded algebra (A ,d), the supercommutator of φ and ψ is [φ ,ψ] = φ ψ − (−1)deg(φ)deg(ψ)ψ φ .

Merkulov’s construction relies on the following assumption:

Let (A ,d) be a differential graded algebra. We assume that there exist

a subcomplex W of A , and a vector space homomorphism Q : A → A of

degree −1, such that the image of the map Id − [d,Q] : A → A is in fact

in W .

(2.4)

Note that it is not required that W is a subalgebra of A . We define a sequence of linear maps

λn : A ⊗n → A , where n ≥ 1, as follows: λ1 is determined only by the condition Qλ1 = −Id, and

for n ≥ 2 we set, recursively,

λ2(v⊗w) = v ·w, (2.5)

λn = ∑
s+t=n ;s,t≥1

(−1)s+1λ2(Qλs ⊗Qλt) . (2.6)

The following theorem holds (see [22]):

Theorem 2.1. Let (A ,d) be a differential graded algebra and assume that (2.4) holds. Define
linear maps mn : W⊗n →W, where n ≥ 1, via

m1 = d , (2.7)

mn = (Id − [d,Q])◦λn , for n ≥ 2 , (2.8)

in which λn are the maps constructed above. The maps mn satisfy the identities (2.1), and therefore
they determine an A∞-algebra structure on the complex W.

Theorem 2.1 is also discussed in [31] and [20]. As pointed out for example in [20], it is an

explicit realization of a very general result due to Kadeishvili [13]. Now we follow [20] in identify-

ing an appropriate subcomplex W and a linear map Q satisfying assumption (2.4):

Let A =
⊕

p∈Z Ap be a differential graded algebra with differential d of degree 1. We denote

by Bp and Zp the spaces of coboundaries and cocycles of Ap respectively. Then, there are subspaces

H p of Zp and Lp of Ap such that

Zp = Bp ⊕H p and Ap = Zp ⊕Lp = Bp ⊕H p ⊕Lp . (2.9)

We set W =
⊕

p∈Z H p and we define the map Q as follows: Qp : Ap → Ap−1 is given by

Qp|Lp = Qp|H p = 0 , Qp|Bp =
(
dp−1|Lp−1

)−1
.

It is easy to see that Q determines an homotopy between Id and pr, where pr : A → A is the pro-

jection from A onto W , that is, we have Id − pr = d Q+Qd and therefore Merkulov’s assumption

(2.4) holds with W and Q as above. We also note that d|H p = 0, so that in fact, the operation m1

of Theorem 2.1 is identically zero and therefore (see Remark 1) the operation m2 is an associative
multiplication on W . Using the first isomorphism theorem, we identify the complex W with the

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

345



L. Mendoza, E.G. Reyes / Differential equations and Chekanov homology

cohomology of A , that is, W = ker(d)/Im(d). Hereafter we write HA instead of W , to remind us

of this identification. Following [20] we rewrite Merkulov’s result thus:

Proposition 2.1. Consider the functions λn defined above, and set mn = pr ◦ λn : HA ⊗n → HA
for n ≥ 2. Then, (HA ,0,m2,m3, . . .) is an A∞-algebra and f = {−Qλn}n≥1 is a quasi-isomorphism
of A∞-algebras between HA and A .

An A∞-algebra constructed as above is called a Merkulov model or a minimal model of the

differential graded algebra A , in analogy with D. Sullivan’s minimal models for differential graded

commutative algebras introduced in the context of rational homotopy theory [29]. We also note

that in the context of A∞-algebras, being quasi-isomorphic is a transitive property, as stressed for

example in [30], and therefore all Merkulov models of A (which obviously depend on the choice

of the subspaces H p and Lp introduced above) are quasi-isomorphic as A∞-algebras.

3. Massey products

Once a minimal model (HA ,0,m2,m3, . . .) of a differential graded algebra (A ,d) is available, it

is very natural to investigate the associative algebra (HA ,m2) and to ask about the meaning of the

higher multiplications mn, n ≥ 3. As observed in [20], these higher multiplications are connected

to classical Massey products. Since we use classical and generalized Massey products to define

Legendrian isotopy invariants of Legendrian knots, we review them in some detail. We follow the

sign conventions of [21]. In particular, we write ā= (−1)1+deg(a)a, so that d f̄ =−d f and ab=−ā b̄.

3.1. Classical Massey products

Let (A ,d) be a differential graded algebra with deg(d) = 1. If α1,α2 ∈ HA , their length two
Massey product 〈α1,α2〉 is the singleton {α1 α2}; we define the length 3 Massey product as follows:

Suppose that α1,α2,α3 ∈ HA and assume that α1α2 = α2α3 = 0. We pick representatives

ai−1,i ∈ A of the cohomology classes αi. Because we are assuming that α1α2 = α2α3 = 0, there

exist cochains a02 and a13 such that

da02 = ā01a12 , and da13 = ā12a23 . (3.1)

With these choices we can check that a03 = ā02 a23+ ā01 a13 satisfies d a03 = 0. The length 3 Massey

product of the cocycles a01, a12 and a23 is the set MP3(a01,a12,a23) of all cohomology classes of

the cocycles a03 = ā02 a23 + ā01 a13 arising from different choices of cochains a02 and a13.

