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It is shown that A := H1,η (G), the sympectic reflection algebra over C, has TG independent traces, where TG is
the number of conjugacy classes of elements without eigenvalue 1 belonging to the finite group G⊂ Sp(2N)⊂
End(C2N) generated by the system of symplectic reflections.

Simultaneously, we show that the algebra A, considered as a superalgebra with a natural parity, has SG
independent supertraces, where SG is the number of conjugacy classes of elements without eigenvalue −1
belonging to G.

We consider also A as a Lie algebra AL and as a Lie superalgebra AS.
It is shown that if A is a simple associative algebra, then the supercommutant [AS,AS] is a simple Lie

superalgebra having at least SG independent supersymmetric invariant non-degenerate bilinear forms, and the
quotient [AL,AL]/([AL,AL]∩C) is a simple Lie algebra having at least TG independent symmetric invariant
non-degenerate bilinear forms.
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1. Introduction

In [7], it was shown that HW (R)(η), the algebra of observables of the rational Calogero model based
on the root system R⊂RN , has TR independent traces, where TR is the number of conjugacy classes
of elements without eigenvalue 1 belonging to the Coxeter group W (R) ⊂ End(RN) generated by
the root system R, and that the algebra HW (R)(η), considered as a superalgebra with a natural parity,
has SR independent supertraces, where SR is the number of conjugacy classes of elements without
eigenvalue −1 belonging to W (R).

Unlike the case of finite-dimensional associative algebras, the presence of several (super)traces
on the infinite-dimensional superalgebra HW (R)(η) in the case of irreducible R does not necessarily
imply violation of simplicity except certain particular values of parameter(s) η .

It is easy to show that HW (R)(η) = H1,η(W (R)), where Ht,η(G) is a symplectic reflection alge-
bra introduced in [2] for any finite group G⊂ Sp(2N) generated by symplectic reflections. Here we
extend the results of [7] from H1,η(W (R)) to H1,η(G).

Journal of Nonlinear Mathematical Physics, Vol. 21, No. 3 (September 2014), 308-335

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

308



S.E. Konstein, I.V. Tyutin

Besides, we consider Lie (super)algebras generated by H1,η(G) and invariant (super)symmetric
bilinear forms on these Lie (super)algebras generated by the traces and supertraces.

2. Preliminaries

2.1. Traces

Let A be an associative superalgebra with parity π . All expressions of linear algebra are given
for homogenous elements only and are supposed to be extended to inhomogeneous elements via
linearity.

A linear function str on A is called a supertrace if

str( f g) = (−1)π( f )π(g)str(g f ) for all f ,g ∈A .

A linear function tr on A is called a trace if

tr( f g) = tr(g f ) for all f ,g ∈A .

Let κ =±1. We can unify the definitions of trace and supertrace by introducing a κ-trace. We
say that a linear functiona sp on A is a κ-trace if

sp( f g) = κπ( f )π(g)sp(g f ) for all f ,g ∈A . (2.1)

A linear function L is even (resp. odd) if L( f ) = 0 for any odd (resp. even) f ∈A .
Clearly, any linear function L can be decomposed in the sum L= L++L− of even linear function

L+ and odd linear function L−.
Observe that each odd trace is simultaneously an odd supertrace and vice versa.
Let A1 and A2 be associative superalgebras with parities π1 and π2 , respectively.
Define their tensor productb A = A1⊗A2 as a superalgebra with the product

(a1⊗a2)(b1⊗b2) = (a1b1)⊗ (a2b2) for any a1,b1 ∈A1, a2,b2 ∈A2

and the parity π defined by the formula π(a1⊗a2) = π1(a1)+π2(a2).
Let Ti be a trace on Ai. Clearly, the function T such that T (a⊗b) = T1(a)T2(b) is a trace on A .
Let Si be an even supertrace on Ai. Clearly, the function S such that S(a⊗b) = S1(a)S2(b) is an

even supertrace on A .
In what follows, we use three types of brackets:

[ f ,g] = f g−g f ,

{ f ,g} = f g+g f ,

[ f ,g]κ = f g−κπ( f )π(g)g f .

Every κ-trace sp(·) on superalgebra A generates the following bilinear form on A :

Bsp( f ,g) := sp( f g) for any f ,g ∈A . (2.2)

aFrom the German word Spur.
bIn this paper we do not need the supertensor product introduced by setting

(a1⊗a2)(b1⊗b2) = (−1)π1(b1)π2(a2)(a1b1)⊗ (a2b2) for any a1,b1 ∈A1, a2,b2 ∈A2.
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It is obvious that if such a bilinear form Bsp is degenerate, then the null-vectors of Bsp (i.e.,
v ∈ A such that B(v,x) = 0 for any x ∈ A ) constitute the two-sided ideal I ⊂ A . If the κ-trace
generating degenerate bilinear form is homogeneous (even or odd), then the corresponding ideal is
a superalgebra.

If κ = −1, the ideals of this sort are present, for example, in the superalgebras H1,η(A1) (cor-
responding to the two-particle Calogero model) at η = k + 1

2 , see [13], and in the superalgebras
H1,η(A2) (corresponding to three-particle Calogero model) at η = k + 1

2 and η = k± 1
3 , see [5],

for every integer k. For all other values of η all supertraces on these superalgebras generate non-
degenerate bilinear forms (2.2).

The general case of H1,η(An−1) for arbitrary n is considered in [10]. Theorem 5.8.1 of [10] states
that the associative algebra H1,η(An−1) is not simple if and only if η = q

m , where q,m are mutually
prime integers such that 1 < m6 n, and presents the structure of corresponding ideals.

The dimension of the space of supertraces on H1,η(An−1) is the number of partitions of n > 1
into the sum of different positive integers, see [9], and the space of the traces on HW (An−1)(η) is
one-dimensional for n> 2 due to Theorem 5.2, see also [8].

So, every algebra H1,η(An−1) with η 6= q
m , where q,m are mutually prime integers, 1 < m 6 n,

and n≥ 2, is an example of simple superalgebra with several independent supertraces (see also [6]).

Conjecture 2.1. Each of the ideals of H1,η(An−1) is the set of null-vectors of the degenerate bilinear
form (2.2) for some κ-trace sp on H1,η(An−1).

More examples of associative simple (super)algebra with several (super)traces are presented in
Section 6.

2.2. Symplectic reflection group

Let V = C2N be endowed with a non-degenerate anti-symmetric Sp(2N)-invariant bilinear form
ω(·, ·), let the vectors ai ∈V , where i = 1, ... , 2N, constitute a basis in V .

The matrix (ωi j) := ω(ai, a j) is anti-symmetric and non-degenerate.
Let xi be the coordinates of x ∈ V , i.e., x = ai xi. Then ω(x, y) = ωi jxiy j for any x, y ∈ V . The

indices i are raised and lowered by means of the forms (ωi j) and (ω i j), where ωi jω
k j = δ k

i .

Definition 2.1. The element R∈ Sp(2N)⊂ EndV is called a symplectic reflection, if rk(R−1) = 2.

Definition 2.2. Any finite subgroup G of Sp(2N) generated by a set of symplectic reflections is
called a symplectic reflection group.

We collect some elementary properties of the elements of the symplectic reflection group in the
following Proposition.

