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1. Introduction

The discrete Kadomtsev-Petviashvili (dKP) hierarchy a [15, 17, 23, 25, 29] is an attractive research
object in the field of the discrete integrable systems. The dKP hierarchy is defined by means of
the difference derivative ∆ instead of the usual derivative ∂ with respect of x in a classical system
[10, 11], and the continuous spatial variable is replaced by a discrete variable n. By using a non-
uniform shift of space variable, the τ-function of KP hierarchy implies a special kind of τ-function
for the dKP hierarchy [17]. With the symmetry constraint or symmetry reduction technique, which
was used in the continuous KP hierarchy [6, 7, 24], the constrained discrete KP (cdKP) hierarchy is
truncated dKP hierarchy by adding a constrained operator form (see (2.14)) on the Lax operator L
of the dKP hierarchy [27]. And the discrete nonlinear Schrödinger equation and other equations can
be derived from it.

∗Corresponding author
aIt has also been called the differential-difference hierarchy, or the semi-discrete hierarchy.
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There are many methods for constructing the solutions of the integrable systems for the con-
tinuous KP hierarchy [3, 4, 19, 31, 33, 34, 37, 43, 45]. Among these methods, the gauge transforma-
tion is one of the important methods to construct the solutions of the integrable systems for the
continuous KP hierarchy [3, 4, 19, 33, 34, 37], the dKP hierarchy [27, 30, 35] and the cdKP hierar-
chy [27], which in fact reflects the intrinsic integrability of the KP hierarchy and dKP hierarchy.
Chau et al [3] introduce two kinds of elementary gauge transformation operators: the differential
type TD and the integral type TI . By now, the gauge transformations of many integrable hierar-
chies related to KP hierarchy have been derived, for example, the constrained KP (cKP) hierar-
chy [4, 6, 7, 20, 24, 34, 44], the constrained BKP and CKP hierarchy [21, 33] (cBKP and cCKP),
the dKP hierarchy [30, 35], the cdKP hierarchy [27], the q-KP hierarchy [18, 42] and so on. The
additional symmetry [1,5,8,12,14,16,22,26,36,38–41] is a kind of symmetry depending explicitly
on the space and time variables, involved in so-called string equation and the generalized Vira-
soro constraints in matrix models of the 2d quantum gravity (see [11, 32] and references therein).
Regarding the possible application of the additional symmetry flows of the KP hierarchy in physics,
it is natural to ask whether these flows are compatible with the gauge transformation. It is a highly
non-trivial question because the gauge transformation is only defined to be consistent with ordinary
KP flows. For example, Ref. [2] has shown the compatibility between the the differential type of
gauge transformation and the additional symmetry flow of cKP hierarchy separately, up to a shift
of ordinary flow of cKP hierarchy. In order to construct the additional symmetry flows of the cKP
hierarchy from the corresponding flows of the KP hierarchy, it is necessary to do a remarkable
amendment [2] in its definition. So it is an interesting problem to show the compatibility between
the gauge transformations and the additional symmetry of the cdKP hierarchy. The additional sym-
metry flows for the cdKP hierarchy are constructed in [9, 28] through a subtle modification of the
standard additional symmetry flows by adding a complicated term, which form a Virasoro type
algebraic structure [28]. And the action of the Virasoro symmetry on the tau function of the cdKP
hierarchy is also derived [9].

In this paper, it is shown that the additional symmetry flows for the cdKP hierarchy commute
with the integral type and difference type gauge transformations preserving the form of the addi-
tional symmetry of the cdKP hierarchy, up to shifting of the corresponding additional flows by
ordinary time flows, which reflects the compatibility between the two types of the gauge transfor-
mations and the additional symmetries of the cdKP hierarchy.

This paper is organized as follows. Some backgrounds on the dKP hierarchy are given in Section
2. Then the two types gauge transformation operators of the cdKP hierarchy are reviewed in Section
3. And the additional symmetry for the cdKP hierarchy are reviewed in Section 4. In Section 5, it is
derived that the additional symmetry commute with the gauge transformations preserving the form
of the additional symmetry of the cdKP hierarchy.

2. Background On The dKP Hierarchy

Some basic facts about the dKP hierarchy are demonstrated as follows [17]. Firstly a space F ,
namely

F =
{

f (n) = f (n, t1, t2, · · · , t j, · · ·);n ∈ Z, ti ∈ R
}

(2.1)
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is defined for the space of the dKP hierarchy. Λ and ∆ are denote for the shift operator and the
difference operator, respectively. Their actions on function f (n) are defined as

Λ f (n) = f (n+1) (2.2)

and

∆ f (n) = f (n+1)− f (n) = (Λ− I) f (n) (2.3)

respectively, where I is the identity operator.
For any j ∈ Z, the Leibniz rule of ∆ operation is,

∆
j f =

∞

∑
i=0

(
j
i

)
(∆i f )(n+ j− i)∆ j−i,

(
j
i

)
=

j( j−1) · · ·( j− i+1)
i!

