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By using the extended Harrison and Estabrook’s differential forms approach, in this paper, we investigate
the Lie symmetries of the continuous and discrete dispersive long waves system, respectively. Based on this
method, two closed ideals written in terms of a set of differential forms are constructed for the dispersive long
waves systems. Furthermore, some invariant solutions are presented for such systems. By a direct computation,
it is shown that the discrete dispersive long waves system admits a Kac-Moody-Virasoro type and a Virasoro-
like type Lie algebra, respectively. Finally, we present an interesting relationship between the continuous case
and a modified dispersive long waves system, which can be used to find nonlocal properties for such systems
with each other.
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1. Introduction

As is well known, it is more and more urgent and important to investigate the integrability of non-
linear differential equations, especially, the research of symmetry property and the construction
of exact solutions [4]. Nowadays, the concept of symmetries is extended from differential equa-
tions to differential-difference equations (DDEs). There exist some well-known methods, such as
the intrinsic method [20], the generalized conditional symmetry method [5], the classical lie group
method [1,25], the non-classical lie group method [2], and the Clarkson and Kruskal’s (CK’s) direct
method [6]. By using Lax pairs, Lou has improved the direct method [21,22]. With the classical Lie
group method, Estévez et al. [11] and Lou, Chen et al. [7, 23, 28, 29] have studied symmetry reduc-
tions of the Lax pairs for some (2+1)-dimensional equations.

In 1971, a method was proposed by Harrison and Estabrook to find the symmetries of differen-
tial equations by using a differential form technique with a geometrical flavor [13, 14]. Then, the
theory is developed by Edelen of the differential form method extensively [9, 10, 15]. Recently, by
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using the discrete exterior differential technique, the method proposed by Harrison and Estabrook
has been extended to study the (2+1)-dimensional Toda equation and discrete time Toda equation,
respectively [17, 24, 27]. In this paper, we study Lie symmetries of the continuous and discrete
dispersive long waves system by using the extended geometric approach.

The rest of the paper is structured as follows. In Section 2, a short summary of the exterior
differential calculus is presented. In Section 3, the Lie symmetries of the continuous dispersive long
waves system are obtained by virtue of the extended method. In Section 4, the method is further used
to investigate the discrete dispersive long waves system. Finally, some conclusions and discussions
are presented in the last section.

2. Difference and differential form

Following Harrison and Estabrook’s work, this section we start with a short summary of the exterior
differential calculus that will be useful in the rest of this paper. For a more detailed description we
refer the reader to Refs. [9, 10, 13–15] and [24].

Let L be a lattice and A be the algebra of complex valued functions on L. The right and left shift
operators Eλ,E−1

λ at a node x ∈ L in the λ-direction

Eλx = x+ λ̂, E−1
λ x = x− λ̂, (2.1)

can define a homeomorphism on the function space A. The homeomorphism reads

Eλ f (x) = f (x+ λ̂), Eλ( f (x) ·g(x)) = Eλ f (x) ·Eλg(x), f ,g ∈ A, (2.2)

where λ̂ is the spacing in the λ-direction and the dot denotes the multiplication in A.
Next, the tangent space can be defined at the node x of L as T Lx := span{∆λ|x,λ = 1,2, . . . ,n}.

Here ∆λ is the differences in λ-direction defined by

∆λ f (x) := (Eλ− id) f = f (x+ λ̂)− f (x), (2.3)

where id is a identity mapping.
The dual space T ∗Lx of T Lx is a space of 1-forms with a set of bases χλ defined on the link

between x and (x+ λ̂). The bases between T Lx and T ∗Lx satisfy

χλ(∆ν) = δλν with ν ∈ T (L), (2.4)

where δ is a Kronecker function.
Let’s introduce the tangent bundle and its dual over L

T (L) :=
∪
x∈L

T Lx and T ∗(L) :=
∪
x∈L

T ∗Lx, (2.5)

respectively.
Then the vectors on T (L) can be defined and the whole differential algebra Ω∗ =