Proposition 2.1. Let G be a symplectic reflection group and g ∈ G. Then
(1) The Jordan normal form of g is diagonal.
(2) Each eigenvalue of g is a root of unity.
(3) detg = 1.
(4) If λ is an eigenvalue of g, then λ−1 is also an eigenvalue of g.
(5) The spectrum of g has an even number of −1 and an even number of +1.
(6) gtrωg = ω , where gtr is the transposed of g, or, equivalently, gk

i ωkl gl
j = ωi j.
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Clearly, each item of Proposition 2.1 follows either from the fact that G ⊂ Sp(2N) or from the
fact that G is a finite group. Item 6 is just the defining property of Sp(2N).

In what follows, G stands for a symplectic reflection group, and R stands for the set of all
symplectic reflections in G.

Let R ∈R. Setc

VR := Im(R−1) , (2.3)

ZR := Ker(R−1) . (2.4)

Clearly, VR and ZR are symplectically perpendicular, i.e., ω(VR, ZR) = 0, and V = VR⊕⊥ ZR.
Hereafter the expression U ⊕⊥W denotes a direct sum whose summands are symplectically per-
pendicular to each other.

So, let x = xVR
+ xZR

for any x ∈V , where xVR
∈VR and xZR

∈ ZR. Set

ωR(x,y) := ω(xVR
, yVR

). (2.5)

Item 5 of Proposition 2.1 allows one to introduce the following grading on C[G]. Recall that
κ =±1, and that we consider both values of κ.

Definition 2.3. Let the grading E on C[G] be defined by the formula

E(g) :=
1
2

dimE (g) for any g ∈ G, (2.6)

where

E (g) := Ker(g−κ). (2.7)

For any g ∈ G, the number E(g) is an integer such that 06 E(g)6 N.
The following Lemma is crucial in what follows.d

Lemma 2.1. Let g ∈ G, R ∈R. If there exist c1, c2 ∈ Ker(g−κ) such that ωR(c1, c2) 6= 0, then

E(Rg) = E(g)−1. (2.8)

Besides,

E (Rg) = ZR∩E (g). (2.9)

Proof. Clearly, Rgx = κRx = κx if gx = κx and Rx = x. Hence, ZR∩E (g)⊂ E (Rg).
Denote

ER(g) := ZR∩E (g). (2.10)

Since ωR(c1, c2) 6= 0, it follows that the vectors cl
VR
∈VR, where l = 1,2, are independent, so the

cl
VR

constitute a basis of VR (recall that dimVR = 2).
Clearly, ER(g)⊕ span(c1, c2) = E (g), implying dimER(g)+2 = dimE (g).

cHereafter we denote all the units in groups, algebras, etc, by 1, and c ·1 by c for any number c.
dAn analogous Lemma is proved in [7] for the real orthogonal matrices and reflections in RN .
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It remains to prove that ER(g) = E (Rg).
Suppose that there exists a vector u ∈ E (Rg) such that u /∈ ER(g). Since dimE (Rg) is even, our

supposition implies that there exist two vectors u1, u2 ∈ E (Rg) such that span(u1,u2)∩ER(g) = 0.
Let Zrem ⊂ ZR be subspace of ZR such that ZR = Zrem⊕ ER(g), so dimZrem = 2s, where s :=

N−E(g). Then

V = VR⊕⊥ [Zrem⊕ER(g)]. (2.11)

The vectors cl (l = 1,2) can be decomposed according to decomposition (2.11):

cl = cl
VR
+ cl

rem + cl
ER(g). (2.12)

Define a linear map ρ : VR 7→ Zrem by the formula

ρcl
VR

= cl
rem. (2.13)

Clearly, x+ρx ∈ E (g) for each x ∈VR.
In the decomposition (2.11) the matrices of R and g have the block forms

R =

R2×2 0 0
0 12s×2s 0
0 0 1(2E(g)−2)×(2E(g)−2)

 , g =

g11 g′12 0
g′21 g′22 0
g′31 g′32 κ(2E(g)−2)×(2E(g)−2)

 , (2.14)

where the blocks of g are of the same sizes as those of R.
From previous consideration we know that g in (2.14) has 2-dimensional space of eigenvectors

c with eigenvalue κ, which can be written in the form

c =

 x
ρx
0

 , where

 x
0
0

 ∈VR,

 0
ρx
0

 ∈ Zrem,

i.e., the following relations take place

g11 = κ−g′12ρ, g′21 = (κ−g′22)ρ, g′31 =−g′32ρ.

Let us look for null-vectors u of Rg−κ on VR⊕⊥ Zrem in the form

u =

 x
ρx+ z

0

 ,

which is, in fact, a general form of such u.
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Since

Rg =

R2×2g11 R2×2g′12 0
g′21 g′22 0
g′31 g′32 κ

 ,

the equation

(Rg−κ)cR = 0 (2.15)

gives

κ(R2×2−1)x+R2×2g′12z = 0, (2.16)

(g′22−κ)z = 0, g′32z = 0. (2.17)

So, if eqs. (2.17) do not have any nontrivial solutions, eq. (2.15) has no nontrivial solutions
either. If eqs. (2.17) have null-vectors z0 such that g′12z0 = 0, then eq. (2.16) shows that x = 0, and

we see that

 0
z0

0

 ∈ Zrem∩ER(g), which is impossible.

So, the only opportunity for Rg to have eigenvalue κ with multiplicity > 2E(g)− 2 (see eq.
(2.14)), is the existence of a vector

u =

0
z
0

 ∈ Zrem

which satisfies eqs. (2.17) and g′12z 6= 0, i.e.,

(g−κ)u =

 g′12z
(g′22−κ)z

g′32z

=

g′12z
0
0

 ∈VR.

Because the multiplicity of κ in the spectrum of Rg is even, the supposition that Rg−κ has null-
vectors besides ER(g) leads to existence of a 2-dimensional subspace Z0 ⊂ Zrem such that

(g−κ)Z0 =VR. (2.18)

Suppose that Z0 6= 0. Represent Zrem in the form Zrem = Z0⊕Zr. In the basis for decomposition
V =VR⊕⊥ (Z0⊕Zr⊕ER(g)), the matrix g has the form

g =


g11 g12 g13 0
g21 g22 g23 0
g31 g32 g33 0
g41 g42 g43 κ

 ,

where (
g21

g31

)
= g′21, g41 = g′31,

(
g12 g13

)
= g′12,(

g22 g23

g32 g33

)
= g′22,

(
g42 g43

)
= g′32,
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g11 = κ−g12ρ1−g13ρ2,

g21 = (κ−g22)ρ1−g23ρ2, g31 = (κ−g33)ρ2−g32ρ1,

g41 = −g42ρ1−g43ρ2,

and where ρ1 and ρ2 give the decomposition of ρ:

ρx = ρ1x+ρ2x, where ρ1x ∈ Z0 , ρ2x ∈ Zr.