. (2.4)

So an associative ring F(∆) of formal pseudo difference operators (PDO) is obtained, namely
F(∆) =

{
R = ∑

d
j=−∞ f j(n)∆ j, f j(n) ∈ R,n ∈ Z

}
. The adjoint operator to the ∆ operator is given

by ∆∗,

∆
∗ f (n) = (Λ−1− I) f (n) = f (n−1)− f (n), (2.5)

where Λ−1 f (n) = f (n−1), and the corresponding j-times operation is

∆
∗ j f =

∞

∑
i=0

(
j
i

)
(∆∗i f )(n+ i− j)∆∗ j−i. (2.6)

Then the adjoint ring F(∆∗) to the F(∆) is obtained, and the formal adjoint to R ∈ F(∆) is defined
by R∗ ∈ F(∆∗) as R∗ = ∑

d
j=−∞ ∆∗ j f j(n). The ”∗ ” stands for the conjugate operation which satisfies

the rules as (FG)∗ = G∗F∗, ∆∗ = −∆, f ∗ = f for two operators F and G and f (n)∗ = f (n) for a
function f (n). Here for any (pseudo-) difference operator A and a function f , the symbol A( f ) will
indicate the action of A on f , whereas the symbol A f (or A · f ) will denote just operator product of
A and f .

The dKP hierarchy [17, 23] is a family of evolution equations depending on infinitely many
variables t = (t1, t2, · · ·)

∂L
∂ tk

= [Bk,L], Bk := (Lk)+, (2.7)

where L is a general first-order PDO

L(n) = ∆+
∞

∑
j=1

f j(n)∆− j. (2.8)

Bm = (Lm)+ = ∑
m
j=0 a j(n)∆ j, i. e. (Lm)+ is the non-negative projection of Lm, and (Lm)− = Lm−

(Lm)+ is the negative projection of Lm. The Lax operator in eq.(2.8) can be generated by a dressing
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operator

W (n; t) = 1+
∞

∑
j=1

w j(n; t)∆− j. (2.9)

through

L =W∆W−1. (2.10)

Further the flow equation (2.7) is equivalent to the so-called Sato equation,

∂W
∂ tk

=−(Lk)−W. (2.11)

If the functions q(t) and r(t) satisfy

∂q
∂ tk

= Bk(q),
∂ r
∂ tk

=−B∗k(r), (2.12)

then we call them the eigenfunction and the adjoint eigenfunction respectively.
The cdKP hierarchy [28] is defined by restricting the Lax operator of the dKP hierarchy

∂L
∂ tk

= [Bk,L], Bk := (Lk)+, (2.13)

with the following l-constrained form:

Ll = Ll
++

m

∑
i=1

qi∆
−1ri = ∆

l +
k−2

∑
j=0

v j∆
j +

m

∑
i=1

qi∆
−1ri, (2.14)

where qi and ri are the eigenfunction and adjoint eigenfunction respectively.

3. The Two Types Gauge Transformations Of The cdKP Hierarchy

Let L be the original Lax operator of the cdKP hierarchy (2.14), and T be a pseduo-difference
operator. If the transformation

L̃ = T LT−1 (3.1)

such that

∂ L̃
∂ tk

= [B̃k, L̃], B̃k = (L̃k)+, k = 1,2,3, · · · (3.2)

still holds for transformed Lax operator L̃, then T is called the gauge transformation operator of the
cdKP hierarchy.

Similar to the KP hierarchy [3], there are two types of gauge transformation operators of the
dKP hierarchy as [30, 35]

Type I : TD(q) = Λ(q)∆q−1, (3.3)

Type II : TI(r) = Λ
−1(r−1)∆−1r, (3.4)

where q and r are the eigenfunction and adjoint eigenfunction respectively. The type I transforma-
tion is called the difference type, while the type II is called the integral type.
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Here we review some results about the integral type and the difference type gauge transfor-
mations of the cdKP hierarchy [27]. Under the integral type gauge transformation TI(r), the trans-
formed Lax operator will be:

L̃ = TI(r)LTI(r)−1 = L̃++ L̃−, (3.5)

L̃+ = Λ
−1(L+)−Λ

−1(r−1)∆−1(∆∗(r−1L∗+r)≥1)
∗(r), (3.6)

L̃− = q̃0∆
−1r̃0 +

m

∑
i=1

q̃i∆
−1r̃i, (3.7)

q̃0 = Λ
−1(r−1), r̃0 = TI(r)∗−1L(0)∗(r), (3.8)

q̃i = TI(r)(qi), r̃i = TI(r)∗−1(ri). (3.9)

In order to preserve the form (2.14) of the Lax operator L, r is required to coincide with one of the
original adjoint eigenfunctions of L, e.g. r = r1, since r̃1 = 0 in this case.

