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In the present paper we show that the Gompertz function, the Fisher–Tippett and the Gumbel probability distri-
butions are related to both Stirling numbers of the second kind and Bernoulli numbers. Especially we prove for
the Gumbel probability density function an analog of the Grosset–Veselov formula which connects 1-soliton
solution of the KdV equation with Bernoulli numbers.
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1. Introduction

The differential equation defining the Gompertz function is as follows

u′(t) = qu log
umax

u
, u(0) = u0 > 0, (1.1)

where t is time, u = u(t) is an unknown function, q,umax are constants. Constant umax is called
the saturation level. The integral curve u(t) fulfilling condition 0 < u(t) < umax is known as the
Gompertz function.
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Equation (1.1) is the first order ordinary differential equation which is easily solved by the method of
the separation of variables. After solving it we get the following formula for the Gompertz function

u(t) = umaxe−ce−qt
, (1.2)

where constant c appears in the integration process and is connected with the initial condition u(0)=
u0 = umaxe−c, therefore c = log

umax

u0
.

If umax = 1 then (1.2) is the cumulative distribution function for the Fisher–Tippett distribution.
A particular case of the Fisher–Tippett distribution (for c = q = 1) is the Gumbel distribution with
the probability density function (pdf): g(t) = e−e−t

e−t .
The Gumbel distribution has some application in physics. For example, Itoh, Mahmoud and

Takahashi [8] consider a discrete model of wave propagation. They consider the wave propaga-
tion as motion of an ensemble of particles, each of them jumping forward with certain probability.
The distribution of the quantity L−k lnk

k , where L is the wavelength and k – number of particles is
proven to approach Gumbel distribution for very large number of particles. This result corresponds
to propagation of uniform soliton.

This idea is further explored by Itoh and Mahmoud [9] as they study the Moran population
model. An ensemble of k gametes is considered; each of gametes can die and produce a new gamete
of age 0. The probability of such evolution depends on gamete’s age. Authors conclude that for
large k Gumbel distribution approximates M−k lnk

k , where M is the maximal age of the population.
Gumbel distribution is also of importance in geophysics. It was used to study extreme river

floods [1, 11, 13], seismicity in Eurasia [3], occurence of extreme meteorogical events [10] or the
level of Aegan and Ionian seas [15].

The Gompertz curve is also directly used for modelling different phenomena in biophysics,
biology, medicine and others (see Stauffer et al [14], Waliszewski and Konarski [16]).

The paper is organized as follows. In Sec. 2 we recall some properties of Stirling numbers of
the second kind and Bernoulli numbers which we use later. In Sec. 3 we show our main results
concerning the Gompertz function and Gumbel’s distribution. The paper is concluded in Sec. 4.

2. Properties of special numbers

By
{

n
k

}
we denote the Stirling number of the second kind (number of ways of partitioning a set of

n elements into k nonempty subsets; see Graham et al. [6]). It is set
{

n
0

}
= 0 for n > 0,

{
0
0

}
= 1,{

n
k

}
= 0 for k > n, or k < 0. Let us recall that the numbers fulfill

{
n
k

}
=

1
k!

k

∑
j=0

(−1)k− j
(

k
j

)
jn =

1
k!

k

∑
j=0

(−1) j
(

k
j

)
(k− j)n, (2.1){

n+1
k

}
= k
{

n
k

}
+

{
n

k−1

}
, (2.2)

and appear in the Taylor expansion

(ew−1)k

k!
=

∞

∑
n=k

{
n
k

}
wn

n!
.
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By Bn (n = 0,1,2, . . .) we denote the nth Bernoulli number. The Bernoulli numbers have the follow-
ing exponential generating function (see Duren [5])

B0 +B1z+B2
z2

2!
+ · · ·= z

ez−1
, |z|< 2π. (2.3)

It is well known that Bn vanishes for odd n≥ 3. The numbers are rational and they appear in relations
such that

m−1

∑
k=1

kn =
1

n+1

n

∑
j=0

(
n+1

j

)
B jmn+1− j, m,n≥ 1,

or

∞

∑
k=1

1
k2n = (−1)n+1 22n−1π2n

(2n)!
B2n, n = 1,2, . . .