⊕
n∈ZΩ

n on
T ∗(L) can also be constructed, where Ωn is a set of n-forms. One can define the exterior derivative
operator d :Ωk→Ωk+1 as

dω = ∆α fχα∧χλ1 ∧ · · ·∧χλk ∈Ωk+1, (2.6)

where ω = fχλ1 ∧ · · ·∧χλk ∈ Ωk and α = 1,2, . . ..
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It is easy to show that

d2 = 0,

(d f )(v) = v( f ), v ∈ T (L), f ∈Ω0,

d(ω⊗ω′) = dω⊗ω′+ (−1)degωω⊗ω′, ω,ω′ ∈Ω∗, (2.7)

which yield the following identities

d(χλ) = 0,

χλ∧χη = −χη∧χλ,
χλ f = (Eλ f )χλ (no summation). (2.8)

From above, the discrete contraction operator iV is defined by [13, 24, 27]

iVω = Vyω = ⟨ω,V⟩, V = Vλ∆λ ∈ T Lx. (2.9)

Thus the Lie-derivative LV can also be introduced by

LV = diV + iVd. (2.10)

Note that above discrete exterior differential caculus can be extended to the case of semi-
discrete. For such case, the following identities should be added

d(dxρ) = 0,

dxρ f = f dxρ,

dxρ∧dxη = −dxη∧dxρ,

χµ∧dxρ = −dxρ∧χµ, (2.11)

where xρ and xη are the continuous variables.

3. Lie symmetries of the continuous dispersive long waves system

In this section, based on the definition of Lie derivatives, which are used to find symmetries of the
exterior differential equations system, we introduce isovector field and require the corresponding
Lie derivative of each differential form to be a linear combination of the forms for the continuous
dispersive long waves system. Compared with the discrete dispersive long waves system, in what
follows, we just want to show the application of geometric methods for the continuous case. Based
on that, one can further understand what happens in the discrete case.

In 1987, Boiti, Leon and Pempinelli have firstly investigated the spectral transform for a two
spatial dimension extension of the dispersive long wave equation [3]. In 1988, Konopelchenko has
investigated the compatibility conditions, general Bäcklund transformations and integrable equa-
tions for the two-dimensional dispersive long wave equation [18].

Now let us consider the continuous dispersive long waves system

ut = 2uux−uxx+2vx,

vy = 2uxv+2uvx+ vxx, (3.1)

where u = u(t, x,y) and v = v(t, x,y).
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In order to convert system (3.1) to a set of differential forms, and reduce them to a first-order set
by introducing two new variables given by

p = ux, q = vx. (3.2)

Thus system (3.1) is of the form

ut −2up+ px−2q = 0,

vy−2uq−2vp−qx = 0. (3.3)

Then we can define the following set of 3-forms in the seven-dimensional space N =
{t, x,y,u,v, p,q}

α1 = dt∧du∧dy− pdt∧dx∧dy,

α2 = dt∧dv∧dy−qdt∧dx∧dy,

β1 = du∧dx∧dy−2updt∧dx∧dy−dt∧dy∧dp−2qdt∧dx∧dy,

β2 = dt∧dx∧dv−2vpdt∧dx∧dy−2uqdt∧dx∧dy+dt∧dy∧dq,

(3.4)

and they constitute a closed ideal I1. Next an isovector field is introduced on the space N =
{t, x,y,u,v, p,q}

V = V t∂t +V x∂x+Vy∂y+Vu∂u+Vv∂v+V p∂p+Vq∂q, (3.5)

where V t, V x, Vy, V p, Vq are functions with respect to (t, x,y,u,v, p,q) and Vu, Vv are functions with
respect to (t, x,y,u,v), respectively

Based on the definition of Lie-derivative in Refs. [13,15], let us now consider the Lie derivatives
of α1, and require them to be linear combinations of the forms system (4.2), one can obtain