Under the gauge transformation of TD(q), the transformed Lax operator reads as

L̃ = L̃++ L̃−, (3.10)

L̃+ = Λ(L+)+Λ(q)∆(q−1L+q)≥1∆
−1

Λ(q−1), (3.11)

L̃− = q̃0∆
−1r̃0 +

m

∑
i=1

q̃i∆
−1r̃i, (3.12)

q̃0 = TD(q)(L)(q), r̃0 = Λ(q−1), (3.13)

q̃i = TD(q)qi, r̃i = (T−1
D )∗(q)(ri). (3.14)

For the difference type gauge transformation TD(q), in order to preserve the form (2.14) of the Lax
operator L, q is required to coincide with one of the original adjoint eigenfunctions of L, e.g. q = q1,
since q̃1 = 0 in this case.

In order to calculate the transformed formula of the part as f ∆−1g in the Lax operator under the
integral type gauge transformation, the following lemma is necessary.

Lemma 3.1.

TI(ra) ·M∆
−1ra ·T−1

I (ra) = Λ
−1(r−1

a )∆−1{T ∗−1
I (ra)(M∆

−1ra)
∗(ra)

}
, (3.15)

TI(ra) ·qa∆
−1N ·TI(ra)

−1 = Λ
−1(r−1

a )r−1
a ∆

−1{T ∗−1
I (ra)(qa∆

−1N)∗(ra)
}

+L̃(q̃a)∆
−1Ñ, (3.16)

TI(ra) ·M∆
−1N ·TI(ra)

−1 = Λ
−1(r−1

a )∆−1{T ∗−1
I (ra)(M∆

−1N)∗(ra)
}

+M̃∆
−1Ñ, (3.17)

L̃k+1(q̃a) = TI(ra)Lk(qa), k = 0,1,2, ...., (3.18)

(L̃∗)k−1(r̃a) = TI(ra)
∗−1(L∗)k(ra), k = 1,2,3.... (3.19)

where ra is one of the adjoint eigenfunctions of the cdKP hierarchy (2.14), M and N are two func-
tions of t, and

L̃ = TI(ra)LTI(ra)
−1, q̃a = Λ

−1(1/ra), r̃a = TI(ra)
∗−1L∗(ra),

M̃ = TI(ra)(M), Ñ = TI(ra)
∗−1(N). (3.20)
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Proof. Firstly, according to ∆−1 f ∆−1 = (∆−1 f )∆−1−∆−1Λ(∆−1 f ) and ∆ f −Λ( f )∆ = ∆( f ),

TI(ra) ·M∆
−1N ·TI(ra)

−1 = Λ
−1(r−1

a )∆−1ra ·M∆
−1N · r−1

a ∆Λ
−1(ra)

= Λ
−1(r−1

a )

(
∆
−1(raM)∆−1−∆

−1
Λ(∆−1(raM))

)
Nr−1

a ∆Λ
−1(ra)

= Λ
−1(r−1

a )∆−1(raM)∆−1
(

∆Λ
−1(Nr−1

a )−∆Λ
−1(Nr−1

a )

)
Λ
−1(ra)

−Λ
−1(r−1

a )∆−1
(

∆Λ
−1(Λ(∆−1(raM))Nr−1

a )−∆(∆−1(raM)Λ−1(Nr−1
a ))

)
Λ
−1(ra)

= Λ
−1(r−1

a )∆−1(raM)Λ−1(N)−Λ
−1(r−1

a )∆−1(raM)∆−1
(

∆Λ
−1(Nr−1

a )

)
Λ
−1(ra)

−Λ
−1(r−1

a )∆−1(raM)Λ−1(N)+Λ
−1(r−1

a )∆−1
∆

(
∆
−1(raM)Λ−1(Nr−1

a )

)
Λ
−1(ra)

= TI(ra)(M)∆−1TI(ra)
∗−1(N)+Λ

−1(r−1
a )∆−1{TI(ra)

∗−1(M∆
−1N)∗(ra)

}
= M̃∆

−1Ñ +Λ
−1(r−1

a )∆−1{TI(ra)
∗−1(M∆

−1N)∗(ra)
}
.

So (3.17) is be proved. (3.15) can be derived from (3.17) for N = ra, since TI(ra)
∗−1(ra) = 0.

Then for (3.18),

L̃k+1(q̃a) = TI(ra)Lk+1TI(ra)
−1(Λ−1(r−1

a ))

= TI(ra)Lk(L++
k

∑
i=0

qi∆
−1ri)r−1

a ∆Λ
−1(ra)Λ

−1(r−1
a ) = TI(ra)Lk(qa).