Due to condition (2.18), the matrix g acquires the form

g =


g11 g12 g13 0
g21 κ g23 0
g31 0 g33 0
g41 0 g43 κ

 , detg12 6= 0, (2.19)

and the symplectic form ω has the shape ω =


ωR

2×2 0 0 0
0 ω22

2×2 ω23 ω24

0 ω32 ω33 ω34

0 ω42 ω43 ω44

, where ωR
2×2 is non-

degenerate. Due to (2.19), the equality ω = gtrωg gives for the 22-block:

ω
22
2×2 =


∗ ∗ ∗ ∗

gtr
12 κ 0 0
∗ ∗ ∗ ∗
0 0 0 κ




ωR
2×2 0 0 0
0 ω22

2×2 ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗



∗ g12 ∗ 0
∗ κ ∗ 0
∗ 0 ∗ 0
∗ 0 ∗ κ


∣∣∣∣∣∣∣∣
22

=

=


∗ ∗ ∗ ∗

gtr
12 κ 0 0
∗ ∗ ∗ ∗
0 0 0 κ



∗ ωR

2×2g12 ∗ ∗
∗ κω22

2×2 ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


∣∣∣∣∣∣∣∣
22

= gtr
12ω

R
2×2g12 +ω

22
2×2

or gtr
12ωR

2×2g12 = 0 which contradicts the nondegeneracy of g12.
So, Z0 = 0 and the matrix Rg−κ has no null-vectors besides ER(g).

3. Symplectic reflection algebra

The superalgebra H1,η(G) is a deform of the skew producte of the Weyl algebra WN and the group
algebra of a finite subgroup G ⊂ Sp(2N) generated by symplectic reflections, see Definition 3.1
below.

3.1. Definitions

Let C[G] be the group algebra of G, i.e., the set of all linear combinations ∑g∈G αgḡ, where αg ∈C,
and we temporarily write ḡ to distinguish g considered as an element of G⊂ End(V ) from the same

eLet A and B be superalgebras, and A a B-module. We say that the superalgebra A ∗B is a skew product of A and
B if A ∗B = A ⊗B as a superspace and (a1⊗b1)∗ (a2⊗b2) = a1b1(a2)⊗b1b2. The element b1(a2) may include a
sign factor imposed by the Sign Rule.
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element ḡ ∈C[G] considered as an element of the group algebra. The addition in C[G] is defined as
follows:

∑
g∈G

αgḡ+ ∑
g∈G

βgḡ = ∑
g∈G

(αg +βg)ḡ

and the multiplication is defined by setting g1 g2= g1g2.
Let η be a function on R, i.e., a set of constants ηR with R ∈R such that ηR1 = ηR2 if R1 and

R2 belong to one conjugacy class of G.

Definition 3.1. The algebra Ht,η(G), where t ∈ C, is an associative algebra with unity 1; it is the
algebra C[V ] of polynomials in the elements of V with coefficients in the group algebra C[G] subject
to the relations

gx = g(x)g for any g ∈ G and x ∈V, where g(x) = aigi
jx

j for x = aixi, (3.1)

[x,y] = tω(x,y)+ ∑
R∈R

ηRωR(x,y)R for any x,y ∈V . (3.2)

The algebra Ht,η(G) is called a symplectic reflection algebra, see [2].

The commutation relations (3.2) suggest to define the parity π by setting:

π(x) = 1, π(g) = 0 for any x ∈V, and g ∈ G, (3.3)

enabling one to consider H1,η(G) as an associative superalgebra.
We consider the case t 6= 0 only, which is equivalent to the case t = 1.

3.2. Bases of eigenvectors

We say that a polynomial f ∈ C[V ] is monomial if it can be expressed in the form f = u1u2...uk,
where ui ∈V .

We say that an element h ∈ H1,η(G) is monomial if it can be expressed in the form h =

u1u2...ukg, where ui ∈V and g ∈ G.
Due to item 1 of Proposition 2.1, for each g ∈ G, there exists a basis Bg = {b1, ... , b2N} of V

such that (no summation here)

g(bI) = λIbI, where I = 1,2, ...,2N, (3.4)

or, equivalently,

gbI = λIbIg. (3.5)

We can represent any element h ∈H1,η(G) in the form h = ∑g∈G hgg, where the polynomials hg

depend on bI ∈Bg.

Definition 3.2. Let bI ∈ Bg. A monomial bI1 . . .bIk g is said to be regular if λIs 6= κ for some s,
where 1≤ s≤ k, and special if λIs = κ for each s, where 1≤ s≤ k.
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Set also:

FIJ := [bI, bJ], (3.6)

CIJ := ω(bI, bJ), (3.7)

fIJ := [bI, bJ]−CIJ. (3.8)

Lemma 3.1. Let g ∈ G. Let bI,bJ ∈ E (g). Then

E( fIJg) = E(g)−1. (3.9)

Proof. Proof follows from eq. (3.2) (recall that t = 1) and Lemma 2.1.

3.3. Partial orderings in H1,η(G)

Definition 3.3. Let f1, f2 ∈ C[V ] be monomials either both even or both odd. Let g1,g2 ∈ G. We
say f1g1 < f2g2 if either deg f1 < deg f2 or deg f1 = deg f2 and E(g1)< E(g2).

It is easy to describe all minimal elements in H1,η(G), i.e., the elements fmin such that there
exists f ∈ H1,η(G) such that fmin < f , and there are no elements f< such that f< < fmin:

a) In the even subspace of H1,η(G) the minimal elements are g ∈ G such that E(g) = 0.
b) In the odd subspace of H1,η(G), the minimal elements are the elements of the form xg, where

x ∈V , g ∈ G and E(g) = 0.

Proposition 3.1. Let κ = 1. Then for each trace tr and for each odd minimal element xg, the
following equality takes place

tr(xg) = 0. (3.10)

Proof. Since κ = 1 and E(g) = 0, the element g does not have eigenvalue +1.
Decompose x∈V in the basis Bg: x = bIxI , where g(bI) = λIbI and λI 6= 1 for any I = 1, . . . ,2N.
Further, tr(bIg) = tr(gbI) = tr(g(bI)g) = λItr(bIg), which implies tr(bIg) = 0 and, as a conse-

quence, tr(xg) = 0.

Consider the defining relations (2.1) as a system of linear equations for the linear function sp.
Clearly, this system is equivalent to the following two its subsystems:

sp([bI,P(a)g]κ) = 0, (3.11)

sp
(
τ
−1P(a)gτ

)
= sp(P(a)g) (3.12)

for all monomials P ∈ C[V ], bI ∈Bg, and g,τ ∈ G.
If the κ-trace is either even or the κ-trace is odd and κ = 1, then eq. (3.11) can be rewritten in

the form

sp(bIP(a)g−κP(a)gbI) = 0. (3.13)

Eq. (3.13) enables us to express a κ-trace of any even monomial in H1,η(G) in terms of the
κ-trace of even minimal elements. Besides, it implies that each odd trace on H1,η(G) is equal to
zero. Both these statements can be proved in a finite number of the following step operations.
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Regular step operation. Let bI1bI2 . . . bIk g be a regular monomial. Up to a polynomial of lesser
degree, this monomial can be expressed in a form such that λI1 6= κ.

Then

sp(bI1bI2 . . . bIk g) = κsp(bI2 . . . bIk gbI1) = κλI1sp(bI2 . . . bIk bI1g),

which implies

sp(bI1bI2 . . . bIk g)−κλI1sp(bI1bI2 . . . bIk g) = κλI1sp([bI2 . . . bIk , bI1 ]g).