Proposition 3.1. The length 3 Massey product MP3(a01,a12,a23) depends only on the cohomology
classes of the cocycles a01,a12,a23.

Indeed, we can check that MP3(a01,a12,a23) = MP3(a01 + db,a12,a23) = MP3(a01,a12 +

db,a23) = MP3(a01,a12,a23+db) for any cochain b. Proposition 3.1 follows easily from this obser-

vation as, for example, it implies that MP3(a01 + db1,a12 + db2,a23) = MP3(a01 + db1,a12,a23) =

MP3(a01,a12,a23). We will provide some further details of the proof in the general case of length n
Massey products, to be discussed below. This result allows us to make the following definition:

Definition 3.1. Let α1,α2,α3 be three cohomology classes in HA such that α1α2 = α2α3 = 0.

Their length 3 Massey product is < α1,α2,α3 > = MP3(a01,a12,a23) , in which a01,a12,a23 are

arbitrary cocycle representatives of α1,α2,α3.
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Now we consider the general case. Let (a1, . . . ,an) be an n-tuple of cocycles. We say that a

collection of cochains (ai j), 0 ≤ i < j ≤ n, (i, j) = (0,n), is an MPn-defining system for (a1, . . . ,an)

if it satisfies the following conditions:

(1) ai−1,i = ai for 1 ≤ i ≤ n .

(2) d ai j = ∑
i<r< j

āir ar j for 0 ≤ i < j ≤ n and 1 < j− i < n .

(3) deg(air ar j) = 1+deg(ai j) for all i < r < j .

Lemma 3.1. Property 2 of an MPn-defining system is consistent with d2 = 0. Moreover, the cochain

a0n = ∑
0<r<n

ā0r arn (3.2)

is a cocycle.

Proof. We check the first claim by induction. It is straightforward to see that

d

(
∑

i<r< j
āir ar j

)
=

∑
i<r< j

∑
i<s<r

(−1)deg(air)+deg(ais)aisasrar j − ∑
i<r< j

∑
r<s< j

(−1)1+deg(ars)airarsas j ,

and consideration of the signs (−1)deg(air)+deg(ais) and (−1)1+deg(ars) using Property 3 above allows

us to conclude that the right hand side of this equation is zero. The computations needed to check

that the cochain a0n given by (3.2) is a cocycle are similar.

The length n Massey product of the cocycles ai, 1 ≤ i ≤ n, is the set MPn(a1, . . . ,an) of coho-

mology classes of the cocycles a0n associated to all possible MPn-defining systems for (a1, . . . ,an).

As in the length 3 case we have the following crucial observation:

Proposition 3.2. The length n Massey product of the cocycles ai, 1 ≤ i ≤ n, depends only on the
cohomology classes of these cocycles.

Proof. Let us fix t with 1 ≤ t ≤ n and let b be a cochain with deg(b)+ 1 = deg(at). As explained

after Proposition 3.1, it is enough to prove that

MPn(a1, . . . ,at , . . . ,an) = MPn(a1, . . . ,at +db, . . . ,an)

and, by symmetry, it is enough to check that MPn(a1, . . . ,at , . . . ,an)⊆ MPn(a1, . . . ,at +db, . . . ,an).

Matters being so, let x be a cohomology class in MPn(a1, . . . ,at , . . . ,an). Then, there exists an MPn-

defining system (ai j) for (a1, . . . ,at , . . . ,an), 0 ≤ i < j ≤ n and (i, j) = (0,n), such that x is the

cohomology class of the cocycle a0n = ∑0<r<n ā0r arn . We can exhibit an MPn-defining system (a′i j)

for (a1, . . . ,at +db, . . . ,an) such that the corresponding cocycle a′0n is cohomologous to the original
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cocycle a0n . Indeed, we set:

a′i j = ai j if i = t −1 and j = t ,

a′t−1,t = at−1,t +db = at +db ,

a′it = ait −ai,t−1 b for i < t −1 ,

a′t−1, j = at−1, j − b̄at j for j > t .

It is long, but straightforward, to check that (a′i j) is in fact an MPn-defining system for (a1, . . . ,at +

db, . . . ,an). Now we consider the cocycle a′0n. Again, a rather simple calculation yields

a′0n = a0n +(−1)deg(b)d(ba1n) if t = 1 ,

a′0n = a0n if 1 < t < n ,

a′0n = a0n −d(a0,n−1b) if t = n .

Thus, the cohomology class of a′0n is also the class x we started with, and we conclude that x ∈
MPn(a1, . . . ,at +db, . . . ,an).

The proof of Proposition 3.2 above is modelled after Kraines’ work [19]. It allows us to define

the length n Massey product on cohomology classes:

Definition 3.2. Let α1, . . . ,αn be n cohomology classes in HA , let ai be a cocycle representative

of αi, 1 ≤ i ≤ n, and assume that there exists an MPn-defining system (ai j) for (a1, . . . ,an). Then,

the length n Massey product of α1, . . . ,αn is < α1, . . . ,αn >= MPn(a1, . . . ,an).