Here we let qi∆
−1(0) = 0 for i 6= a, and qa∆−1(0) = qa. And (3.16) can be derived from (3.17) and

(3.18). At last,

TI(ra)
∗−1(L∗)k(ra) = TI(ra)

∗−1(L∗)k−1TI(ra)
∗TI(ra)

∗−1L∗(ra) = (L̃∗)k−1(r̃a).

In order to calculate the transformed formula of the part as f ∆−1g in the Lax operator under the
difference type gauge transformation, the following lemma is necessary.

Lemma 3.2.

TD(qa) ·M∆
−1ra ·TD(qa)

−1 = TD(qa)(M∆
−1ra)(qa)∆

−1
Λ(q−1

a )+ M̃∆
−1L̃∗(r̃a), (3.21)

TD(qa) ·qa∆
−1N ·TD(qa)

−1 = TD(qa)(qa∆
−1N)(qa)∆

−1
Λ(q−1

a ), (3.22)

TD(qa) ·M∆
−1N ·TD(qa)

−1 = TD(qa)(M∆
−1N)(qa)∆

−1
Λ(q−1

a )+ M̃∆
−1Ñ, (3.23)

L̃k−1(q̃a) = TD(qa)Lk(qa), k = 0,1,2, ..., (3.24)

(L̃∗)k(r̃a) = T ∗D(qa)
−1(L∗)k−1(ra), k = 1,2,3, ..., (3.25)

where ra is one of the adjoint eigenfunctions of the cdKP hierarchy (2.14), M and N are two func-
tions of t, and

L̃ = TD(qa)LTD(qa)
−1, q̃a = TD(qa)L(qa), r̃a = Λ(r−1

a ),

M̃ = TD(qa)(M), Ñ = TD(qa)
∗−1(N). (3.26)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

22



M.H. Li, J.P. Cheng and J.S. He / Constrained discrete Kadomtsev-Petviashvili hierarchy

Proof. Firstly, according to ∆−1 f ∆−1 = (∆−1 f )∆−1−∆−1Λ(∆−1 f ) and ∆ f −Λ( f )∆ = ∆( f ),

TD(qa) ·M∆
−1N ·TD(qa)

−1 = Λ(qa)∆q−1
a ·M∆

−1N ·qa∆
−1

Λ(q−1
a )

= Λ(qa)∆(q−1
a M)

(
∆
−1(Nqa)∆

−1−∆
−1

Λ(∆−1(qaN))

)
Λ(q−1

a )

= Λ(qa)

(
∆(q−1

a M∆
−1(Nqa))+Λ(q−1

a M∆
−1(Nq−1

a ))∆

)
∆
−1

Λ(q−1
a )

−Λ(qa)

(
∆(q−1

a M)+Λ(q−1
a M)∆

)
∆
−1

Λ(∆−1(Nqa))Λ
−1(q−1

a )

= Λ(qa)∆

(
q−1

a M∆
−1(Nqa)

)
∆
−1

Λ(q−1
a )+Λ(qa)Λ

(
q−1

a M∆
−1(Nqa)

)
Λ(q−1

a )

−Λ(qa)∆(q−1
a M)∆−1

Λ

(
∆
−1(Nqa)

)
Λ(q−1

a )−Λ(qa)Λ

(
q−1

a M∆
−1(Nqa)

)
Λ(q−1

a )

= Λ(qa)∆

(
q−1

a M∆
−1(Nqa)

)
∆
−1

Λ(q−1
a )−Λ(qa)∆(q−1

a M)∆−1 ·Λ∆
−1(Nqa)Λ(q−1

a )

= TD(qa)(M)∆−1TD(qa)
∗−1(N)+TD(qa)(M∆

−1N)(qa)∆
−1

Λ(q−1
a )

= M̃∆
−1Ñ +TD(qa)(M∆

−1N)(qa)∆
−1

Λ(q−1
a ).

So (3.23) is be proved. (3.22) can be derived from (3.23) for M = qa, since TD(qa)(qa) = 0.
For (3.24),

L̃k−1(q̃a) = TD(qa)Lk−1TD(qa)
−1TD(qa)L(q−1

a ) = TD(qa)Lk(qa).

Then (3.21) can be derived from (3.23) and (3.25).
At last, for (3.25),

T ∗D(qa)
−1(L∗)k+1(ra) = T ∗D(qa)

−1(L∗)kT ∗D(qa)T ∗D(qa)
−1L∗(ra) = (L̃∗)k(r̃a).

In order to prove the compatibility between the two types of the gauge transformation and the
additional symmetry, the following operator identities are necessary.