Thus,

sp(bI1bI2 . . . bIk g) =
κλI1

1−κλI1

sp([bI2 . . . bIk , bI1 ]g). (3.14)

This step operation expresses the κ-trace of any regular degree k monomial in terms of the
κ-trace of degree k−2 polynomials.

Special step operation. Let M := bI1bI2 . . . bIk g be a special monomial and E(g) = l > 0. The
monomial M can be expressed in the form

M = bp
I bq

J bL1 . . . bLk−p−qg+ a lesser-degree-polynomial,

where

06 p,q6 k, p+q6 k,

λI = λJ = λLs = κ for s = 1, ...,k− p−q, (3.15)

CIJ = 1, CILs = 0, CJLs = 0 for s = 1, ...,k− p−q .

Let M′ := bp
I bq

J bL1 . . . bLk−p−q and derive the equation for sp(M′g). Since

sp(bJbIM′g) = κsp(bIM′gbJ) = sp(bIM′bJg),

it follows that

sp([bIM′, bJ]g) = 0. (3.16)

Since [bIM′, bJ] can be expressed in the form:

[bp+1
I bq

J bL1 . . . bLk−p−q , bJ] =
p

∑
t=0

b t
I (1+ fIJ)b

p−t
I bq

J bL1 . . . bLk−p−q+

+
k−p−q

∑
t=1

bp+1
I bq

J bL1 . . . bLt−1 fLt J bLt+1 . . . bLk−p−q , (3.17)

it follows that eq. (3.16) can be rewritten in the form

(p+1)sp(M′g) = − sp

(
p

∑
t=0

bt
I fIJbp−t

I bq
J bL1 . . . bLk−p−qg+

+
k−p−q

∑
t=1

bp+1
I bq

J bL1 . . . bLt−1 fLt J bLt+1 . . . bLk−p−qg

)
. (3.18)
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Due to Lemma 2.1 it is easy to see that eq. (3.18) can be rewritten in the form

sp(M′g) = ∑
g̃∈G:E(g̃)=E(g)−1

sp(Pg̃(ai)g̃), (3.19)

where the Pg̃ are some polynomials such that degPg̃ = degM′.
So, the special step operation expresses the κ-trace of a special polynomial in terms of the

κ-trace of polynomials lesser in the sense of the ordering introduced by Definition 3.3.
Thus, we showed that it is possible to express the κ-trace of any polynomial as a linear combi-

nation of the κ-trace of minimal elements of H1,η(G) using a finite number of regular and special
step operations.

Since each step operation is manifestly G-invariant, the resulting κ-trace is also G-invariant if
the κ-trace of minimal elements of H1,η(G) is G-invariant.

Due to Proposition 3.1, each trace of any odd minimal element is zero, so each odd trace is zero.
But since each odd trace is also a supertrace, we can say that each odd κ-trace is zero.

These arguments proved the following Theorem and Proposition:

Theorem 3.1. Each nonzero κ-trace on H1,η(G) is even.

Proposition 3.2. Each κ-trace on H1,η(G) is completely defined by its values on the minimal ele-
ments of G.

Note that, due to G-invariance, the restriction of the κ-trace on G is a central function, i.e., a
function constant on the conjugacy classes.

Below we will prove that any central function on the set of minimal elements of G can be
extended to a κ-trace on H1,η(G).

4. Ground Level Conditions

Clearly, C[G] is a subalgebra of H1,η(G).
It is easy to describe all κ-traces on C[G]. Every κ-trace on C[G] is completely determined by

its values on G and is a central function on G due to G-invariance. Thus, the number of κ-traces on
C[G] is equal to the number of conjugacy classes in G.

Since C[G] ⊂ H1,η(G), some additional restrictions on these functions follow from the defini-
tion (2.1) of κ-trace and the defining relations (3.2) for H1,η(G). Namely, for any g ∈ G, consider
elements cI,cJ ∈ E (g) such that

gcI = κcIg, gcJ = κcJg. (4.1)

Then, eqs. (2.1) and (4.1) imply that

sp(cIcJg) = κsp(cJgcI) = sp(cJcIg) ,

and therefore

sp([cI,cJ]g) = 0. (4.2)

Since [cI,cJ]g ∈ C[G], the conditions (4.2) single out the central functions on C[G], which can
in principle be extended to κ-traces on H1,η(G), and Theorem 5.3 states that each central function
on C[G] satisfying conditions (4.2) can indeed be extended to a κ-trace on H1,η(G). In [9], the
conditions (4.2) are called Ground Level Conditions.
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4.1. The solutions of Ground Level Conditions

Ground Level Conditions (4.2) is an overdetermined system of linear equations for the central func-
tions on C[G].

Theorem 4.1. The dimension of the space of solutions of Ground Level Conditions (4.2) is equal
to the number of conjugacy classes in G with E(g) = 0. Each central function on conjugacy classes
in G with E(g) = 0 can be uniquely extended to a solution of Ground Level Conditions.

4.2. Proof of Theorem 4.1

Let us prove a couple of simple statements we will use below.

Proposition 4.1. Let h ∈ G, c ∈ E (h), x ∈ Bh, h(x) = λx, where λ 6= κ. Then, for any central
function f on C[G], we have

f ([c,x]h)≡ 0. (4.3)

Proof. Since f is a central function, we have f ([c,x]h) = f (h[c,x]hh−1) = f ([h(c),h(x)]h) =
κλ f ([c,x]h).

Proposition 4.2. Let h ∈ G, c ∈ E (h), and Ground Level Conditions (4.2) be satisfied. Then

sp([c,x]h)≡ 0 for any x ∈V. (4.4)

Proof. Let x = ∑λ 6=κ xλ + xκ , where h(xλ ) = λxλ . Since sp is a central function, Proposition 4.1
gives sp([c,x]h) = sp([c,xκ]h), and eq. (4.2) gives sp([c,xκ]h)≡ 0.

We prove Theorem 4.1 by induction on E(g).
The first step is simple: if E(g) = 0, then sp(g) is an arbitrary central function. The next step is

also simple: if E(g) = 1, then there exists a pair of elements c1,c2 ∈ E (g) such that ω(c1,c2) 6= 0.
Since ([c1, c2]−ω(c1,c2))g ∈ C[G] and E(([c1, c2]−ω(c1,c2))g) = 0 due to Lemma 2.1, then

sp(g) =− 1
ω(c1,c2)

sp(([c1, c2]−ω(c1,c2))g) (4.5)

is the only possible value of sp(g) for any g ∈ G with E(g) = 1. Clearly, the right-hand side of eq.
(4.5) does not depend on the choice of basis vectors c1,c2 in E (g).

Suppose that the Ground Level Conditions (4.2) considered for all g with E(g) 6 l and for all
cI, cJ ∈ E (g) have Ql independent solutions.

Proposition 4.3. The value Ql does not depend on l.

Proof. It was shown above that Q1 = Q0. Let l > 1.
Suppose that Qk does not depend on k for k6 l. Consider g∈G with E(g) = l+1. Let cI ∈ E (g),

where I = 1,2, ...,2E(g), be a basis in E (g) such that the symplectic form CIJ = ω(cI,cJ) has a
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normal shape:

C =



0 1 0 0 . . . 0 0
−1 0 0 0 . . . 0 0
0 0 0 1 . . . 0 0
0 0 −1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . −1 0


.