Remark 3.1.

(1) Let us assume that the cohomology class αi belongs to Hsi , 1 ≤ i ≤ n, and that the Massey

product < α1, . . . ,αn > exists, so that there is an MPn-defining system (ai j) such that the

cohomology class of the cocycle a0n =∑0<r<n ā0r arn belongs to <α1, . . . ,αn >. Conditions

1–3 satisfied by (ai j) imply that for each 0 < r < n−1,

deg(a0r arn) = s1 + · · ·+ sn −n+2 ,

and therefore we conclude that < α1, . . . ,αn >⊆ Hs1+···+sn−n+2 .

(2) We remark that, as defined, the length n Massey product is a partial operation, not defined

on arbitrary n-tuples of cohomology classes. A necessary and sufficient condition for the

product < α1, . . . ,αn > to exist is that the length (n−1) Massey products < α1, . . . ,αn−1 >

and < α2, . . . ,αn > vanish simultaneously, see [19] and [24] for further information.

The behavior of Massey products under differential algebra morphisms, discussed for instance

in [19] and [21], is crucial for us:

Proposition 3.3. Let (A ,d) and (B,d′) be differential graded algebras. Massey products are nat-
ural with respect to differential algebra morphisms, that is, if f : A → B is a differential algebra
morphism and if the Massey product < α1, . . . ,αn > exists, so does < f∗α1, . . . , f∗αn >, and

f∗ < α1, . . . ,αn >⊆< f∗α1, . . . , f∗αn > . (3.3)

In particular, if f is a quasi-isomorphism, then (3.3) is an equality.
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Finally, it remains the issue of computing Massey products. The following result connecting

Massey products with A∞-structures (see [20], Theorem 3.1) tells us how to proceed:

Theorem 3.1. Let (A ,d) be a differential graded algebra. Up to a sign, the higher multiplications
on the minimal model HA of A give Massey products: for any n ≥ 3, if α1, . . . ,αn ∈ HA are such
that 〈α1, . . . ,αn〉 is defined, then

(−1)bmn(α1 ⊗·· ·⊗αn) ∈ 〈α1, . . . ,αn〉 ,

where b = 1+ |αn−1|+ |αn−3|+ |αn−5|+ · · · .

We note that this result does not say anything about the non-triviality of a given Massey product.

It may well be that (notation as in Theorem 3.1) mn(α1 ⊗·· ·⊗αn) = 0 but the cohomology classes

in 〈α1, . . . ,αn〉 are trivial. An example appears in [5].

3.2. Generalized Massey products

We generalize the constructions of the previous subsection following Babenko and Taimanov [2]. If

(A ,d) is a differential graded algebra over a field k, we let M(A ) be the set of all upper triangular

infinite matrices with entries in A such that only finitely many entries are different from zero.

Addition and multiplication on M(A ) are defined in a natural way. In particular, if A = (ai j)i, j≥1

and B= (bi j)i, j≥1 belong to M(A ), then AB=
(
∑k≥1 aik bk j

)
i, j≥1

. We also extend the “bar” notation

from the previous section, a= (−1)1+deg(a) a for homogeneous elements of A , to a linear map on A
by setting λa+b = λa+b for λ ∈ k and a,b homogeneous. This linear map extends in an obvious

way to a linear map on M(A ).

We also extend the differential on A to a differential on M(A ) by setting dA = (dai j)i, j≥1 for

A ∈ M(A ). Obviously the extended map d is linear and it satisfies d2 = 0. Also, we readily check

that

d(AB) = (dA)B+ ÃdB ,

in which Ã =
(
(−1)deg(ai j)ai j

)
, so that Ã =−(ai j) =−A.

Now, let (a)i j be the matrix in which the (i, j)-entry is equal to a and all the other entries are

zero. Given A ∈ M(A ) we define Ker(A) as the A -module spanned by the matrices (1)i j such that

A · (1)i j = (1)i j ·A = 0. We note that if B ∈ Ker(A), then B ∈ Ker(A) as well.

Definition 3.3. A matrix A ∈ M(A ) is called a formal connection on A . We say that A is flat if it

satisfies the Maurer-Cartan equation

dA−AA ≡ 0 mod Ker(A) . (3.4)

The matrix μ(A) = dA−AA is called the curvature of A.

The existence of generalized Massey products is a consequence of the following result:

Proposition 3.4. Let A be a flat formal connection on A . Then, the matrix μ(A) is closed.
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Proof. We compute:

d(dA−AA) =−{(dA)A+ ÃdA}=−(μ(A)+AA)A+A(μ(A)+AA) =−μ(A)A+Aμ(A) .

On the other hand,

−μ(A) = dA−AA = dA−AA = μ(A) ,

and so

dμ(A) = μ(A)A+A μ(A) .

Now, since A is flat, μ(A) and μ(A) belong to Ker(A), and therefore dμ(A) = 0.