Lemma 3.3. Let q,r be suitable function and A be a PDO, then(
Λ
−1(r−1)∆−1rAr−1

∆Λ
−1(r)

)
− = Λ

−1(r−1)∆−1rA−r−1
∆Λ
−1(r)

−Λ
−1(r−1)∆−1

Λ
−1(r)∆(Λ−1(r−1A∗+r)), (3.27)(

Λ(q)∆q−1Aq∆
−1

Λ(q−1)
)
+
= Λ(q)∆q−1A+q∆

−1
Λ(q−1)

−Λ(q)∆(q−1A+(q))∆−1
Λ(q−1). (3.28)

Proof. With (Kq∆−1r)− = K(q)∆−1r,(q∆−1rK)− = q∆−1K∗(r) for pure-difference operator K
[28], (

Λ
−1(r−1)∆−1rAr−1

∆Λ
−1(r)

)
−

=
(
Λ
−1(r−1)∆−1rA−r−1

∆Λ
−1(r)

)
−+

(
Λ
−1(r−1)∆−1rA+r−1

∆Λ
−1(r)

)
−

= Λ
−1(r−1)∆−1rA−r−1

∆Λ
−1(r)−Λ

−1(r−1)∆−1
Λ
−1(r)∆(Λ−1(r−1A∗+r)),
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so the (3.27) is proved. For (3.28), with (Kq∆−1r)− = K(q)∆−1r,(
Λ(q)∆q−1Aq∆

−1
Λ(q−1)

)
+
=
(
Λ(q)∆q−1A+q∆

−1
Λ(q−1)

)
+

= Λ(q)∆q−1A+q∆
−1

Λ(q−1)−Λ(q)∆(q−1A+(q))∆−1
Λ(q−1).

Remark 1: This lemma is a difference-analogue of the corresponding identities of PDO given by
[2, 37].

4. Additional Symmetries Of The cdKP Hierarchy

Define

X (1)
k =

m

∑
i=1

k−1

∑
j=0

(
j− 1

2
(k−1)

)
Lk−1− j(qi)∆

−1(L∗) j(ri); k ≥ 1, (4.1)

which is the essential to ensure the compatibility of the additional Virasoro symmetry with the con-
straints (2.14) defining the cdKP hierarchy. The additional symmetry flows for the cdKP hierarchy,
spanning the Virasoro algebra, are given by [28]:

∂
∗
k L = [−(M∆Lk)−+X (1)

k−1,L]. (4.2)

M∆ is the Orlov-Schulman operator [38] defined in the dressing the “bare” M(0) operator:

M(0) = ∑
l≥1

ltl∆l−k = X(k)+∑
l≥1

(l + k)tl+k∆
l; X(k) =

k

∑
l=1

ltl∆l−k (4.3)

that is,

M∆ = WM(0)W−1 =WX(k)W
−1 +∑

l≥1
(l + k)tl+kLl = ∑

l≥0
(l + k)tl+kLl

++(M∆)−, (4.4)

(M∆)− = WX(k)W
−1− ktk−∑

l≥1
(l + k)tl+k

∂W
∂ tl

W−1, (4.5)

with (2.11) used in (4.5).
Then accordingly, the actions of the additional symmetry flows on the dressing operators and

BA functions are showed that:

∂
∗
k W =

(
−(M∆Lk)−+X (1)

k−1

)
W ; ∂

∗
k ψ(t,λ ) =

(
−(M∆Lk)−+X (1)

k−1

)
(ψ(t,λ )). (4.6)

The corresponding actions on the eigenfunctions qi and the adjoint eigenfunctions ri are derived by
considering (∂ ∗k L)− listed as follows [28]:

∂
∗
k qi = (M∆Lk)+(qi)+

k
2

Lk−1(qi)+X (1)
k−1(qi), (4.7)

∂
∗
k ri = −(M∆Lk)∗+(ri)+

k
2
(L∗)k−1(ri)− (X (1)

k−1)
∗(ri). (4.8)
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5. Additional Symmetries Versus Two Types Gauge Transformations

In this section, we will restrict to the cdKP hierarchy ((2.14) for m = 1, l = 1). And thus its Lax
operator is given by

L = ∆+q∆
−1r. (5.1)

In order to investigate the changes of the additional symmetries under the integral type gauge
transformation TI(r), some useful lemmas are needed.

Lemma 5.1.