We will show that for a fixed g ∈ G, all the Ground Level Conditions

CIJsp(g) =−sp(([cI, cJ]−CIJ)g) for I,J = 1, . . . , 2E(g) (4.6)

follow from the inductive hypothesis and just one of them, e.g.,

sp(g) =−sp(([c1, c2]−1)g). (4.7)

For this purpose, it clearly suffices to consider eq. (4.6) only for I,J = 1, ...,4:

sp(g) = −sp(([c1, c2]−1)g), (4.8)

sp(g) = −sp(([c3, c4]−1)g), (4.9)

0 = −sp([c1, c3]g), (4.10)

0 = −sp([c1, c4]g), (4.11)

0 = −sp([c2, c3]g), (4.12)

0 = −sp([c2, c4]g). (4.13)

Below we prove that eqs. (4.8) and (4.9) are equivalent, namely,

sp(([c1, c2]−1)g)≡ sp(([c3, c4]−1)g) (4.14)

and eqs. (4.10) – (4.13) follow from eq. (4.14).
Note that due to the inductive hypothesis both sides of eq. (4.14) are well defined, because

E(([c1, c2]−1)g) = E(([c3, c4]−1)g) = l.

Represent the left-hand side of eq. (4.14) as follows:

sp(([c1, c2]−1)g) = sp(A12)+ sp(B12), where (4.15)

A12 := ∑
R∈R: ωR(c3,c4)=0

ηRωR(c1, c2)Rg, (4.16)

B12 := ∑
R∈R: ωR(c3,c4)6=0

ηRωR(c1, c2)Rg. (4.17)

Analogously,

sp(([c3, c4]−1)g) = sp(A34)+ sp(B34), where (4.18)

A34 := ∑
R∈R: ωR(c1,c2)=0

ηRωR(c3, c4)Rg, (4.19)

B34 := ∑
R∈R: ωR(c1,c2)6=0

ηRωR(c3, c4)Rg. (4.20)
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It is clear from eqs. (4.16) – (4.20) and Lemma 2.1 that

E(A12) = E(B12) = E(A34) = E(B34) = l.

Consider R ∈R such that ωR(c1,c2) 6= 0. Then there exists a 2×2 matrix (UR
αi), where α = 3,4

and i = 1,2, such that

cR
3 := c3−UR

31c1−UR
32c2 ∈ ZR, (4.21)

cR
4 := c4−UR

41c1−UR
42c2 ∈ ZR. (4.22)

This matrix defines the decomposition of c3VR ,c4VR in VR with respect to the basis c1VR ,c2VR .
Clearly, due to Lemma 2.1 we have

cR
3 , cR

4 ∈ E (Rg). (4.23)

If ωR(c3,c4) 6= 0, then detUR 6= 0.
If ωR(c3,c4) = 0, then detUR = 0. Since

ω(cR
3 , cR

4 ) = ω(c3, c4)+detUR
ω(c1, c2) = 1+detUR,

it follows that if detUR = 0, then ω(cR
3 , cR

4 ) = 1. So, if ωR(c3,c4) = 0 and ωR(c1,c2) 6= 0, then

sp(Rg) =−sp(([cR
3 , cR

4 ]−1)Rg), (4.24)

and

E(([cR
3 , cR

4 ]−1)Rg) = l−1. (4.25)

Now, let us express sp(A12) by means of the κ-trace of elements of G with grading l−1:

sp(A12) = ∑
R∈R: ωR(c3,c4)=0

ηRωR(c1, c2)sp(Rg) =

= − ∑
R∈R: ωR(c3,c4)=0

ηRωR(c1, c2)sp(([cR
3 , cR

4 ]−1)Rg). (4.26)

Since

sp([cR
3 ,x]Rg)≡ sp([cR

4 ,x]Rg)≡ 0 for any x ∈V (4.27)

due to Proposition 4.2, and since detUR = 0 for any summand in eq. (4.26), we have

sp(([cR
3 , cR

4 ]−1)Rg) = sp(([c3, c4]−1)Rg), (4.28)

and as a result

sp(A12) =− ∑
R∈R: ωR(c3,c4)=0

ηRωR(c1, c2)sp(([c3, c4]−1)Rg) =−sp(([c3, c4]−1)A12). (4.29)

As A12 = ([c1, c2]−1)g−B12, eq. (4.29) gives

sp(A12 +B12) = sp(−([c3, c4]−1)(([c1, c2]−1)g−B12)+B12) =

= sp(−([c3, c4]−1)([c1, c2]−1)g+[c3, c4]B12). (4.30)
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Analogously,

sp(A34 +B34) = sp(−([c1, c2]−1)([c3, c4]−1)g+[c1, c2]B34). (4.31)

Proposition 4.4. Let g ∈ G, c1,c2 ∈ E (g), ω(c1,c2) = 1, and f a central function on C[G]. Then

f (([c1, c2]−1)([c3, c4]−1)g) = f (([c3, c4]−1)([c1, c2]−1)g). (4.32)

Proof. Since [c1, c2]−1 = ∑R∈R ηRωR(c1,c2)R, we have

f (([c1, c2]−1)([c3, c4]−1)g) = ∑
R∈R

ηRωR(c1,c2) f ((R[c3, c4]−1)g) =

= ∑
R∈R

f (ηRωR(c1,c2)([c3, c4]−1)gR) =

= f (([c3, c4]−1)g([c1, c2]−1)).

Clearly, g([c1, c2]−1) = ([c1, c2]−1)g because c1,c2 ∈ E (g) and κ2 = 1.

Due to Proposition 4.4, eqs. (4.30) and (4.31) imply

sp((A12 +B12)− (A34 +B34)) = sp([c3, c4]B12− [c1, c2]B34) (4.33)

or

sp((A12 +B12)− (A34 +B34)) =

= sp( ∑
R∈R: ωR(c1,c2)6=0, ωR(c3,c4)6=0

ηR([c3, c4]ωR(c1,c2)− [c1, c2]ωR(c3,c4))Rg). (4.34)

Consider one summand in eq. (4.34)

IR := ([c3, c4]ωR(c1,c2)− [c1, c2]ωR(c3,c4))Rg. (4.35)

Rewrite IR using transformation defined in eqs. (4.21) – (4.22):

c3 = cR
3 +UR

31c1 +UR
32c2, where cR

3 ∈ ZR, (4.36)

c4 = cR
4 +UR

41c1 +UR
42c2, where cR

4 ∈ ZR. (4.37)

Note that now detUR 6= 0 since ωR(c3,c4) 6= 0.
Express all the terms in the right-hand side of eq.(4.35) by means of c1, c2, cR

3 and cR
4 :

[c3, c4]ωR(c1,c2)Rg =

= [cR
3 , cR

4 ]ωR(c1,c2)Rg+

+ [cR
3 ,UR

41c1 +UR
42c2]ωR(c1,c2)Rg+

+ [UR
31c1 +UR

32c2, cR
4 ]ωR(c1,c2)Rg+

+ (UR
31UR

42−UR
32UR

41)[c1, c2]ωR(c1,c2)Rg (4.38)

[c1, c2]ωR(c3,c4)Rg =

= (UR
31UR

42−UR
32UR

41)[c1, c2]ωR(c1,c2)Rg. (4.39)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