The first few nonzero Bernoulli numbers are as follows

B0 = 1, B1 =−
1
2
, B2 =

1
6
, B4 =−

1
30

, B6 =
1
42

, B8 =−
1

30
, B10 =

5
66

, B12 =−
691
2730

.

Since

1
ez +1

=
ez +1−2

e2z−1
=

1
ez−1

− 2
e2z−1

=
1
z
· z

ez−1
− 1

z
· 2z

e2z−1

we infer from (2.3) that

1
ez +1

=
1
z

∞

∑
n=0

Bn
zn

n!
− 1

z

∞

∑
n=0

Bn
2nzn

n!
=

∞

∑
n=1

(
Bn

zn−1

n!
−Bn

2nzn−1

n!

)
=

∞

∑
n=0

Bn+1(1−2n+1)

(n+1)!
zn, (2.4)

for |z|< π .

3. Main results

Theorem 3.1. If u(t) is a solution of equation (1.1) then its nth derivative is given by the formula

u(n)(t) = qn
n

∑
k=1

(−1)n−k
{

n
k

}
u logk umax

u
(3.1)

Proof. We will proceed by induction. For n = 1 formula (3.1) transforms into (1.1), thus is true. Let
us suppose that for a positive integer n formula (3.1) holds. Then using the chain rule and identity
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(2.2) we get

u(n+1)(t) = qn d
dt

n

∑
k=1

(−1)n−k
{

n
k

}
u logk umax

u

= qn
n

∑
k=1

(−1)n−k
{

n
k

}(
logk umax

u
− k logk−1 umax

u

)
qu log

umax

u

= qn+1
n

∑
k=1

(−1)n+1−k
{

n
k

}(
ku logk umax

u
−u logk+1 umax

u

)
= qn+1

[
(−1)nu log

umax

u
+

n

∑
k=2

(−1)n+1−k
(

k
{

n
k

}
+

{
n

k−1

})
u logk umax

u

+u logn+1 umax

u

]
= qn+1

n+1

∑
k=1

(−1)n+1−k
{

n+1
k

}
u logk umax

u

Let us denote by Pn(u) the right hand side of (3.1)

Pn(u) = qn
n

∑
k=1

(−1)n−k
{

n
k

}
u logk umax

u
, n = 1,2,3, . . .

and P0(u) = u.

Remark 3.1. The Bell polynomials are defined as Bn(x) =
n

∑
k=1

{
n
k

}
xk (see Comtet [4]). Thus func-

tion Pn(u) can be expressed in terms of the Bell polynomials as follows

Pn(u) = qn
n

∑
k=1

(−1)n−k
{

n
k

}
u logk umax

u
= (−q)nu

n

∑
k=1

{
n
k

}(
− log

umax

u

)k

= (−q)nuBn

(
log

u
umax

)
Now we introduce the exponential generating function (e.g.f.) for {Pn(u)}

G(u,z) = P0(u)+P1(u)z+P2(u)
z2

2!
+P3(u)

z3

3!
+ · · · (3.2)

In order to find a closed form formula for e.g.f. (3.2) observe that G(u(t),z) is the Taylor series
expansion of the function u(t + z) at point t. Therefore using formula (1.2) we get

G(u(t),z) = u(t + z) = umaxe−ce−q(t+z)
= umax

(
e−ce−qt)e−qz

. (3.3)

From (3.3) it follows that

G(u,z) = umax

(
u

umax

)e−qz

(3.4)

Theorem 3.2. For the Gumbel’s pdf g(t) = e−e−t
e−t the following formula holds∫

∞

−∞

(
dk−1

dtk−1 (e
−e−t

e−t)

)2

dt = (−1)k B2k(1−22k)

2k
, (3.5)

where k = 1,2, . . ..
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Proof. Our aim is to compute integral pn =
∫ umax

0 Pn(u)du, n = 0,1,2, . . .. By (3.4) the e.g.f. for
{pn} is

p0 + p1z+ p2
z2

2!
+ p3

z3

3!
+ · · ·=

∫ umax

0
G(u,z)du = umax

∫ umax

0

(
u

umax

)e−qz

du

= u2
max ·

1
e−qz +1

(
u

umax

)e−qz+1 ∣∣∣∣umax

0
=

u2
max

e−qz +1
. (3.6)