TI(r)X
(1)
k−1TI(r)−1 = X̃ (1)

k−1 +
k−2

∑
j=0

L̃k− j−2(q̃)∆−1L̃ j(r̃)

+Λ(r−1)∆−1
{
(T ∗I (r))

−1(X (1)
k−1−

k
2

Lk−1)∗(r)
}
. (5.2)

Proof. According to Lemma 3.1 and (4.1), then

TI(r)X
(1)
k−1TI(r)−1

= −Λ
−1(r−1)∆−1TD(r)(X

(1)
k−1)

∗(r)+
k−2

∑
j=1

(
j− 1

2
(k−2)

)
L̃k− j−1(q̃)∆−1(L̃∗) j−1(r̃)

= −Λ
−1(r−1)∆−1TD(r)(X

(1)
k−1)

∗(r)+
k−2

∑
j=0

(
j− 1

2
(k−2)

)
L̃k− j−2(q̃)∆−1(L̃∗) j(r̃)

+
k−2

∑
j=0

L̃k− j−2(q̃)∆−1(L̃∗) j(r̃)−
(

1+ k−2− 1
2
(k−2)

)
q̃∆
−1(L̃∗)k−2(r̃)

= −Λ
−1(r−1)∆−1TD(r)(X

(1)
k−1)

∗(r)+ X̃ (1)
k−1 +

k−2

∑
j=0

L̃k− j−2(q̃)∆−1(L̃∗) j(r̃)

−k
2

r−1
∆
−1TI(r)∗−1(L∗)k−1(r)

= X̃ (1)
k−1 +

k−2

∑
j=0

L̃k− j−2(q̃)∆−1L̃ j(r̃)+ r−1
∆
−1
{

TI(r)∗−1(X (1)
k−1−

k
2

Lk−1)∗(r)
}
.

Lemma 5.2.

∂
∗
k TI(r) ·TI(r)−1 = Λ

−1(r−1)∆−1
{

TI(r)∗−1
(
−(M∆Lk)∗++

k
2
(L∗)k−1− (X (1)

k−1)
∗
)
(r)
}
. (5.3)
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Proof. By (4.8),

∂
∗
k TI(r) ·TI(r)−1 = −TI(r)∂ ∗k (TI(r)−1)

= Λ
−1(r−1)∆−1r−1

∂
∗
k (r)∆Λ

−1(r)−Λ
−1(r−1

∂
∗
k (r))

= Λ
−1(r−1)∆−1

(
∆Λ
−1(∂ ∗k (r)r

−1)−∆Λ
−1(∂ ∗k (r)r

−1)

)
Λ
−1(r)−Λ

−1(r−1
∂
∗
k (r))

= −Λ
−1(r−1)∆−1(∆Λ

−1(∂ ∗k (r)r
−1))Λ−1(r)

= Λ
−1(r−1)∆−1TI(r)∗−1

Λ
−1(∂ ∗k r)

= Λ
−1(r−1)∆−1

{
TI(r)∗−1

(
−(M∆Lk)∗++

k
2
(L∗)k−1− (X (1)

k−1)
∗
)
(r)
}
.

Theorem 5.1. The additional symmetry flows (4.2) for the cdKP hierarchy ((2.14) for m = 1, l = 1)
commute with the integral type transformations TI(r) preserving the form of cdKP hierarchy, up to
shifting of (4.2) by ordinary time flows, that is,

∂
∗
k L̃ = [−(M̃∆L̃k)−+ X̃ (1)

k−1, L̃]−
∂ L̃

∂ tk−1
. (5.4)

Proof. Firstly, by (4.2),

∂
∗
k L̃ = ∂

∗
k TI(r) ·LTI(r)−1 +TI(r)∂ ∗k L ·TI(r)−1−TI(r)LTI(r)−1 ·∂ ∗k TI(r) ·TI(r)−1

=
[
TI(r)

(
−(M∆Lk)−+X (1)

k−1

)
TI(r)−1 +∂

∗
k TI(r) ·TI(r)−1, L̃

]
(5.5)

Then with the help of (5.2), (5.3), and the following useful formula in Lemma.3.3, we have

TI(r)
(
−(M∆Lk)−+X (1)

k−1

)
TI(r)−1 +∂

∗
k TI(r) ·TI(r)−1

= TI(r)
(
−M∆Lk)−

)
T−1

I (r)−Λ
−1(r−1)∆−1

{
T ∗I (r)

−1
(
(M∆Lk)∗+−

k
2
(L∗)k−1 +(X (1)

k−1)
∗
)
(r)
}

+X̃ (1)
k−1 +

k−2

∑
j=0

L̃k− j−2(q̃)∆−1L̃ j(r̃)+Λ
−1(r−1)∆−1

{
TI(r)∗−1

(
(X (1)

k−1)
∗− k

2
(L∗)k−1

)
(r)
}

= −(M̃∆L̃k)−+ X̃ (1)
k−1 +(L̃k−1)−, (5.6)

where the following relation [28] is used,

(L̃k−1)− =
k−2

∑
j=0

L̃k− j−2(q̃)∆−1L̃ j(r̃). (5.7)

In the above process,

−TI(r)(M∆Lk)−T−1
I (r)−Λ

−1(r−1)∆−1T ∗I (r)
−1((M∆Lk)∗+(r))

=−TI(r)(M∆Lk)−T−1
I (r)+Λ

−1(r−1)∆−1(r(M∆Lk)+TI(r)−1)∗)

=−(M̃∆L̃k)−,

which can be got by means of the identity (3.27) of Lemma.3.3.
At last, the substituting (5.6) into (5.5) gives rise to (5.4).
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For the difference type gauge transformation TD(q), there are some lemma as following.