322



S.E. Konstein, I.V. Tyutin

Since cR
3 ,c

R
4 ∈ E (Rg), Proposition 4.2 shows that

sp(([cR
3 , cR

4 ]+ [cR
3 ,UR

41c1 +UR
42c2]+ [UR

31c1 +UR
32c2, cR

4 ])ωR(c1,c2)Rg)≡ 0. (4.40)

So, from eqs. (4.38) – (4.39) it follows that

sp(IR)≡ 0 (4.41)

and eq. (4.14) is proven.
Consider another four elements of E (g):

c′1 =
1√
2
(µc1 +νc3), c′2 =

1√
2
(

1
µ

c2 +
1
ν

c4),

c′3 =
1√
2
(µc1−νc3), c′4 =

1√
2
(

1
µ

c2−
1
ν

c4). (4.42)

Clearly, ω(c′i,c
′
j) is in a normal form and the relation (4.14) holds for ci replaced by c′i:

sp(([c′1, c′2]−1)g)≡ sp(([c′3, c′4]−1)g), (4.43)

which implies, when eq. (4.14) is taken in account,

µ

ν
sp([c1, c4]g)+

ν

µ
sp([c3, c2]g)≡ 0 for arbitrary nonzero µ,ν ∈ C. (4.44)

So

sp([c1, c4]g)≡ str([c2, c3]g)≡ 0. (4.45)

Analogously, considering

c′′1 =
1√
2
(µc1 +νc4), c′′2 =

1√
2
(

1
µ

c2−
1
ν

c3),

c′′3 =
1√
2
(µc1−νc4), c′′4 =

1√
2
(

1
µ

c2 +
1
ν

c3) (4.46)

we see that

sp([c1, c3]g)≡ str([c2, c4]g)≡ 0. (4.47)

This finishes the proof of Proposition 4.3 and Theorem 4.1.

5. The number of independent κ-traces on H1,η(G)

5.1. Main theorems

Theorem 5.1. The dimension of the space of κ-traces on the superalgebra H1,η(G) is equal to the
number of conjugacy classes of elements without eigenvalue κ belonging to the symplectic reflection
group G ⊂ End(V ). Each central function on conjugacy classes of elements without eigenvalue κ
belonging to the symplectic reflection group G⊂ End(V ) can be uniquely extended to a κ-trace on
H1,η(G).

Proof. This Theorem follows from Theorem 5.3 (see below), Theorem 3.1, and Theorem 4.1.
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Clearly, Theorem 5.1 is equivalent to the following theorem.

Theorem 5.2. Let the symplectic reflection group G⊂ End(V ) have TG conjugacy classes without
eigenvalue 1 and SG conjugacy classes without eigenvalue −1.

Then the superalgebra H1,η(G) possesses TG independent traces and SG independent super-
traces.

Theorem 5.3. Every κ-trace on the algebra C[G] satisfying the equation

sp([c1, c2]g) = 0 for any g ∈ G with E(g) 6= 0 and any c1,c2 ∈ E (g), (5.1)

can be uniquely extended to an even κ-trace on H1,η(G).

For proof of Theorem 5.3, see the rest of this section and Appendices.
The proof of Theorem 5.3 was published in [9] for the case of supertraces (i.e., κ =−1) on the

superalgebra of observables of Calogero model (i.e., G = An) and in [7] for the case H1,η(G), where
the group G is a finite group generated by a root system in RN .

Here we chose definitions of symbols such that the rest of this section and Appendices coincide
almost literally with analogous parts of [7] (and of [9], if we change σ ∈ SN to g ∈ G⊂ Sp(2N)).

5.2. The κ-trace of General Elements

Proposition 3.2 does not prove Theorem 5.3 because the resulting values of κ-traces may a priori
depend on the sequence of step operations used and may in principle impose additional constraints
on the values of κ-trace on C[G].

Below we prove that the value of κ-trace does not depend on the sequence of step operations
used. We use the following inductive procedure:

(?) Let F := P(bI)g ∈ H1,η(G), where P is an even monomial such that degP = 2k, bI ∈Bg

and g ∈ G. Assuming that a κ-trace is well defined for all elements of H1,η(G) lesser than F
relative to the ordering from Definition 3.3, we prove that sp(F) is defined also without imposing
any additional constraint on the solution of the Ground Level Conditions.

The central point of the proof is consistency conditions (5.17), (5.18) and (5.34) proved in
Appendices A.1 and A.2.

Assume that the Ground Level Conditions hold. The proof of Theorem 5.3 will be given in a
constructive way by the following double induction procedure, equivalent to (?):

(i) Assume that

sp([bI,Pp(a)g]κ) = 0 for any Pp(a), g and I provided bI ∈Bg

and

λ (I) 6= κ; p6 k or
λ (I) = κ, E(g)6 l, p6 k or
λ (I) = κ; p6 k−2 ,

where Pp(a) is an arbitrary degree p polynomial in ai and p is odd. This implies that there exists a
unique extension of the κ-trace such that the same is true for l replaced with l +1.

(ii) Assuming that sp(bIPp(a)g−κPp(a)gbI) = 0 for any Pp(a), g and bI ∈Bg, where p 6 k,
one proves that there exists a unique extension of the κ-trace such that the assumption (i) is true for
k replaced with k+2 and l = 0.
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As a result, this inductive procedure uniquely extends any solution of the Ground Level Con-
ditions to a κ-trace on the whole HG(η). (Recall that the κ-trace of any odd element of HG(η)

vanishes because the κ-trace is even.)
It is convenient to work with the exponential generating functions

Ψg(µ) = sp
(
eSg
)
, where S =

2N

∑
L=1

(µLbL) , (5.2)

where g is a fixed element of G, bL ∈Bg , and µL ∈ C are independent parameters.
The indices I,J are raised and lowered with the help of the symplectic forms C IJ and CIJ (see

eq. (3.7)):

µI = ∑
J

CIJµ
J , µ

I = ∑
J

µJC
JI ; ∑

M
CIMC MJ =−δ

J
I . (5.3)

By differentiating eq. (5.2) n times with respect to µL at µ = 0 one obtains a κ-trace of an
arbitrary polynomial of n-th degree in bL as a coefficient of g, up to polynomials of lesser degrees.
In these terms, the induction on the degree of polynomials is equivalent to the induction on the
homogeneity degree in µ of the power series expansions of Ψg(µ).

As a consequence of general properties of the κ-trace, the generating functions Ψg(µ) must be
G-covariant:

Ψτgτ−1(µ) = Ψg(µ̃) , (5.4)

where the G-transformed parameters are of the form

µ̃
I =
(
M(τgτ

−1)M−1(τ)Λ−1(τ)M(τ)M−1(g)
)I

J µ
J (5.5)

and matrices M(g) and Λ(g) are defined below by eqs. (5.6) and (5.7).
Let M(g) be the matrix of the map B1 −→Bg, such that

bI = ∑
i
Mi

I(g)ai . (5.6)

Obviously, this map is invertible. Using the matrix notation one can rewrite (3.4) as

g(bI) =
2N

∑
J=1

Λ
J
I (g)bJ, (5.7)

where the matrix (ΛJ
I ) is diagonal, namely, ΛJ

I = δ J
I λI .