Using formula (2.4) we obtain

1
e−qz +1

=
∞

∑
n=0

Bn+1(1−2n+1)

(n+1)!
(−qz)n =

∞

∑
n=0

(−q)nBn+1(1−2n+1)

n+1
· z

n

n!
(3.7)

and then comparing coefficients of zn/n! in (3.6) and (3.7) we get

pn =
∫ umax

0
Pn(u)du =

(−q)nBn+1(1−2n+1)

n+1
·u2

max (3.8)

Substituting in the integral(3.8) variable t, u(t) = umaxe−ce−qt
we get

∫ umax

0
Pn(u)du =

∫
∞

−∞

u(n)(t)u′(t)dt =
(−q)nBn+1(1−2n+1)

n+1
·u2

max (3.9)

If n is an odd number n = 2k−1 then integrating in (3.9) k−1 times by parts we have

(−1)k−1
∫

∞

−∞

(u(k)(t))2dt =
(−q)2k−1B2k(1−22k)

2k
·u2

max,

or ∫
∞

−∞

(u(k)(t))2dt = (−1)k q2k−1B2k(1−22k)

2k
·u2

max (3.10)

Putting in (3.10) umax = 1, q = 1, c = 1 (in this case u(t) = e−e−t
, u′(t) = e−e−t

e−t) we obtain
formula (3.5).

Remark 3.2. For the Gumbel’s pdf the formula (3.5) can be seen as an analog of the Grosset-
Veselov formula

B2k =
(−1)k−1

22k+1

∫ +∞

−∞

(
dk−1

dxk−1
1

cosh2 x

)2

dx, (3.11)

which has been demonstrated in [7]. For another proofs of (3.11) see [2] and [12]. Formula (3.11)
shows the connection between 1-soliton solution of the KdV equation and the Bernoulli numbers.

We may also prove some explicit formulae, expressing Bernoulli numbers in terms of Stirling
numbers of the second kind or binomial numbers. In order to do this let us first observe that inte-
grating by parts we get the following recurrence formula

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

378
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∫ umax

0
u logn umax

u
du =

∫ umax

0

(
u2

2

)′
logn umax

u
du =

n
2

∫ umax

0
u logn−1 umax

u
du

which by
∫ umax

0 u du = u2
max/2 leads to∫ umax

0
u logn umax

u
du =

n!
2n+1 ·u

2
max. (3.12)

In view of the definition of polynomial Pn(u) and using (3.12) we can rewrite formula (3.8) as

u2
maxqn

n

∑
k=1

(−1)n−k
{

n
k

}
k!

2k+1 =
(−q)nBn+1(1−2n+1)

n+1
·u2

max,

i.e.,

n

∑
k=1

(−1)k
{

n
k

}
k!

2k+1 =
Bn+1(1−2n+1)

n+1
. (3.13)

Expressing in (3.13) the Stirling numbers by binomial numbers (2.1) we get

n

∑
k=1

1
2k+1

k

∑
j=0

(−1)k− j
(

k
j

)
jn =

Bn+1(1−2n+1)

n+1
. (3.14)

4. Conclusions and further work

We investigated some connections between the Gompertz function and special numbers (the Stir-
ling numbers of the second kind and the Bernoulli numbers). We showed formula (3.1), involving
Stirling numbers of the second kind, which expresses the nth derivative of the Gompertz function
by this function itself. In a particular case (umax = 1) the Gompertz function is the Fisher-Tippett
cumulative distribution function. A particular case of the Fisher-Tippett distribution (for c = q = 1)
is the Gumbel (standard) distribution.
Then we proved integral formula (3.5, Theorem 3.2), which shows a connection between the Gum-
bel pdf and Bernoulli numbers. In fact in the proof of Theorem 3.2 such connection is proved
slightly more generally, for the Fisher-Tippett pdf and the Gompertz function. Formula (3.5) can be
seen as an analog of the Grosset-Veselov integral formula which connects 1-soliton solution of the
KdV equation with Bernoulli numbers.
We get also in Sec. 3 some formulae expressing Bernoulli numbers in terms of Stirling numbers of
the second kind or binomial numbers.
The approach used here could be applied for other functions or even for systems of nonlinear dif-
ferential equations like the Lotka–Volterra model.
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