It follows from Proposition 3.4 that the entries of the curvature matrix μ(A) = (μi j)i, j≥1 of a

flat formal connection A determine a matrix of cohomology classes ([μi j])i, j≥1 . After Babenko and

Taimanov [2] we make the following definition:

Definition 3.4. Let A be a flat formal connection on A and let μ(A) = (μi j)i, j≥1 be the corre-

sponding curvature matrix. The generalized Massey product corresponding to A is the matrix of

cohomology classes [μ(A)] = ([μi j])i, j≥1 .

We note that as they stand, generalized Massey products are defined on A , and not on the coho-

mology of A . However, Babenko and Taimanov generalize Proposition 3.2 on classical Massey

products in a very interesting fashion. First of all, we make the following definition.

Definition 3.5. Let A = (ai j) be a flat formal connection on A . The initial data of the Maurer-

Cartan equation (3.4) is the set of all cohomology classes of entries ai j of A which are cocycles of

A.

It can be checked, see [2, Prop. 1], that the matrix of cohomology classes ([μi j])i, j≥1 of μ(A), in

which A is a flat connection, depends only on the initial data of the Maurer-Cartan equation μ(A)≡ 0

mod Ker(A), induced by A. Thus, this product can be considered as defined in the cohomology of

A . In [2] is shown that it is a true generalization of the classical Massey product considered in the

previous section, and also of the matric Massey products introduced by May in [21].

The following proposition, see [2, Prop. 2], generalizes Proposition 3.3:

Proposition 3.5. Let f : A → B be a morphism of differential graded algebras. We induce a map
f̂ : M(A ) → M(B) via f̂ ((ai j)i, j≥1) = ( f (ai j))i, j≥1. This map takes flat connections in A to flat
connections in B and therefore we obtain a map on generalized Massey products

f ∗([μ(A)]) = [μ( f̂ (A))] .

Moreover, if f is a quasi-isomorphism, then f ∗ is one-to-one.
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4. Legendrian knots and the Chekanov algebra

4.1. Contact structures

Consider a (2n+ 1)-dimensional manifold M together with a differential 1-form α which satisfies

the condition

α ∧ (dα)n = 0 . (4.1)

Such a 1-form is called a contact form, and the pair (M,α) is called a contact manifold. If we set

η = ker(α), then η is a maximally non-integrable distribution on M and we recover the definition

of contact manifolds appearing in [11].

Our main example of a contact manifold is M = R3 with α = dz+ xdy. It is easy to see that in

this case η = ker(α) = 〈∂x,∂y − x∂z〉. Figure 1 below (taken from [11]) shows the distribution η .

Fig. 1. The contact distribution 〈∂x,∂y − x∂z〉 on R3.

Remark 4.1. It has been observed several times (see for instance [8] or the more recent [3]) that

there exists a relationship between Lorentzian and contact geometry. Indeed, it is not difficult to

define a Lorentzian metric on a contact manifold (M,α) so that the contact distribution is spacelike

and the timelike direction is determined by the Reeb vector field of α (i.e., the vector field R deter-

mined by the conditions R ∈ ker(dα) and α(R) = 1, see [11]). In the case (M,α) = (R3,dz+xdy),
we simply set

ds2 = dx2 +dy2 − (dz+ xdy)2 .

Elementary calculations yield that indeed ∂x and ∂y − x∂z are spacelike and that the Reeb vector

field R = ∂z is timelike. Now, an obvious question is whether this relation between contact and

Lorentzian geometry may be useful for physics. We are not overly optimistic: we notice that the

above metric satisfies the Einstein equations (Rab − (1/2)Rgab) +Λgab = 8πTab with Λ = −3/4
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and non-zero components of Tab given by T11 = T22 = −1/8π . However, the very definition of

contact structures implies that this spacetime model does not admit Cauchy surfaces, even locally!

Thus, in this naturally constructed model is not possible to set up sensible evolution problems.

4.2. Legendrian knots

Definition 4.1. A Legendrian knot in a three-dimensional contact manifold (M,α), is an embedded

circle L ⊂ M which is always tangent to the distribution η = ker(α). In other words, a Legendrian

knot is a compact one-dimensional integral submanifold of η .

Legendrian knots always exist, see [11, Theorem 3.3.1]: given an arbitrary knot f : S1 → M,

there exists a Legendrian knot in M which is isotopic (in the topological sense) to f .

We also specify when two Legendrian knots K0 and K1 are equivalent: we say that they are

Legendrian isotopic if there is a Legendrian isotopy between them, this is, there exists a smooth

family of Legendrian knots Lt , t ∈ [0,1], with Li = Ki, para i = 0,1.

Hereafter we consider only the contact manifold (R3,α), in which α = dz+ xdy, and η will

always represent the maximally non-integrable distribution ker(α) on R3.

Definition 4.2. Consider a Legendrian knot K in (R3,α) given by γ(s) = (x(s),y(s),z(s)), s ∈ S1.

(1) The front projection of γ(s) = (x(s),y(s),z(s)) in (R3,η), is the curve γF(s) = (x(s),z(s))
in the xz-plane. We denote this projection by ΠF(K).