LVα1 = dα1yV +d(α1yV) = λ1α1+λ2α2+λ3β1+λ4β2 ∈ I1, (3.6)

where λi(i= 1,2,3,4) are arbitrary zero-forms. No other term on the right-hand side is possible since
only α1, α2, β1, β2 are the 3-forms. Substituting (3.4), (3.5) into (3.6), we have

V t
v = V t

p = V t
q = Vy

v = Vy
p = Vy

q = 0,

Vy
x + pVy

u = 0,

Vu
q − pV x

q = 0,

V t
x− pV x

p +Vu
p + pV t

u = 0,

Vu
x −2p2uV x

p +2puVu
p − p2V x

u − pqV x
v

−2pqV x
p − pV x

x + pVu
u −qVu

v +2qVu
p −V p = 0.

(3.7)

Then we consider LVα2 and have

LVα2 = dα2yV +d(α2yV) ∈ I1. (3.8)

It can be expressed as

LVα2 = λ5α1+λ6α2+λ7β1+λ8β2, (3.9)
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where λi (i = 5,6,7,8) are arbitrary zero-forms. Substituting (3.4), (3.5) into (3.9), one can obtain
the following system

V t
u = V t

p = V t
q = Vy

u = Vy
p = Vy

q = 0,

Vv
q −qVy

v −Vy
x −qV x

q = 0,

V t
x+qV t

v = 0,

Vq+2vpqVy
v +2uq2Vy

v +2vpVy
x +2uqVy

x + pqV x
u

+q2V x
v +qV x

x − pVv
u −qVv

v −Vv
x = 0.

(3.10)

Then we consider Lvβ1 and Lvβ2 to complete the calculation, and put

LVβ1 = dα1yV +d(α1yV) = ξ1α1+ ξ2α2+ ξ3β1+ ξ4β2 ∈ I,
LVβ2 = dα1yV +d(α1yV) = ξ5α1+ ξ6α2+ ξ7β1+ ξ8β2 ∈ I,

(3.11)

where ξi (i = 1, . . . ,6) are arbitrary zero-forms. We now write out the terms involving all possible
basis three-forms and eliminate the multipliers. Substituting (3.4), (3.5) into (3.11), one can obtain
the following systems

V t
v = V t

q = V x
v = V x

q = 0,

Vy
t = Vy

x = Vy
u = Vy

v = Vy
p = Vy

q = Vu
v = Vu

q = V p
q = 0,

V x
p +V t

u = 0,

V t
x+2upV t

p+2qV t
p−Vu

p = 0,

Vu
u +2upV x

p +2qV x
p −V t

t −V p
p −2upV t

u−2qV t
u+V x

x = 0,

Vq+2u2 p2V t
u+4upqV t

u+up2V x
u +upV t

t +2q2V t
u−upVu

u

+ pqV x
u + pVu+uV p+qV t

t −qVu
u +

1
2

pV x
t −

1
2

pV p
u

− 1
2

qV p
v −

1
2

Vu
t −

1
2

V p
x = 0,

(3.12)

and

V t
x = V t

y = V t
u = V t

v = V t
p = V t

q = 0,

V x
u = V x

p = Vy
u = Vy

p = Vy
p = Vu

u = Vv
u = Vv

p = Vq
p = 0,

V x
q −Vy

v = 0,

Vv
q −2pvVy

q −2uqVy
q +Vy

x = 0,

Vq
q +2pvVy

v +2uqVy
v +V x

x −Vv
v +2vpV x

q +2uqV x
q +Vy

y = 0,

Vq
x −4p2v2V x

q = −8uvpqV x
q −4u2 p2V x

q +2vpqV x
v +2uq2V x

v +2pvV x
x +2uqV x

x

−2pvVq
q −2uqVq

q +2qVu−2vV p+ pVq
u +qVq

v +qV x
y +2pVv+2uVq−Vv

y = 0.