Lemma 5.3.

TD(q)X
(1)
k−1T−1

D (q) = X̃ (1)
k−1− (L̃k−1)−+

(
TD(q)(X

(1)
k−1 +

k
2

Lk−1(qi))

)
q∆
−1

Λ(q−1). (5.8)

Proof. According to Lemma 3.2 and (4.1), then

TD(q)X
(1)
k−1TD(q)−1

= Λ(q)∆q−1
k−2

∑
j=0

(
j− k−2

2

)
Lk− j−2(qi)∆

−1(L∗) j(ri)q∆
−1

Λ(q−1)

(3.23)
==

k−2

∑
j=0

(
j− k−2

2

)
TD(q)(Lk−2(qi)∆

−1ri)(q)∆−1
Λ(q−1)+ L̃k− j−3(q̃i)∆

−1(L̃∗) j+1(r̃i)

=
k−2

∑
j=0

(
j− k−2

2

)
TD(q)(Lk−2(qi)∆

−1ri)(q)∆−1
Λ(q−1)+

k−1

∑
j=1

(
j− k

2

)
L̃k− j−2(q̃i)∆

−1(L̃∗) j(r̃i)

= TD(q)(X
(1)
k−1)(q)∆

−1
Λ(q−1)+

k−1

∑
j=1

(
j− k−2

2

)
L̃k− j−2(q̃i)∆

−1(L̃∗) j(r̃i)

−
k−1

∑
j=1

L̃k− j−2(q̃i)∆
−1(L̃∗) j(r̃i)

=
k−2

∑
j=0

(
j− k−2

2

)
L̃k− j−2(q̃i)∆

−1(L̃∗) j(r̃i)−
k−2

∑
j=0

L̃k− j−2(q̃i)∆
−1(L̃∗) j(r̃i)

+TD(q)(X
(1)
k−1)(q)∆

−1
Λ(q−1)+

k
2

TD(q)(Lk−2(qi)∆
−1(L̃∗)0ri)(q)∆−1

Λ(q−1)

= X̃ (1)
k−1− (L̃k−1)−+

(
TD(q)(X

(1)
k−1 +

k
2

Lk−1(qi))

)
(q)∆−1

Λ(q−1).

Here we use the relation of TD(qa)(qa) = 0.

Lemma 5.4.

∂
∗
k TD(q) ·T−1

D (q) =−Λ(q)∆
(

q−1((M∆Lk)++
k
2

Lk−1 +X (1)
k−1)

)
(q)∆−1

Λ(q−1). (5.9)

Proof. By (4.7),

∂
∗
k TD(q) ·TD(q)−1 = −TD(q)∂ ∗k (TD(q)−1)

= −Λ(q)∆q−1
∂
∗
k (q)∆

−1
Λ(q−1)−Λ(q∂

∗
k (q
−1))

= −Λ(q)
(
Λ(q−1

∂
∗
k (q))∆+∆(q−1

∂
∗
k (q))

)
∆
−1

Λ(q−1)−Λ(q∂
∗
k (q
−1))

= −Λ(q)∆(q−1
∂
∗
k (q))∆

−1
Λ(q−1)

= −Λ(q)∆
(

q−1((M∆Lk)++
k
2

Lk−1 +X (1)
k−1)

)
(q)∆−1

Λ(q−1).
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Theorem 5.2. The additional symmetry flows (4.2) for the cdKP hierarchy ((2.14) for m = 1, l = 1)
commute with the difference type gauge transformation TD(q) preserving the form of cdKP , up to
shifting of (4.2) by ordinary time flows, that is,

∂
∗
k L̃ =

[
−(M̃∆L̃k)−+ X̃ (1)

k−1, L̃
]
+

∂ L̃
∂ tk−1

. (5.10)

Proof. Firstly, by (4.2),

∂
∗
k L̃ = ∂

∗
k
(
TD(q)LT−1

D (q)
)

= ∂
∗
k TD(q) ·LTD(q)−1 +TD(q)∂ ∗k L ·T−1

D (q)−TD(q)LT−1
D (q) ·∂ ∗k TD(q) ·T−1

D (q)