(2) The Lagrangian projection of γ(s) = (x(s),y(s),z(s)) in (R3,α) is the curve γL(s) =
(x(s),y(s)) in the xy-plane. We denote this projection by ΠL(K).

Generically, the projection ΠL(K) is an immersed curve with only double points. Explicit exam-

ples of projections appear, for example, in the treatise [11].

4.3. The Chekanov algebra

Chekanov homology is the homology of a particular differential algebra (A ,d) constructed using

the crossings of the Lagrangian projection ΠL(K) of a given Legendrian knot K. We denote by

e = {a1, ...,an} the double points in the Lagrangian projection ΠL(K), and we define A as the

unitary tensor algebra over Z2 generated by the set e. The unit corresponds to the empty word.

First of all we describe the grading of A . Suppose that we are given an immersion γ̃ : S1 →R2;

we define the winding number of γ̃ as wind(γ̃) = deg(dγ̃/ds). Then we can check, see [11], that

rot(K) = wind(ΠL(K)) is a Legendrian invariant of K. We define a function from the set e to

Z/2rot(K): if a∈ e, we take a regular path γ : [0,π]→ΠL(K) from a to itself, starting from the upper

strand (the one with bigger z-coordinate) to the lower strand (the one with smaller z-coordinate),

and we define a curve Γ : R/2πZ→ RP1 by taking the projection of dγ/ds(s), s ∈ [0,π] and then

clockwise rotating from [dγ/ds(π)] to [dγ/ds(0)] for s ∈ [π,2π]. We define

deg(a) = deg(Γ) mod 2rot(K) ,

and we extend to a full Z/2rot(K)-grading of A via deg(a⊗ b) = deg(a) + deg(b). Chekanov

explains in [4] why the grading takes place in Z/2rot(K) and not in Z.

Now we define the differential. Let us fix a double point a in ΠL(K). Then, there exist two lines

L1 and L2 which locally divide the plane into four quadrants. We equip each quadrant with a sign in

the following way:
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Now, given a and b1, ...,bn ∈ e, we define Δ(a;b1, · · · ,bn) as the set of immersed polygons in R2

with edges in ΠL(K) and vertices in a,b1, ...,bn, and which cover an “up” quadrant near b and

“down”quadrants near a1, . . . ,an. We denote by #Δ(a;b1, · · · ,bn) the cardinality of Δ(a;b1, · · · ,bn)

mod 2. Then we define the differential d at a by

d(a) = ∑
n∈N

∑
(b1,··· ,bn)∈en

#Δ(a;b1, · · · ,bn)b1 · · ·bn . (4.2)

We extend d to all A by linearity and the graded Leibnitz rule d(ab)= d(a)b+(−1)deg(a)ad(b).
The fundamental theorem proven by Chekanov in [4] is:

Theorem 4.1. The map d is a differential on the Z/2rot(K)-graded algebra A of degree −1.
Moreover, the homology of (A ,d) is unchanged under Legendrian isotopy: the homology rings of
isotopic Legendrian knots are isomorphic as graded rings.

Now, for the applications we have in mind, we need to change the Z/2rot(K)-grading of the

Chekanov algebra (A ,d) for a full Z-grading. We can, in fact, abelianize (A ,d) following [10]:

Let {a1, . . . ,an} be the set of generators of the Chekanov algebra A of a Legendrian knot K.

Instead of A we now consider the free associative algebra AQ generated by {a1, . . . ,an} over

Q[t, t−1], in which t is a formal parameter. It is shown in [10] that this algebra can be equipped

with a Z-grading (which reduces to Chekanov’s grading if we set formally t = 1, see [10, Section

3.1]) and a differential ∂ which is defined in a way similar to (4.2) (see [10, Theorem 3.7]) and

satisfies the conditions ∂ (Q[t, t−1]) = 0 and

∂ (vw) = (∂v)w+(−1)deg(v) v(∂w) . (4.3)

The differential algebra (AQ,∂ ) is made into a (Z-graded) commutative algebra by setting

wv = (−1)deg(v)deg(w)vw .

It is proven in [10, Theorem 3.14] that the homology of (AQ,∂ ) is an invariant of the Legendrian

isotopy class of K.

4.4. The A∞-algebra of a Lengendrian knot and Legendrian invariants

Let (AQ,∂ ) with AQ =⊕i∈ZAi be the abelianized Chekanov algebra of a Legendrian knot K defined

above. We set ∂i = ∂ |Ai : Ai →Ai−1 and C−i =Ai. Then, as is standard, C (K) =⊕i∈ZCi is a Z-graded

differential algebra with a degree 1 differential which we continue denoting by ∂ . We will call

(C (K),∂ ) the dual Chekanov algebra of K. The cohomology of C (K) will be called the abelianized
Chekanov cohomology of K; we will denote it by CHA(K). We apply Merkulov’s result recalled in

Section 3 and we obtain:

Theorem 4.2. Let K be a Legendrian knot. There exists an A∞-algebra structure on the abelianized
Chekanov cohomology CHA(K) of K: there exist higher multiplications mn, where n≥ 2, on CHA(K)
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such that (CHA(K),0,m2,m3, · · ·) satisfy the higher order associative identities (2.1). Moreover,
there exists a quasi-isomorphism of A∞-algebras between CHA(K) and the dual Chekanov algebra
C (K).