(3.13)
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From systems (3.7), (3.10), (3.12) and (3.13), one can get the following infinitesimals

V t = c1t+ c3,

V x =
1
2

c1x+ c5(t+ y)+ c4,

Vy = c1y+ c2,

Vu = −1
2

c1u− 1
2

c5,

Vv = −c1v,

V p = −c1 p,

Vq = −3
2

c1q,

(3.14)

where ci (i = 1,2,3,4,5) are arbitrary constants.
Based on the infinitesimals (3.14), we obtain the following invariant solutions.

Solution 1: The first set of solution u and v is given by

u = f (y), v = g(t), (3.15)

where f , g are two arbitrary functions with respect to their arguments.
Solution 2: The second set of solution u and v is given by

u =
−x+2k1

√
y

2y+2t
,

v =
k2

y+ t
, (3.16)

where k1 and k2 are two arbitrary constants.
Solution 3: The third set of solution u and v is given by

u =
[(8k1+2)t− x2]M(+)+ k2[(16k1+4)t−2x2]U(+)−4t(2k1+1)M(−)− k2tU(−)

2xt[2k2U(+)+M(+)]
,

v = h(t)exp
(

Numerator
2k2U(+)+ x2tM(+)2

)
, (3.17)

with the numerator of v is given by

y[(−4k2
2 x2+8k2

2t+128k2
1k2

2t+64k1k2
2t)U(+)2+ (16k1t+32k2

1t− x2+2t)M(+)2+32k2
2tU(−)2

+ (−8t+2x2−48k1t−64k2
1t+4k1x2)M(+)M(−)+32k1t(1+ k1)M(−)2+ (−4k2x2+8t+16k2t

+128k2
1k2t+64k1k2t)M(+)U(+)+ (16k2t−4k2x2+64k1k2t)M(+)U(−)− (16k2t+96k1k2t

+128k2
1k2t)M(−)U(+)−32k2(1+2k1)M(−)U(−)+ (32k2

2t−8k2
2 x2+128k1k2

2t)U(+)U(−)

+4k2(x2+2k1)U(+)M(−)], (3.18)
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where k1, k2 are two arbitrary constants, h(t) is a free function, and

M(+) = KummerM(−2k1+
1
2
,
3
2
,

x2

4t
),

M(−) = KummerM(−2k1−
1
2
,
3
2
,

x2

4t
),

U(+) = KummerU(−2k1+
1
2
,
3
2
,

x2

4t
),

U(−) = KummerU(−2k1−
1
2
,
3
2
,

x2

4t
). (3.19)

The Kummer functions KummerM(µ,ν,z) and KummerU(µ,ν,z) solve the differential equation

zU′′+ (ν− z)U′−µU = 0. (3.20)

By choosing the arbitrary constants k1, k2 and function h(t), the simulation of the third set of
solution u and v are shown in Figures 1 and 2.

–20–1001020
x–20

–10
0

10
20

y

–6
–4
–2

0
2
4
6

u

–8

–6

–4

–2

0

2

u

–2 –1 1 2
t

(a) (b)
Figure 1. (Color online) The wave propagation plots of u to the continuous dispersive long waves system
given by (3.17), with the parameters k1 = 1, k2 = 1 and h = 1: (a) t = −1; (b) x = −1, y = 1.
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Figure 2. (Color online) The wave propagation plots of v to the continuous dispersive long waves system
given by (3.17), with the parameters k1 = 1, k2 = 1 and h = 1: (a) t = 0.01; (b) x = 0.01, y = 0.01.
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4. Lie symmetries of the discrete dispersive long waves system

In what follows, based on the exterior differential system, we further introduce isovector field and
require the corresponding Lie derivative of each differential form to be a linear combination of the
forms for the discrete dispersive long waves system.

