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We prove that a solution to the gravity water wave problem with constant vorticity, whose wave profile as
well as its horizontal velocity component at the free surface are symmetric at any instant of time, is given by a
traveling wave. The proof is based on maximum principles and structural properties of the governing equations.
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1. Introduction

Symmetry is ubiquitous for two-dimensional traveling waves in the absence of underlying currents
[11, 17, 20]. It turns out that if the free surface is monotone between successive crests and troughs,
then the wave is always symmetric — this holds true as well for waves with underlying currents, at
least in the absence of stagnation points [2, 3].

While water flows that originate in the state of irrotational flow are irrotational everywhere
at all times thereafter (see [1]), non-uniform currents often exist before the waves are generated
and in this case their effect has to be taken into consideration, cf. [18, 19]. The investigation of
wave-current interactions is quite intricate (experimentally, as well as theoretically), but, within the
framework of two-dimensional flows, the vorticity of a particle is preserved as the particle moves
about (see [1]) and this permits us to classify in such a setting wave-current interactions in terms of
the vorticity distribution of the flow. In particular, non-zero vorticity is the hallmark of non-uniform
underlying currents. For rotational water waves, the qualitative properties of the underlying flow
can be described to good accuracy by considering the mean vorticity instead of the precise vorticity
distribution, cf. [9, 13]. This observation and the importance of vorticity in the modeling of ocean
flows (since near-surface ocean currents are primarily caused by the wind — see e.g. the discussion
in [4]) naturally leads to the study of traveling waves in flows with constant vorticity (see [2, 3, 6]).
Moreover, the most regular and significant currents on areas of the continental shelf are the tidal
currents, and the induced shear is usually viewed as having constant vorticity [5]: positive for the
ebb current (associated with a falling tide) and negative for the flood current (associated with a rising
tide) — the tidal currents being the alternating horizontal movements of water associated with the
rise and fall of the tide. Note that a non-zero constant vorticity induces new dynamical features with
respect to the case of irrotational flows, e.g. the possible appearance of Kelvin cat’s eyes — see
the discussion in [8, 21]. For recent numerical simulations of the flow pattern in a water wave with
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constant vorticity we refer to [5,14,15], while theoretical investigations of waves of large amplitude
in flows with constant vorticity are pursued in [7].

In the following we will show that the symmetry results for irrotational water waves obtained
recently in [16] can be adapted to the case of constant vorticity. The key to this is the fact that each
component of the velocity field is harmonic, even if they are not harmonic conjugates of each other.

2. The governing equations

The governing equations for an ideal, incompressible, homogeneous fluid in two spatial dimensions
in the presence of gravity are given by Euler’s equations

ut +uux + vuy =−Px,

vt +uvx + vvy =−Py−g,

}
(2.1)

and the equation of mass conservation

ux + vy = 0, (2.2)

where (u,v) = (u(x,y, t),v(x,y, t)) is the velocity field, P = P(x,y, t) is the pressure and g ≈ 9.81
m/s2 is the acceleration of gravity at the surface of the Earth. We assume that the fluid cannot
penetrate a flat bed, hence

v = 0 on y =−d, (2.3)

where d is the mean depth. The mathematically convenient assumption of a flat, horizontal bed
is motivated practically by waves propagating in a canal but also by waves at the surface of the
sea, since abyssal plains — the flattest areas on Earth, with an almost total absence of geographic
features — are found in all major sea and ocean basins, covering overall almost a third of the Earth’s
surface (as much as all land above water). Modeling a free surface flow, we additionally require that
the motion of the flow is decoupled from the motion of the air above, since the density of water is
about 103 times greater than that of the air. This is reflected by the requirement that the pressure is
constant at the free surface

P = Patm on y = η(x, t), (2.4)

where Patm is the (constant) atmospheric pressure, while y = η(x, t) is the graph of the free surface;
moreover, the constraint

v = ηt +uηx for y = η(x, t), (2.5)

should hold — this kinematic boundary condition expresses the fact that the free surface is an
interface (particles on it are confined to it). In the following, we are dealing with flows of constant
vorticity, which is expressed by

uy− vx = γ, (2.6)

for some constant γ ∈ R. Equations (2.1-2.6) constitute the governing equations for the water wave
problem with constant vorticity. For a detailed derivation and physical background of the above
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equations, we refer to [1, 12]. The functions u,v,P and η are assumed to be smooth and L-periodic
in the x-variable. At any instant of time, the unknown fluid domain is given by

Ω = Ω(t) = {(x,y) ∈ R2 : 0 < x < L,−d < y < η(x, t)}.