The necessary and sufficient conditions for the existence of an even κ-trace are the G-covariance
conditions (5.4) and the condition

sp
(
[bL,eSg]κ

)
= 0 for any g and L , (5.8)

or, equivalently, taking in account that linear function sp is an even κ-trace,

sp
(
bLeSg−κeSgbL

)
= 0 for any g and L . (5.9)
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5.3. General relations

To transform eq. (5.9) to a form convenient for the proof, we use the following two general relations
true for arbitrary operators X and Y and parameter µ ∈ C:

X exp(Y +µX) =
∂

∂ µ
exp(Y +µX)+

∫
t2 exp(t1(Y +µX))[X ,Y ]exp(t2(Y +µX))D1t, (5.10)

exp(Y +µX)X =
∂

∂ µ
exp(Y +µX)−

∫
t1 exp(t1(Y +µX))[X ,Y ]exp(t2(Y +µX))D1t (5.11)

with the convention that

Dn−1t = δ (t1 + . . .+ tn−1)θ(t1) . . .θ(tn)dt1 . . .dtn . (5.12)

The relations (5.10) and (5.11) can be derived with the help of partial integration (e.g., over t1)
and the following formula

∂

∂ µ
exp(Y +µX) =

∫
exp(t1(Y +µX))X exp(t2(Y +µX))D1t (5.13)

which can be proven by expanding in power series. The well-known formula

[X ,exp(Y )] =
∫

exp(t1Y )[X ,Y ]exp(t2Y )D1t (5.14)

is a consequence of eqs. (5.10) and (5.11).
With the help of eqs. (5.10), (5.11) and (3.5) one rewrites eq. (5.9) as

(1−κλL)
∂

∂ µL Ψg(µ) =
∫

(−κλLt1− t2)sp
(

exp(t1S)[bL,S] exp(t2S)g
)

D1t . (5.15)

This condition should be true for any g and L and plays the central role in the analysis in this section.
Eq. (5.15) is an overdetermined system of linear equations for sp; below we show that it has the
only solution extending any fixed solution of the Ground Level Conditions.

There are two essentially distinct cases, λL 6= κ and λL = κ. In the latter case, the eq. (5.15)
takes the form

0 =
∫

sp
(

exp(t1S)[bL,S]exp(t2S)g
)

D1t , λL = κ . (5.16)

In Appendix A.1 we prove by induction that eqs. (5.15) and (5.16) are consistent in the following
sense:

(1−κλK)
∂

∂ µK

∫
(−κλLt1− t2)sp

(
exp(t1S)[bL,S] exp(t2S)g

)
D1t− (L↔ K)≡ 0 (5.17)

for λL 6= κ, λK 6= κ

and

(1−κλK)
∂

∂ µK

∫
sp
(

exp(t1S)[bL,S] exp(t2S)g
)

D1t ≡ 0 for λL = κ. (5.18)

Note that this part of the proof is quite general and does not depend on a concrete form of the
commutation relations in eq. (3.2).
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By expanding the exponential eS in eq. (5.2) into power series in µK (equivalently bK) we con-
clude that eq. (5.15) uniquely reconstructs the κ-trace of monomials containing bK with λK 6= κ
(i.e., regular monomials) in terms of κ-traces of some lower degree polynomials. Then the consis-
tency conditions (5.17) and (5.18) guarantee that eq. (5.15) does not impose any additional condi-
tions on the κ-traces of lower degree polynomials and allow one to represent the generating function
in the form

Ψg = Φg(µ)+ (5.19)

+ ∑
L:λL 6=κ

∫ 1

0

µLdτ

1−κλL

∫
D1t (−κλLt1− t2)sp

(
et1(τS′′+S′)[bL,(τS′′+S′)]et2(τS′′+S′)g

)
,

where we introduced the generating functions Φg for the κ-trace of special polynomials, i.e., the
polynomials depending only on bL with λL = κ, i.e., bL ∈ E (g):

Φg(µ) := sp
(

eS′g
)
= Ψg(µ)

∣∣∣
(µ I=0 if λI 6=κ)

(5.20)

and

S′ = ∑
L:bL∈Bg,λL=κ

(µLbL); S′′ = S−S′ . (5.21)

The relation (5.19) successively expresses the κ-trace of higher degree regular polynomials via the
κ-traces of lower degree polynomials.

One can see that the arguments above prove the inductive hypotheses (i) and (ii) for the particular
case where the polynomials Pp(a) are regular and/or λI 6= κ. Note that for this case the induction (i)
on the grading E is trivial: one simply proves that the degree of the polynomial can be increased by
two.

Let us now turn to a less trivial case of the special polynomials:

sp
(

bIeS′g−κeS′gbI

)
= 0 , where λI = κ . (5.22)

This equation implies

sp
(
[bI, eS′ ]g

)
= 0 , where λI = κ . (5.23)

Consider the part of sp([bI,expS′]g) which is of degree k in µ and let E(g) = l + 1. By eq.
(5.16) the conditions (5.23) give

0 =
∫

sp
(
exp(t1S′)[bI,S′] exp(t2S′)g

)
D1t . (5.24)

Substituting [bI,S′] = µI +∑M fIMµM, where the quantities fIJ and µI are defined in eqs. (3.7),
(3.8) and (5.3), one can rewrite eq. (5.24) in the form

µIΦg(µ) = −
∫

sp
(

exp(t1S′)∑
M

fIMµ
M exp(t2S′)g

)
D1t . (5.25)

Now we use the inductive hypothesis (i). The integrand in eq. (5.25) is a κ-trace of a polynomial
of degree 6 k−1 in the aα i in the sector of degree k polynomials in µ , and E( fIMg) = l. Therefore
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one can use the inductive hypothesis (i) to obtain the equality∫
sp
(

exp(t1S′)∑
M

fIMµ
M exp(t2S′)g

)
D1t =

∫
sp
(

exp(t2S′)exp(t1S′)∑
M

fIMµ
Mg
)

D1t,

where we used that sp(S′Fg) = κsp(FgS′)= sp(FS′g) by definition of S′.
As a result, the inductive hypothesis allows one to transform eq. (5.22) to the form:

XI = 0, where XI := µIΦg(µ)+ sp
(

exp(S′)∑
M

fIMµ
Mg
)
. (5.26)

By differentiating this equation with respect to µJ one obtains after symmetrization

∂

∂ µJ (µIΦg(µ))+(I↔ J) =−
∫

sp
(

et1S′bJet2S′
∑
M

fIMµ
Mg
)

D1t +(I↔ J). (5.27)

An important point is that the system of equations (5.27) is equivalent to the original equations
(5.26) except for the ground level part Φg(0). This can be easily seen from the simple fact that the
general solution of the system of equations for entire functions XI(µ)

∂

∂ µJ XI(µ)+
∂

∂ µ I XJ(µ) = 0

is of the form

XI(µ) = XI(0)+∑
J

cIJµ
J

where XI(0) and cIJ=−cJI are some constants.
The part of eq. (5.26) linear in µ is however equivalent to the Ground Level Conditions analyzed

in Section 4. Thus, eq. (5.27) contains all information on eq. (4.2) additional to the Ground Level
Conditions. For this reason, we will from now on analyze equation (5.27).