In 1991, Konopelchenko has firstly proposed the discrete dispersive long waves system, and
investigated its Laplace transform [19]. In 1997, Shabat and Yamilov have investigated a transfor-
mation theory for the discrete dispersive long waves system [26]. Now let us consider the dispersive
long waves system

un,y = vn− vn+1,

vn,x = vn (un−un−1) , (4.1)

where un = un(x,y) and vn = vn(x,y).
Then we can define the following set of 2-forms and 3-forms in the seven-dimensional space

N = {n, x,y,un,un−1,vn,vn+1}

α1 = [dun− (vn− vn+1)dy]∧χ∧dx,

α2 = [dvn−χ(vn+1− vn)− vn(un−un−1)dx]∧dy,

β1 = [dun−1−χ(un−un−1)]∧dx∧dy,

β2 = [d(vn+1− vn)+ vnd(un−un−1)+ (un−un−1)dvn]∧dx∧dy,

(4.2)

and they constitute a closed ideal I2. Next an isovector field is introduced on the space N =
{n, x,y,un.un−1,vn,vn+1}

V = Vn∆n+V x∂x+Vy∂y+Vun∂un +Vun−1∂un−1 +Vvn∂vn +Vvn+1∂vn+1 , (4.3)

where ∆nun = un+1−un and χ(∆n) = 1.
Based on the definition of Lie-derivative in Refs. [17,24,27], let us now consider the Lie deriva-

tives of α1, and require them to be linear combinations of the forms system (4.2), one can obtain

LVα1 = dα1yV +d(α1yV) = α2∧ ζ + ξ1dα2+ ξ2α1+ ξ3β1+ ξ4β2 ∈ I2, (4.4)

where ζ and ξi, i = 1,2,3,4, are arbitrary one and zero-forms. No other term on the right-hand side
is possible. Substituting (4.2), (4.3) into (4.4), one has

Vn
un−1
= Vn

vn+1
= V x

un−1
= V x

vn
= V x

vn+1
= 0,

Vun
vn +∆nvnVy

vn = 0, Vun
vn+1 +∆nvnVy

vn+1 = 0,

vn∆nvnV x
vn+1
−Vn

y +∆nvnVn
un
= 0,

Vun
un−1 +∆nvnVy

un−1 = 0, V x
y −∆nvnV x

un
= 0,

∆nvnVy
y +Vun

y −∆nVvn −∆nv2
nVy

un −∆nvnVun
un + (vn+1− vn)2Vn

vn

+∆nun−1vnvn+1V x
vn
−unvn∆nvnV x

vn+1
+un−1vn∆nvnV x

vn+1
+un∆nvnVn

un−1

−un−1∆nvnVn
un−1
+unvn+1∆nvnV x

vn+1
−un−1vn+1∆nvnV x

vn+1
−∆nun−1v2

nV x
vn
= 0.

(4.5)

Then we consider LVα2 and have

LVα2 = dα2yV +d(α2yV) ∈ I2. (4.6)
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It can be expressed as

LVα2 = ξα2, (4.7)

where ξ is an arbitrary zero-form. Substituting (4.2), (4.3) into (4.7), one can obtain the following
system

Vy
un−1 = Vy

un = Vy
vn+1 = 0,

∆nvnVy
x −∆nun−1vn∆nVy = 0,

Vvn
un −∆nun−1vnV x

un
−∆nvnVn

un
= 0,

Vvn
vn+1 −∆nVn

vn+1
−∆nun−1vnV x

un+1
= 0,

Vvn
un−1 −∆nun−1vnV x

un−1
−∆nvnVn

un−1
= 0,

∆nVy+∆nvnVy
vn = 0, ∆nun−1vnVy

vn +Vy
x = 0,

−∆nvnVvn
vn +∆nv2

nvn+1Vn
vn
+∆nun−1∆nvnV x

vn

−∆nVvn +∆nVvn+1 +∆nun−1vn∆nV x+∆nVn∆nVn = 0,

−Vvn
x − vn∆nVun +∆nvnVn

x −∆nun−1vnVvn
vn +∆nun−1vn∆nvnVn

vn

+∆nun−1v2
nV x

vn
+∆nun−1Vvn +∆nun−1vnV x

x = 0.