3. Main Result

The stream function ψ(x,y, t) is defined as a solution to the system

ψy(x,y, t) = u(x,y, t),

ψx(x,y, t) =−v(x,y, t),

}
(3.1)

at any instant of time. With a look at (2.2) it may be written explicitly as

ψ(x,y, t) =
∫ (x,y)

(x0,y0)
udy− vdx, (3.2)

where integral has to be taken along any path in the fluid domain joining some fixed point (x0,y0)

and (x,y). The function ψ is L-periodic in the x-variable and satisfies Poisson’s equation

∆ψ = γ (3.3)

in the fluid domain Ω.

Theorem 3.1. Let (u,v,P,η) be an x-periodic solution to the water wave problem with constant
vorticity (2.1)-(2.6) with the property that the free surface η as well as the horizontal component u
at the surface are both symmetric about an axis of symmetry x = λ (t) at any instant of time. Then
the solution defines a traveling wave.

The first assumption reads as

η(x, t) = η(2λ (t)− x, t) (3.4)

at any instant of time, while the second assumption reads as

u(x,η(x, t), t) = u(2λ (t)− x,η(x, t), t) (3.5)

at any instant of time. We will use the following lemma, derived in [10], to prove that the flow is
that of a traveling wave.

Lemma 3.1. Only traveling wave solutions solution to the governing equations (2.1)-(2.6) have the
property that

u(x,y, t) = u(2λ (t)− x,y, t), (3.6)

v(x,y, t) =−v(2λ (t)− x,y, t), (3.7)

P(x,y, t) = P(2λ (t)− x,y, t), (3.8)

η(x, t) = η(2λ (t)− x, t) (3.9)

throughout the fluid domain.
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Proof. We will show by maximum principles that the function

Ψ(x,y, t) := ψ(x,y, t)−ψ(2λ (t)− x,y, t), (3.10)

which is L-periodic, harmonic by (2.6) and zero at the flat bed by (2.3), is identically zero in Ω.
If both the maximum and the minimum would be attained at the flat bed, where Ψ = 0 by (2.3),
the function Ψ would already be identically zero. So assume without loss of generality that the
maximum of Ψ is attained at the free surface. The tangential derivative of Ψ at the maximum is
zero,

d
dx

Ψ(x,η(x, t), t) =−v(x,η , t)− v(2λ − x,η , t)+ηx(u(x,η , t)−u(2λ − x,η , t)) = 0, (3.11)

in view of (3.1), which implies with assumption (3.5) that

v(x,η , t) =−v(2λ − x,η , t) (3.12)

at the maximum. Hopf’s Lemma implies that the outward normal derivative at a maximum would
be strictly positive, that is to say

ηx(v(x,η , t)+ v(2λ − x,η , t))+u(x,η , t)−u(2λ − x,η , t)> 0, (3.13)

which is clearly a contradiction in view of (3.5) and (3.12). We infer that ψ(x,y, t) = ψ(2λ −x,y, t)
for all (x,y) ∈Ω and hence by (3.1)

u(x,y, t) = u(2c(t)− x,y, t) (3.14)

v(x,y, t) =−v(2c(t)− x,y, t) (3.15)

throughout the fluid.
Applying Hopf’s maximum principle to the function P̃(x,y, t) := P(x,y, t)−P(2λ (t)−x,y, t), which
is harmonic in view of (2.1), (2.2) and (3.14), at the flat bed in combination with the boundary con-
dition (2.3) and the second Euler equation in (2.1), we deduce that P̃(x,y, t)≡ 0 in Ω and therefore
that the pressure is symmetric. By lemma (3.1), the flow defines a traveling wave.
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