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In this paper we present a dynamical study of the exact nonlinear Pollard wave solution to the geophysical
water-wave problem in the f -plane approximation. We deduce an exact dispersion relation and we discuss
some properties of this solution.

1. Introduction

The early exact deep water-wave solution by Gerstner [13], rediscovered by Rankine [26], (for a
modern exposition see the papers [1] and [14]), was further modified to described edge waves prop-
agating along a sloping beach - in an implicit form by Yih [29] (see also Mollo-Christensen [24])
and in an explicit form by Constantin [2] - and free surface waves in a rotating fluid by Pollard [25].
Some steps further to describe edge waves in rotating fluids by modifying Gerstner’s exact solu-
tion, were made by Mollo-Christensen [23] and Weber [28]. By considering the motion of a fluid
in a reference frame rotating with uniform angular velocity, Coriolis effects play an important role.
In geophysical fluid dynamics, the rotating reference frame encountered is the Earth. In regions
near the Equator, the Coriolis effects are taken only partially into account, the f -plane approxi-
mation and the β -plane approximation are commonly used (see [6], [9], and [27], [11], [12], [16],
respectively). Constantin [5], [7] found exact Gerstner-like 3-dimensional solutions to the nonlinear
governing equations for geophysical water waves in the β -plane approximation near the Equator.
Geophysical edge wave solutions along a sloping beach with the shoreline parallel to the Equator
were provided in the f -plane approximation by Matioc [22] and by Ionescu-Kruse [18], and in the
β -plane approximation by Ionescu-Kruse [19].

In this paper, following Pollard [25], we present the exact nonlinear 3-dimensional solution (2.6)
to the geophysical water-wave problem in the f -plane approximation. We deduce the dispersion
relation (2.10) for the propagation speed. The fluid particles move on circles which lie in planes
slightly tilted from the vertical, the surface wave profile is a smooth trochoid in this plane. The flow
(2.6) is rotational, we will see that its vorticity (3.12) is non-zero.

An advantage of solutions in the Lagrangian framework, beside revealing the qualitative prop-
erties of the physical fluid motion, is the possibility of a stability/instability analysis by the short-
wavelength instability method. This method was applied by Leblanc [20] for Gerstner’s waves, by
Constantin and Germain [8] for the equatorially trapped waves [5], by Ionescu-Kruse [17] for the
edge waves [1]. We mention the potential applicability of the short-wavelength instability method
to the Pollard wave solution.
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2. Pollard’s equatorial waves

For oceanic motion within 2o latitude from the Equator, it is adequate to use the f -plane approxi-
mation in the governing equations (see the discussion in [6] and more recently in [9]). The ocean is
considered to be an incompressible inviscid fluid of constant density ρ0 rotating counterclockwise
around a vertical axis with a constant angular velocity Ω := f

2 , f being the Coriolis parameter. We
chose a Cartesian coordinate system with the x- and y-axes along the undisturbed ocean surface and
z-axis pointing vertically upwards. The governing equations of fluid motion are the following ( [12])

ut +uux +wuy + vuz− f v = − px
ρ0
,

wt +uwx +wwy + vwz + f u = − py
ρ0
,

vt +uvx +wvy + vvz = − pz
ρ0
−g,

(2.1)

ux +wy + vz = 0. (2.2)

Here (u,w,v) is the velocity field of the fluid, p is the pressure, t represents time and g = 9,8m/s2

is the constant gravitational acceleration at the Earth’s surface.
The ocean is assumed infinitely deep and of unlimited horizontal extent. The appropriate boundary
conditions are the dynamic boundary condition ( [4])

p = patm on the free surface z = η(t,x,y), (2.3)

patm being the constant atmospheric pressure, and the kinematic boundary condition

w = ηt +uηx + vηy on the free surface z = η(t,x,y). (2.4)

We also assume that at great depth there is practically no motion, that is,

(u,v,w)→ (0,0,0) as z→−∞. (2.5)

The 3-dimensional flow described at any time t by the following coordinates of the fluid particles

x = q− akc2

g e
k2c2

g s sin[k(q− ct)],

y = r+ f ac
g e

k2c2
g s cos[k(q− ct)],

z = s+ae
k2c2

g s cos[k(q− ct)],

(2.6)

yields the Pollard wave solution in the f -plane approximation. Associated with the flow (2.6) there
is a unique pressure satisfying the geophysical water-wave problem (2.1)-(2.5) given by

p = p(s) = ρ0
a2k2c2

2

[
e2 k2c2

g s− e2 k2c2
g s0

]
−ρ0g(s− s0)+ patm. (2.7)

In (2.6) and (2.7), (q,r,s) are the Lagrangian labels, k > 0 is a fixed wave number, a is a parameter
and c is the wave speed. The label domain is given by real values of q, r and s, with

s≤ s0, s0 < 0 being fixed. (2.8)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