(4.8)

Then we consider Lvβ1 and Lvβ2 to complete the calculation, and put

LVβ1 = dβ1yV +d(β1yV) = α2∧ ζ1+λ1dα2+λ2α1+λ3β1+λ4β2 ∈ I2,

LVβ2 = dβ2yV +d(β2yV) = α2∧ ζ2+λ5dα2+λ6α1+λ7β1+λ8β2 ∈ I2,
(4.9)

where ζi and ξ j, i = 1,2, j = 1, . . . ,6, are arbitrary one and zero-forms. We now write out the terms
involving all possible basis three-forms and eliminate the multipliers. Substituting (4.2), (4.3) into
(4.9), one can obtain the following systems

V x
un
= V x

vn+1
= Vy

un = Vy
vn = Vy

vn+1 = 0,

∆nV x+∆nvnV x
vn
+∆nun−1V x

un−1
= 0,

−∆nun−1Vn
un
−∆nun−1vnV x

vn+1
+Vun−1

un = 0,

Vun−1
vn+1 −∆nun−1Vn

vn+1
= 0, ∆nVy+∆nun−1V x

un−1
= 0,

∆nun−1∆nvnVy
un −Vun +∆nun−1Vun−1

un−1 −∆nu2
n−1Vn

un−1

+∆nvnVun−1
vn −∆nun−1un−1vnV x

vn+1
+∆nununvnV x

vn+1

−∆nu2
n−1vn+1V x

vn+1
−∆nun−1vn+1Vn

vn
+∆nu2

n−1vn+1V x
vn+1

−∆nun−1∆nvn−∆nun−1∆nVn+∆nVun−1 = 0,

(4.10)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

188



S.F. Tian, T.T. Zhang, P.L. Ma and X.Y. Zhang / Lie symmetries and nonlocally related systems