Let us consider two Legendrian knots K1 and K2 connected by a Legendrian isotopy. Then, the

cohomology rings of their corresponding dual Chekanov algebras, C (K1) and C (K2) respectively,

are isomorphic. The transitivity of quasi-isomorphisms in the context of A∞-algebras (see [30])

implies that the minimal models of C (K1) and C (K2), CHA(K1) and CHA(K2) respectively, are

quasi-isomorphic. Now, CHA(K2) is also a minimal model for CHA(K1), again because of the tran-

sitivity of quasi-isomorphisms for A∞-algebras. It follows from the analysis carried out by Kajiura

(see [13], Corollaries 5.8 and 5.10) that CHA(K1) and CHA(K2) are actually A∞-isomorphic. We

have:

Corollary 4.1. The minimal model (CHA(K),0,m2,m3, · · ·) of the dual Chekanov algebra
(C (K),∂ ) of a Legendrian knot K is invariant under Legendrian isotopy.

Now, since the A∞-algebras CHA(K1) and CHA(K2) are minimal, they are not only isomorphic

as A∞-algebras but also they are isomorphic as associative rings. The naturality of classical and

generalized Massey products (Propositions 3.3 and 3.5) yields the following result:

Corollary 4.2. The classical and generalized Massey products of the dual Chekanov algebra
(C (K),∂ ) of a Legendrian knot K are invariant under Legendrian isotopy. Moreover, in the clas-
sical case, we can find representatives for these invariants by using the A∞-algebra structure of
CHA(K), as explained in Theorem 3.1.

Massey product invariants are useful. Civan and his coworkers prove in [5] the existence of an

A∞-algebra structure on a linearized complex LC(K) built from the Chekanov algebra, see [4], and

they show that there exists an infinite family of knots that are distinguishable from their Legendrian

mirrors by using classical Massey products on the cohomology of LC(K).

5. Chekanov algebra and differential equations

In this section we prove that the invariants constructed in the previous section can be provided with

a dynamical interpretation, in the sense that they can be considered as determining solutions to a

differential equation of Maurer-Cartan type, and we also construct nonlinear evolution equations

starting from the (dual) Chekanov algebra. As we stated in Section 1, we believe these examples of

differential equations are interesting because they are instances of noncommutative equations, such

as the ones investigated in [25], which arise quite naturally from a non-trivial geometric context.

5.1. Maurer-Cartan equations

We follow [12]. Let A be a Z-graded associative algebra over a field K. We consider the tensor
coalgebra

T (A ) =
⊕
n≥1

A ⊗n

equipped with the coassociative coproduct Δ uniquely determined by

Δ(x) =
n−1

∑
i=1

(a1 ⊗·· ·⊗ai)⊗ (ai+1 ⊗·· ·⊗an)
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in which x = a1 ⊗·· ·⊗an ∈ T (A ). This coalgebra admits a natural Z×N bi-graduation,

bideg(a1 ⊗·· ·⊗an) =
(
∑ deg(ai) , n

)
,

if ai ∈ A are homogeneous elements of A . This bi-graduation induces a bi-graduation on

Hom(T (A ),A ) as follows: bideg(ϕ) = (i, j) if and only if ϕ is a graded K-linear map of degree i
and ϕ : A ⊗ j+1 → A . We write Ci, j(A ) = Homi(A ⊗ j+1,A ) and we define

L =
⊕
i∈Z
j≥0

Ci, j(A ) . (5.1)

A crucial observation, see [12], is that L is a bi-graded differential Lie algebra. Its Lie bracket

and differential are defined as follows. For ϕ ∈ Ci, j(A ) and φ ∈ Cs,t(A ), we consider the map

ϕ �φ ∈Ci+s , j+t(A ) given by

ϕ �φ(a1,a2, . . . ,a j+t+1) = ∑
k≤ j

(−1)εϕ(a1, . . . ,akφ(ak+1, . . . ,ak+t+1),a(k+1)+t+1, . . . ,a j+t+1) ,

where ε = s∑k
p=1 deg(ap) + kt, and we are identifying homogeneous elements of the form a1 ⊗

·· ·⊗ar with (a1, . . . ,ar). We then define the bigraded Lie bracket [ , ] : L⊗L → L as

[ϕ,φ ] = ϕ �φ − (−1)is+ jtφ �ϕ ,

in which ϕ ∈ Ci, j(A ) and φ ∈ Cs,t(A ), and the bigraded differential δ —of bidegree (0,1)— as

δ = [m, ·], in which m ∈C0,1(A ) = Hom0(A ⊗A ,A ) denotes the multiplication operator of A .