524



D. Ionescu-Kruse / On Pollard’s wave solution at the Equator

The expression of the wave speed c and a condition on the parameter a are determined so that (2.6)
satisfies the equations (2.1)-(2.4). We will get the following upper bound for the parameter a

a2 ≤ g2

k4c4 (2.9)

and the following dispersion relation for c

c2 =
f 2 +

√
f 4 +4g2k2

2k2 . (2.10)

Let us see that (2.6) is a solution to the problem (2.1)-(2.5). The incompressibility equation (2.2)
requires that the determinant of the Jacobian matrix of (2.6) be independent of time. The Jacobian
matrix of (2.6) is given by


∂x
∂q

∂y
∂q

∂ z
∂q

∂x
∂ r

∂y
∂ r

∂ z
∂ r

∂x
∂ s

∂y
∂ s

∂ z
∂ s

=


1− ak2c2

g e
k2c2

g s cosθ − f akc
g e

k2c2
g s sinθ −ake

k2c2
g s sinθ

0 1 0

−ak3c4

g2 e
k2c2

g s sinθ f ak2c3

g2 e
k2c2

g s cosθ 1+ ak2c2

g e
k2c2

g s cosθ

 , (2.11)

where

θ := k(q− ct). (2.12)

Thus, the determinant D of the Jacobian matrix (2.11),

∆ = 1− a2k4c4

g2 e2 k2c2
g s, (2.13)

is time independent. We have to impose the condition

∆ 6= 0, (2.14)

so that the transformation (2.6) is a local change of coordinates. Taking into account (2.8), the
condition (2.14) becomes

a2k4c4

g2 e2 k2c2
g s0 < 1, (2.15)

and thus we get (2.9).
The Euler equations (2.1) are written in Lagrangian form as follows

Du
Dt − f v = − px

ρ0
,

Dv
Dt + f u = − py

ρ0
,

Dw
Dt = − pz

ρ0
−g,

(2.16)
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where D
Dt denotes the material derivative in time. From (2.6), the particle velocity is given by

u = ak2c3

g e
k2c2

g s cos[k(q− ct)],

v = f akc2

g e
k2c2

g s sin[k(q− ct)],

w = akce
k2c2

g s sin[k(q− ct)],

(2.17)

and the particle acceleration by

Du
Dt =

ak3c4

g e
k2c2

g s sin[k(q− ct)],

Dv
Dt =− f ak2c3

g e
k2c2

g s cos[k(q− ct)],

Dw
Dt =−ak2c2e

k2c2
g s cos[k(q− ct)].

(2.18)

Substituting (2.18) into (2.16) yields the system

px = −ρ0

[
ak3c4

g e
k2c2

g s sin[k(q− ct)]− f v
]

(2.17)
= −ρ0

[
k2c2− f 2

] akc2

g e
k2c2

g s sin[k(q− ct)],

py = −ρ0

[
− f ak2c3

g e
k2c2

g s cos[k(q− ct)]+ f u
]

(2.17)
= 0,

pz = −ρ0

[
−ak2c2e

k2c2
g s cos[k(q− ct)]+g

]
.

(2.19)

Therefore, from 
pq

pr

ps

=


∂x
∂q

∂y
∂q

∂ z
∂q

∂x
∂ r

∂y
∂ r

∂ z
∂ r

∂x
∂ s

∂y
∂ s

∂ z
∂ s




px

py

pz

 , (2.20)

we get in terms of the Lagrangian labels the following system

pq = −ρ0(k2c4− f 2c2−g2)ak
g e

k2c2
g s sin[k(q− ct)]

[
1− ak2c2

g e
k2c2

g s cos[k(q− ct)]
]
,

pr = 0,

ps = −ρ0

[
−(k2c4− f 2c2−g2)a2k4c4

g3 e2 k2c2
g s sin2[k(q− ct)]− a2k4c4

g e2 k2c2
g s +g

]
.

(2.21)

From the symmetry of the second derivatives with respect to the Lagrangian labels, that is, pqs = psq,
it follows that

k2c4− f 2c2−g2 = 0. (2.22)
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The equation (2.22) yields the dispersion relation (2.10). We also conclude that the pressure does
not depend on the Lagrangian labels r and q. We find the following pressure function for which
(2.21) holds:

p = p(s) = ρ0
a2k2c2

2
e2 k2c2

g s−ρ0gs+ const. (2.23)

The free surface is obtained by setting s = s0 in (2.6). The kinematic boundary condition (2.4),
which states that all surface particles remain confined to the surface, simply holds. By requiring
(2.3), from (2.23) we obtain the explicit determination of the pressure (2.7) at any particle during
the flow (2.6).�

3. Discussion

Let us emphasize some properties of the nonlinear 3-dimensional wave (2.6). The particle orbits
while still circular lie in planes slightly tilted from the vertical. Indeed, with (2.22) in view, each
particle identified by the Lagrangian labels (q, r, s), follows the circle

(x−q)2 +(y− r)2 +(z− s)2 = a2k2c4

g2 e2 k2c2
g s,

ay− f ac
g z−ar+ f ac

g s = 0,

(3.1)

centered at (q,r,s), whose radius is akc2

g e
k2c2

g s. The motion is identical in all planes parallel to the
plane

ay− f
ac
g

z−ar+ f
ac
g

s = 0. (3.2)

This plane, having the normal npl = (0,a,− f ac
g ), makes the angle

α = arctan
(

f
c
g

)
(3.3)

with the vertical axis n = (0,1,0). The motion of another particle is obtained by changing the values
of the Lagrangian labels q, r, s, such that q, r, s are in a plane which normal makes the angle α (3.3)
with the vertical axis n = (0,1,0), that is, they satisfy

−ar+ f
ac
g

s+C = 0, (3.4)

C being a real constant. By setting s = s0 in (2.6), we get the following surface wave profile

x = q− akc2

g e
k2c2

g s0 sin[k(q− ct)],

y = C
a + f c

g s0 + f ac
g e

k2c2
g s0 cos[k(q− ct)],

z = s0 +ae
k2c2

g s0 cos[k(q− ct)],

(3.5)

q ∈ R is the parameter of the curve. With s0 < 0, the above formula represents the parametrization
of a smooth trochoid in the plane tilted at the angle α to the vertical.
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Concerning the dispersion relation (2.10), dispersion relation which is different from the ones
obtained in [5], [7], [16], we observe that if the wave travels along the the Equator from west to
east, then

c = c+ =

√
f 2 +

√
f 4 +4g2k2

√
2k

, (3.6)

if it travels along the Equator from east to west, then

c = c− =−

√
f 2 +

√
f 4 +4g2k2

√
2k

. (3.7)

Thus, the direction of propagation has no influence on the speed of the wave as c+ =−c−.
The dispersion relation (2.10) may be written as

c2 =
g
k

1
2

f 2

gk
+

√
1+
(

1
2

f 2

gk

)2
 . (3.8)

If the Coriolis force is ignored, that is, f = 0, the dispersion relation reduced to the dispersion
relation for deep-water waves

c2 =
g
k
. (3.9)

As pointed out by Pollard [25], for surface waves on the Earth,
√

gk≈ 1 and f ≈ 10−4 sec−1, which
make f√

gk ≈ 10−4, and thus, Earth’s rotation modifies the dispersion relation for deep-water waves

by O(10 −8).
The waves (2.6) are rotational, they can be generated by irrotational forces in a rotating system.

The inverse of the Jacobian matrix (2.11) has the expression


∂q
∂x

∂ r
∂x

∂ s
∂x

∂q
∂y

∂ r
∂y

∂ s
∂y

∂q
∂ z

∂ r
∂ z

∂ s
∂ z

=



1+ ak2c2
g e

k2c2
g s cosθ

∆
f akc

g∆
e

k2c2
g s sinθ

ak
∆

e
k2c2

g s sinθ

0 1 0

ak3c4

g2∆
e

k2c2
g s sinθ − f ak2c3

g2∆
e

k2c2
g s cosθ + a2k4c5

g3∆
e2 k2c2

g s 1− ak2c2
g e

k2c2
g s cosθ

∆


(3.10)

From (2.17) and (3.10), by straightforward calculation, we can express the vorticity

γ = (γ1,γ2,γ3) = (wy− vz,uz−wx,vx−uy) (3.11)
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of the fluid flow in the Lagrangian labels as

γ1 = − f ak3c4

g2∆
e

k2c2
g s sinθ ,

γ2 = ak2c
∆

(
k2c4

g2 −1
)

e
k2c2

g s cosθ − a2k4c3

g∆

(
k2c4

g2 +1
)

e
2k2c2

g s

(2.22)
= f 2 ak2c3

g2∆
e

k2c2
g s cosθ − f 2 a2k4c2

g3∆
e

2k2c2
g s− 2a2k4c3

g∆
e

2k2c2
g s,

γ3 = f ak2c2

g∆
e

k2c2
g s
(

cosθ + ak2c2

g e
k2c2

g s
)
.

(3.12)

In the non-geophysical case f = 0, the first and the third component of the vorticity are identically
zero and the second component is different from zero; if a takes its upper value (2.9), then, this
second component becomes the vorticity of a Gerstner wave.
We point out that the fact that all particle paths are closed is a peculiar feature of this rotational
3-dimensional flow – in irrotational 2-dimensional flows with or without underlying currents, there
are no closed particle paths, cf. the discussion in the papers [3], [10], [15].
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