and

Vy
x = Vy

un−1 = Vy
un = Vy

vn+1 = ∆nVy = 0,

Vn
un−1
+ vnV x

vn+1
= 0, Vy

vn +Vy
vn+1 = 0,

vnV x
vn+1
−Vn

un
= 0, ∆nun−1Vy

un−1 + vnVy
vn = 0,

∆nun−1Vy
un + vnVy

vn = 0, V x
un−1
+V x

un
= 0, Vy

un−1 +Vy
un = 0,

vnVun
vn+1 +Vn

x − vnVun−1
vn+1 +∆nun−1vnVn

vn
+∆nun−1vnVn

vn+1
−∆nu2

n−1vnV x
vn+1
+∆nun−1Vvn

vn+1 = 0,

−Vvn
un−1 +Vvn+1

un−1 −∆nun−1vn+1V x
un−1
+∆nvnVn

un−1
−∆nvnvnV x

vn
+∆nun−1vnV x

un−1
− vn∆nV x = 0,

Vvn+1
un + vn∆nV x−Vvn

un +un−1∆nvnV x
un
+ vn∆nvnV x

vn
+∆nvnVn

un
−un∆nvnV x

un
= 0,

− vnVun−1
un + vnV x

x −∆nVn+∆nun−1vnVn
un
−∆nu2

n−1unvnV x
un
+Vvn −∆nvnvnVn

vn+1

+ vnVvn
vn+1 − vnVvn+1

vn+1 +∆nun−1Vvn
un + vnVun

un +∆nun−1vnvn+1V x
vn+1

−∆nvnvnVn
vn
+∆nun−1v2

nV x
vn
−∆nun−1v2

nV x
vn+1
= 0,

vn∆nVun − vn∆nVun−1 +∆nu2
n−1v2

nV x
vn+1
−∆nun−1vnVvn+1

vn +∆nun−1vnVvn+1
vn+1 −u2

nvn∆nV x

−∆nun−1v2
nVn

vn+1
−∆nun−1vnVvn

vn+1 −u2
n−1vn∆nV x+u2

n−1vnV x−Vvn+1
x −2un−1unvnVn

un−1

+3un−1unvn∆nun−1V x
un−1
+∆nun−1∆nVvn + vnvn+1∆nVy+un−1v2

nVn
vn
−∆nu2

n−1v2
nV x

vn

−2unvnV x
x +2un−1vnV x

vn
+∆nun−1∆nvnunvnvn+1Vn

vn
−2∆nu2

n−1vnvn+1V x
vn+1

−2un−1unvnV x+2∆nun−1vnvn+1Vn
vn+1
+2un−1unvn∆nV x−∆nvnVn

x −2∆nun−1Vvn

−∆nvnvnVun−1 +∆nvnVunVvn
x −∆nun−1vnVun−1

un−1 +u2
nvnVn

un−1
+u2

n−1vnVn
un−1
−u3

nvnV x
un−1

+∆nun−1vnVun
un−1 +u3

n−1vnV x
un−1
+∆nun−1vn+1Vvn

vn+1 − vn∆nvnVun−1
vn +2∆nun−1vn∆nVn

−∆nun−1vn+1∆nVn+∆nu2
n+1v2

n+1V x
vn+1
−∆nun−1v2

n+1Vn
vn
−∆nun−1v2

n+1Vn
vn+1
+ vnvn+1Vun

vn

−∆nun−1vn+1Vvn+1
vn+1 −∆nun−1vn+1Vvn+1

vn+1 +∆nun−1vn+1Vvn
vn − v2

n∆nVy+∆nu2
n−1Vvn

un−1

− v2
nVun

vn = 0.

(4.11)

Solving these systems (4.5), (4.8), (4.10) and (4.11), one can obtain

Vn = 0,

V x = f (x),

Vy = g(y),

Vun = h(x)+ k(y)e f (x)+n f ′(x),

Vun−1 = h(x)+ k(y)e f (x)+ (n−1) f ′(x),

Vvn = g(y)e f (x)−nk′(y)e f (x),

Vvn+1 = g(y)e f (x)− (n+1)k′(y)e f (x),

(4.12)

where f (x),g(y), h(x) and k(y) are arbitrary functions and the primes denote derivatives with respect
to the respective arguments.

On the one hand, based on the infinitesimals (4.12), we obtain the following invariant solutions
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Solution 1: Taking f = 0, g = y, h = x and k = y, one can obtain the first set of solution un and vn

given by

un = F1(x)+F2(y),

vn = −nF′2(y), (4.13)

where F1(x) and F2(y) are two continuously differentiable functions with respective to x and y,
respectively.

Solution 2: Taking f = 1, g = y, h = x and k = y, one can obtain the first set of solution un and vn

given by

un =G1(x)+d1 lny+d2 ln[yG2(x)],

vn =G3(y)− n(d1+d2)
y

, (4.14)

where d1,d2 are two arbitrary constants, G1(x),G2(x) and G3(y) are three continuously differentiable
functions with respective to x and y, respectively.

Solution 3: Taking f = −1, g = y, h = x and k = y, one can obtain the first set of solution un and vn

given by

un = H1(x)+ d̃1 lny+ d̃2 ln[yH2(x)],

vn = H3(y)− n(d̃1+ d̃2)
y

, (4.15)

where d̃1, d̃2 are two arbitrary constants, H1(x),H2(x) and H3(y) are three continuously differen-
tiable functions with respective to x and y, respectively.