Now let us consider an A∞-algebra (A ,m1,m2, . . .) with differential m1 = 0, so that (A ,m2)

is an associative graded algebra. As in Section 3, we have A = ⊕i∈ZAi, mn : A ⊗n → A , n ≥ 1,

and deg(mn) = 2−n. We set m̃n = mn+2 and Ãn = A−n. Then, m̃n : Ã ⊗n+2 → Ã and deg(m̃n) = n,

so that m̃n ∈ Homn(Ã ⊗(n+1)+1,Ã ) and bideg(m̃n) = (n,n+1). In terms of Ã and operations m̃n,

identities (2.1) now read

∑
l+ j=n

0≤i≤l+1

l, j≥0

(−1)km̃l(a1, . . . ,ai, m̃ j(ai+1, . . . ,ai+ j+2),ai+ j+3, . . . ,an+3) = 0 , (5.2)

for n ≥ 0, in which 0 ≤ i ≤ n+3, and k = j(deg(a1)+ · · ·+deg(ai))+ i+ j(l − i−1).

We apply the foregoing considerations to the minimal model (CHA(K),0,m2,m3, . . .) of a Leg-

endrian knot K constructed in Section 4.4. With notation as above, Theorem 2.2 of [12] yields:

Theorem 5.1. Let F be the bi-graded cocommutative coalgebra determined by the conditions

F = span{ f1, f2, . . .} ; bideg( fi) = (i, i) ; Δ : F → F ⊗F ; Δ( fn) = ∑
i+ j=n
i, j≥1

(−1)i j fi ⊗ f j .

Consider the Z-graded vector space C̃HA(K) equipped with multiplication operators {m̃n}n≥0 and
construct the bi-graded differential Lie algebra L as in (5.1). Define also a linear map α : F → L
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via fi �→ m̃i, bideg(α) = (0,1). This map satisfies the Maurer-Cartan equation

δ ◦α +
1

2
μ ◦ (α ⊕α)◦Δ = 0 , (5.3)

in which μ indicates the Lie product of L.

We note that this theorem states that the higher multiplications of the Legendrian invariant min-

imal model CHA(K) provide solutions to a Maurer-Cartan equation. Moreover, since we observed

in Theorem 3.1 that the functions m̃n belong to the higher Massey products of the dual Chekanov

algebra C (K), we can also interpret Theorem 5.1 as providing a dynamic interpretation for our

higher order Legendrian invariants.

Remark 5.1. Maurer-Cartan equations, this time posed on A∞-algebras, have been considered by

Kajiura in [14, 15]. He has made two important observations. First, he has pointed out that the

field equations of motion of string field theory are the Maurer-Cartan equations on an A∞-algebra

determined by the string theory in question. Second, he has remarked that the construction of a

minimal model for an A∞-algebra A (a generalization of Theorem 2.1, see [13, 22] and [14, 15])

amounts to constructing a solution to a Maurer-Cartan equation on A .

5.2. Integrable equations

We begin with the abelianized differential graded algebra (AQ,∂ ) and we consider the dual

Chekanov algebra (C (K),∂ ) of a Legendrian knot K.

Now we linearize. We introduce a word-length filtration on C (K) as follows: C (K) n is the

subalgebra of C (K) generated, as a vector space over Q[t, t−1], by all words in C (K) of length

at least n. The linearization L C (K) of C (K) is the quotient space C (K)/C (K)2 , which we can

consider as being embedded into C (K) . For each generator ai we set ∂1(ai) = π ◦ ∂ (ai), in which

π : C (K)→L C (K) is the standard projection, and we obtain a Q[t, t−1]-linear map ∂1 : L C (K)→
L C (K) . Extending this map to C (K) so that the extension satisfies the graded Leibnitz rule (4.3),

we obtain a graded derivation δ on C (K) . We consider C (K) as a Q-algebra equipped with the

derivation δ . The (graded) commutative and associative algebra C (K) equipped with the graded

derivation δ is our basic arena for setting differential equations.

We define a Q[t, t−1]-algebra automorphism S : C (K)→ C (K) by setting S(ai) = (−1)deg(ai) ai

and extending linearly. Then, the graded Leibnitz rule for δ becomes δ (vw) = (δ v)w+ S(v)δw,

and clearly, the identity δ ◦ S = S ◦ δ also holds. Following Demidov [6, 7] we consider the vector

space ΨDOS of twisted pseudo-differential operators given by

ΨDOS =

{
∑

∞<i≤n
fi Di : n ∈ Z and fi ∈ C (K)

}
.

We equip ΨDOS with a multiplication determined by the rule

Dn · f =
∞

∑
k=0

(
n
k

)
Sn−k(δ k f )Dn−k

for any f ∈ C (K) and n ∈ Z. The vector space ΨDOS then becomes an associative (but not com-

mutative) algebra called the algebra of twisted pseudo-differential operators of C (K).
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Remark 5.2. Other explicit instances of twisted algebras of formal pseudo-differential operators

have already appeared in the literature. We refer the reader for example to [16].

Now we are ready to introduce differential equations. For L ∈ ΨDOS, we consider

dL
dtk

=
[
(Lk)+,L

]
, (5.4)

in which (·)+ indicates projection into the subalgebra of ΨDOS consisting of differential opera-

tors. This is our example of a non-commutative differential equation. Indeed, (5.4) gives rise to a

(twisted) Kadomtsev-Petviashvili (KP) hierarchy of partial differential differential equations for the

coefficients of the pseudo-differential operator L.