= ∂
∗
k TD(q) ·T−1

D (q)L̃+TD(q)[−(M∆Lk)−+X (1)
k−1,L]T

−1
D (q)− L̃T−1

D (q) ·∂ ∗k TD(q)

=
[
TD(q)

(
−(M∆Lk)−+X (1)

k−1

)
T−1

D (q)+∂
∗
k TD(q) ·TD(q)−1, L̃

]
. (5.11)

Then with the help of (5.8), (5.9), and the following useful formula (3.9) in [27], we have

TD(q)
(
−(M∆Lk)−+X (1)

k−1

)
T−1

D (q)+∂
∗
k TD(q) ·T−1

D (q)

= −TD(q)(M∆Lk)−T−1
D (q)+TD(q)X

(1)
k−1T−1

D (q)+∂
∗
k TD(q) ·T−1

D (q)

= −TD(q)(M∆Lk)−T−1
D (q)+ X̃ (1)

k−1 +

(
TD(q)(X

(1)
k−1 +

k
2

Lk−1(qi))

)
(q)∆−1

Λ(q−1)

−(L̃k−1)−−TD(q)
{
(M∆Lk)++

k
2

Lk−1 +X (1)
k−1

}
(T−1

D (q))

= −(M̃∆L̃k)−+ X̃ (1)
k−1− (L̃k−1)−, (5.12)

where the following relation [28] is used,

(L̃k−1)− =
k−2

∑
j=0

L̃k− j−2(q̃)∆−1L̃ j(r̃). (5.13)

In the above process,

−TD(q)(M∆Lk)−T−1
D (q)−TD(q)(M∆Lk)+(T−1

D (q))

= −TD(q)(M∆Lk)T−1
D (q)+TD(q)(M∆Lk)+T−1

D (q)−TD(q)(M∆Lk)+(T−1
D (q))

= −(M̃∆L̃k)+(M̃∆L̃k)+

= −(M̃∆L̃k)−,

which can be got by means of the identities (3.28) of Lemma.3.3.
At last, the substituting (5.12) into (5.11) gives rise to

∂
∗
k L̃ =

[
−(M̃∆L̃k)−+ X̃ (1)

k−1− (L̃k−1)−, L̃
]

=
[
−(M̃∆L̃k)−+ X̃ (1)

k−1, L̃
]
−
[
(L̃k−1)−, L̃

]
=
[
−(M̃∆L̃k)−+ X̃ (1)

k−1, L̃
]
+

∂ L̃
∂ tk−1

.
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Remark 2: When m is not 1, Theorem 5.1 and Theorem 5.2 do not hold. We make a example for
the integral type transformations TI(r) in Theorem 5.1. In fact, when m > 1, (5.2) will become into

TI(ra)X
(1)
k−1TI(ra)

−1 = X̃ (1)
k−1 +

k−2

∑
j=0

L̃k− j−2(q̃a)∆
−1L̃ j(r̃a)

+Λ
−1(r−1

a )∆−1
{

TI(ra)
∗−1(X (1)

k−1−
k
2

Lk−1)∗(ra)

}
, (5.14)

where ra is one of the adjoint eigenfunctions in (2.14). The term ∑
k−2
j=0 L̃k− j−2(q̃a)∆

−1L̃ j(r̃a) in (5.14)
will cause the difficulty for the proof of Theorem 5.1. Actually, for m > 1 [13],

(L̃k−1)− =
m

∑
a=1

k−2

∑
j=0

L̃k− j−2(q̃a)∆
−1L̃ j(r̃a),

so the term ∑
k−2
j=0 L̃k− j−2(q̃a)∆

−1L̃ j(r̃a) can not be written as (L̃k−1)− like the condition of m = 1,
which is corresponding to

∂tk−1 L̃ =−[L̃k−1
− , L̃].

So for m > 1, Theorem 5.1 does not hold.
Remark 3: For simplicity, it is proved for l = 1 in Theorem 5.1 and Theorem 5.2. But for l 6= 1 it is
also satisfied for Theorem 5.1 and Theorem 5.2.

6. Conclusions And Discussions

After some technical identities of two types gauge transformations of the cdKP hierarchy, the inter-
play of the integral type gauge transformation TI and the difference type gauge transformation TD

with the additional symmetry at the instance of the cdKP hierarchy are obtained in Theorem 5.1,
Theorem 5.2 (see (5.4, 5.10)), which preserves the form of the additional symmetry of the cdKP
hierarchy, up to shifting of the corresponding additional flows by ordinary time flows. Nonetheless
the shifting is different from the integral type gauge transformation and the difference type gauge
transformation of the cdKP hierarchy. It reflects one of the intrinsic features for the cdKP hierarchy.
These results provide a mathematical background from the point of view of integrable systems of
the potential applications in physics for the additional symmetry flows of the cdKP hierarchy.
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