On the other hand, from (4.12), one can obtain the bases of the symmetry algebra

X( f ) = f (x)∂x+ k(y)e f (x)∂un +n f ′(x)∂un + k(y)e f (x)∂un−1 + (n−1) f ′(x)∂un−1 +g(y)e f (x)∂vn

−nk′(y)e f (x)∂vn +g(y)e f (x)∂vn+1 − (n+1)k′(y)e f (x)∂vn+1 ,

Y(g) = g(y)∂y+g(y)e f (x)∂vn +g(y)e f (x)∂vn+1 ,

U(h) = h(x)∂un +h(x)∂un−1 ,

V(k) = k(y)e f (x)∂un + k(y)e f (x)∂un−1 −nk′(y)e f (x)∂vn − (n+1)k′(y)e f (x)∂vn+1 .

(4.16)

By a direct computation, one can obtain the associated Kac-Moody-Virasoro type Lie algebra
between these vector fields:

[X( f1),X( f2)] = X( f1 f ′2 − f ′1 f2),

[Y(g1),Y(g2)] = Y(g1g′2−g′1g2),

[X( f ),U(h)] = U( f h′),

[X( f ),V(k)] = V( f h′),

[Y(g),U(h)] = U(gh′),

[Y(g),V(k)] = V( f k′). (4.17)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

190



S.F. Tian, T.T. Zhang, P.L. Ma and X.Y. Zhang / Lie symmetries and nonlocally related systems

In order to find an exactly Virasoro-like algebra by choosing appropriately the functions
f (x),g(y),h(x) and k(y), one can further investigate the brackets appearing in (4.17). According
to the computation given by Heredero and Reyes [16], we obtain a Virasoro-like algebra for the
vector field Y(g). For arbitrary functions gi as gi = gi(y), by taking g j = igi tan(iy+ d) (i , j), one
obtains

[Y(gi),Y(g j)] = (gi−g j)Y(gi+g j), i, j = 1,2, . . . , (4.18)

where d is an arbitrary constant. Based on the Ref. [16], one can show that the vector fields Y(gi)
(i = 1,2, . . .) about the brackets (4.18) generate a Virasoro-like algebra.

5. Conclusions and remarks

For the continuous dispersive long waves system (3.1), there is an interesting relation to published
work. Let u and v satisfy the following transformation

u = q+ r,

vx = rxx−qmx+ rmx−qqx−qrx− rqx− rrx, (5.1)

and m satisfies

my = −qr, (5.2)

system (3.1) can be reduced to the following system

qt + rt = −qxx−2qmx+ rxx+2rmx,

my+qr = 0, (5.3)

where q, r and m are functions with respective to t, x and y. Considering the system (5.3), one can
obtain the subsystem given by

qt +qxx+2qmx = 0,

rt − rxx−2rmx = 0,

my+qr = 0, (5.4)

which is called (2+1)-dimensional modified generalized long dispersive wave system [12]. It is
value mentioning that the system (3.1) is a nonlocally related PDE system for the system (5.4). By
considering the local properties of systems (3.1) and (5.4), respectively, one can further investigate
the nonlocal properties for such systems with each other.

Recently, Chen, etal [8]. investigate nonlocal symmetry of system (5.4) and its applications
by virtue of its eigenfunctions in Lax pairs. By applying the general Lie symmetry approach,
they obtain the finite symmetry transformation and similarity reductions to present explicit soliton-
cnoidal wave solution, which can be reduced to the two-dark-soliton solution in one special case.

In this paper, based on an effective extended geometric approach, we obtain the Lie symmetries
of the continuous and discrete dispersive long waves systems (3.1) and (4.1), respectively. Moreover,
based on a direct computation, we obtain a Kac- Moody-Virasoro type and a Virasoro-like type Lie
algebra from the discrete case, respectively. Finally, we construct a relationship between system
(3.1) and (5.4). The relationship yields to a nonlocally related PDE system for the continuous case,
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which can be used to find nonlocal symmetries for the dispersive long waves system. By virtue of
the inherently geometrical nature of forms, one can further study some geometrical insight into the
process. The paper shows that the extended geometric approach provides a direct and more powerful
mathematical tool to investigate nonlinear differential-difference equations in mathematical physics.
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