Our main observation is that Equation (5.4) can be solved explicitly in a formal setting. We

follow the classical work [23] as retold in [6, 7] and [9].

Let us equip the algebra C (K) with a valuation v (valuations on rings are considered for example

in [1]). We let I be the valuation ideal and π : C (K)→C (K)/I the canonical projection. We assume

that v ◦ S = v and that δ I ⊂ I, so that in particular S(I) ⊂ I and the derivation δ and morphism S
descend to the quotient ring C (K)/I.

Definition 5.1. The space of formal pseudo-differential and differential operators of infinite order

are, respectively, Ψ̂DOS and D̂S, in which

Ψ̂DOS ={
∑

α∈Z
aα Dα : aα ∈ C (K) and ∃C ∈ R+,N ∈ Z+ so that π(aα)>C α −N ∀ α � 0

}

and

D̂S =

{
P = ∑

α∈Z
aα Dα : P ∈ Ψ̂DOS and aα = 0 for α < 0

}
.

We also define the Volterra group (notation as in [6, 7])

VC (K) = 1+

{
P = ∑

α∈Z
aα Dα ∈ ΨDOS : aα = 0 for α ≥ 0

}
.

We have the fundamental result

Theorem 5.2. The sets

Ψ̂DOS
×
= {P ∈ Ψ̂DOS : π(P) ∈VC (K)/I}

and

D̂S
×
= {X ∈ D̂S : π(P) = 1}

are groups: for each P in Ψ̂DOS
×

and each X in D̂S
×

there exist unique inverses given by P−1 =

∑n≥0(1−P)n and X−1 = ∑n≥0(1−X)n. Moreover, for any P ∈ Ψ̂DOS
×

there exist unique operators
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W ∈VC (K) and Y ∈ D̂S
×

such that P =W−1Y . In other words, the group Ψ̂DOS
×

admits the global
factorization

Ψ̂DOS
×
=VC (K) D̂S

×
.

A proof of Theorem 5.2 appears in [7]. This result is a twisted version of a deep theorem due to

Mulase, see [23], on an analog of the loop group Birkhoff factorization [26] for infinite-dimensional

formal Lie groups of formal pseudo-differential operators. A recent detailed account of Mulase’s

result is in [9]. The importance of Theorem 5.2 for us is that it allows us to solve (5.4). Indeed,

reasoning as in [9] we have:

Theorem 5.3. Consider the system of equations

dL
dtk

=
[
(Lk)+,L

]
(5.5)

with initial condition L(0) = L0 ∈ ΨDOS , and let Y (tk) ∈ D̂S
×

and S(tk) ∈ VC (K) be the unique
solution to the factorization problem

exp(tk L k
0 ) = S−1(tk)Y (tk) .

Then, the unique solution to Equation (5.5) with L(0) = L0 is

L(tk) = Y L0Y−1 . (5.6)

6. Conclusions

In this paper we have presented Legendrian invariants for Legendrian knots using classical and

generalized Massey products as defined in [19, 21] and [2] respectively. Classical (in the sense

of [19]) Massey products on linearized Chekanov homology have been used earlier in [5] to dis-

tinguish between some Legendrian knots and their mirror images. The observation that matric and

generalized Massey products, as in [2, 21], also yield Legendrian invariants seems to be new. We

leave explicit applications for another publication. We have also consider the issue of a possible

“physical interpretation” of the Massey product invariants. To examine this issue, we have used the

following: equip the (co)homology CHA(K) of the dual Chekanov algebra C (K) of a Legendrian

knot K with a minimal A∞-algebra structure following [13–15,20,22]; we have: (a) if α1, . . . ,αn are

(co)homology classes in CHA(K) and mn is a higher multiplication in this A∞-algebra, then (see [20])

mn(α1, . . . ,αn) belongs to the classical Massey product 〈α1, . . . ,αn〉, if this product is defined; and

(b) the higher multiplication operations of a minimal A∞-algebra solve a Maurer-Cartan equation

posed on a bi-graded differential Lie algebra (see [12]). Thus, classical Massey product invariants

admit a “dynamical” interpretation, in the sense that representatives of them solve a “nonlinear field

equation”. Most probably this interpretation extends to the case of generalized Massey products; we

will report on this elsewhere. Finally, we have presented a natural system of differential equations

(the system of equations for the coefficients of the formal pseudo-differential operator L appear-

ing in Equation (5.4)) which arises from the Chekanov algebra of a Legendrian knot, and we have

showed how to solve it in an algebraic setting following [9]. We note that in contradistinction with

the classical KP hierarchy case, see [9] and references therein, we do not have, as yet, a hamiltonian

interpretation for (5.4). Also, as A. Eslami-Rad has pointed out to us, it is natural to believe that
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(5.4) may encode geometric information on Legendrian knots, since the Chekanov algebra homol-

ogy is a combinatorial translation of contact homology, see [10]. We hope that the explicit solution

(5.6) will allow us to extract (at least some of) it.
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