Using again the inductive hypothesis we move bI to the left and to the right of the right hand
side of eq. (5.27) with weights equal to 1

2 each to get

∂

∂ µJ µIΦg(µ)+(I↔ J) =−1
2 ∑

M
sp
(

exp(S′){bJ, fIM}µMg
)
−

−1
2

∫
∑
L,M

(t1− t2)sp
(

exp(t1S′)FJLµ
L exp(t2S′) fIMµ

Mg
)

D1t +(I↔ J) . (5.28)

The terms with the factor t1− t2 vanish as is not difficult to show, so eq. (5.28) reduces to

LIJΦg(µ) =−
1
2

RIJ(µ) , (5.29)

where

RIJ(µ) = ∑
M

sp
(

exp(S′){bJ, fIM}µMg
)
+(I↔ J) (5.30)

and

LIJ =
∂

∂ µJ µI +
∂

∂ µ I µJ , (5.31)
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or, equivalently,

LIJ = µI
∂

∂ µJ +µJ
∂

∂ µ I . (5.32)

The differential operators LIJ satisfy the standard commutation relations of the Lie algebra
sp(2E(g))

[LIJ,LKL] =−(CIKLJL +CILLJK +CJKLIL +CJLLIK) . (5.33)

In Appendix A.2 we show by induction that this Lie algebra sp(2E(g)) realized by differential
operators is consistent with the right-hand side of the basic relation (5.29), i.e., that

[LIJ, RKL]− [LKL, RIJ] =−(CIKRJL +CJLRIK +CJKRIL +CILRJK) . (5.34)

Generally, these consistency conditions guarantee that eqs. (5.29) express Φg(µ) in terms of RIJ

in the following way

Φg(µ) = Φg(0)+
1

8E(g)

2E(g)

∑
I,J=1

∫ 1

0

dt
t
(1− t2E(g))(LIJRIJ)(tµ) , (5.35)

provided

RIJ(0) = 0 . (5.36)

The latter condition must hold for a consistency of eqs. (5.29) since its left hand side vanishes at
µ I = 0. In the expression (5.35) it guarantees that the integral over t converges. In the case under
consideration the condition (5.36) is met as follows from definition (5.30).

Taking Lemma 2.1 and the explicit form (5.30) of RIJ into account one concludes that eq. (5.35)
uniquely expresses the κ-trace of special polynomials in terms of the κ-traces of polynomials of
lower degrees or in terms of the κ-traces of special polynomials of the same degree multiplied by
elements of G with a smaller value of E provided that the µ-independent term Φg(0) is an arbitrary
solution of the Ground Level Conditions. This completes the proof of Theorem 5.3. �

6. Non-deformed skew product H1,0(G) of the Weyl superalgebra and a finite
symplectic reflection group

Consider H1,0(G). It has the same number of traces and supertraces as H1,η(G) for an arbitrary η

and the generating functions of these traces and supertraces are written below explicitly. The algebra
H1,0(G) is the skew product WN ∗G of the Weyl superalgebra WN and the group algebra C[G] of the
finite group G ⊂ Sp(2N) generated by a system R ⊂ G of symplectic reflections. Algebras of this
type, and their generalizations, were considered in [12].

Because the Weyl superalgebra WN is simple, the algebras H1,0(G) = WN ∗G are also sim-
ple (see [12], p. 48, Exercise 6). This is a way to augment the stock of known simple associative
(super)algebras with several (super)traces.

It is easy to find the general solution of eqs. (4.6), (5.15) and (5.16) for the generating function
of κ-traces in the case η = 0:

(1) If g ∈ G and E(g) 6= 0, then sp(P(ai)g) = 0 for any polynomial P.
(2) If g ∈ G and E(g) = 0, then sp(g) is an arbitrary central function on G.
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(3) Let E(g) = 0. Let S = ∑i µ iai , Ψ(g,µ, t) := sp(etSg), Ψ(g,µ) = sp(eSg) = Ψ(g,µ,1). Then

sp
(
[ai,etSg]κ

)
= sp

(
tωi jµ

jetSg− etSa jgp j
i

)
, where p j

i = (1−κg) j
i . (6.1)

Since E(g) = 0, the matrix (p j
i ) is invertible, so eq. (6.1) gives

d
dt

Ψ(g,µ, t) =−µ
j
ωi jqi

kµ
k
Ψ(g,µ, t), where qi

k =

(
1

1−κg

)i

k
=

1
2

(
κ+g
κ−g

)i

k
+

1
2

δ
i
k.

So

d
dt

Ψ(g,µ, t) =−Q(µ)Ψ(g,µ, t), where Q =
1
2

µ
i
µ

j
ω̃i j, and ω̃i j = ωki

(
κ+g
κ−g

)k

j

and finally

Ψ(g,µ) = exp

(
−1

2
µ

i
µ

j
ωki

(
κ+g
κ−g

)k

j

)
sp(g).

It is easy to check that the form ω̃i j is symmetric.

7. Lie algebras H1,η(G)L and Lie superalgebras H1,η(G)S

We can consider the space of associative algebra H1,η(G) as a Lie algebra H1,η(G)L with the brack-
etsf [ f ,g]+1 = f g−g f for all f ,g ∈ H1,η(G)L.

We can also consider the space of associative algebra H1,η(G) as a Lie superalgebra H1,η(G)S

with the brackets [ f ,g]−1 = f g− (−1)π( f )π(g)g f for all f ,g ∈ H1,η(G)S.
S. Montgomery in [11] showed that it is possible to construct simple Lie superalgebra AL from

simple associative superalgebra A if the supercenter of A satisfies some conditions. In particular, if
the supercenter is C, then these conditions are satisfied.

Let Z L be the center of H1,η(G), i.e., f z− z f = 0 for all z ∈Z L and for all f ∈ H1,η(G).
Let Z S be the supercenter of H1,η(G), i.e., f z− (−1)π(z)π( f )z f = 0 for all z ∈Z S and for all

f ∈ H1,η(G). Clearly, Z S = Z S
0 ⊕Z S

1 , where π(Z S
0 ) = 0 and π(Z S

1 ) = 1. Evidently, Z S
0 ⊂Z L.

Theorem 7.1. Z L = Z S = C.

Proof. The first part of this Theorem, Z L = C, is proven in [1]. Further, Z S
0 = C, and it remains

to prove that Z S
1 = 0.

Suppose that there exists z ∈ Z S
1 . Then z = ∑g∈G Pgg. Consider [z,bg]−1 = zbg + bgz for all

bg ∈Bg for all g ∈ G. One can see that deg[z,bg]−1 > degz unless there exists the element K =−1
in G⊂ Sp(2N) and z = PKK.

If such element K does not existg then z = 0 otherwise zK ∈Z L which also implies z = 0 due
to π(zK) = 1.

fRecall that [ f ,g]κ := f g−κπ( f )π(g)g f .
gClearly, K f = (−1)π( f ) f K for all f ∈H1,η (G), π(K) = 0 and K2 = 1. We call such element of H1,η (G) Klein operator.
If Klein operator K exists, then it defines the isomorphism of the spaces of the traces and the supertraces on H1,η (G)
(see [8]).
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Since 1∈G, it follows from Theorem 5.1 that there exists a supertrace str1 such that str1(1) 6= 0.
So, [H1,η(G)S, H1,η(G)S]∩Z S = 0.

Definition 7.1. Set

L1,η(G) := [H1,η(G)L, H1,η(G)L]+1 /
(
[H1,η(G)L, H1,η(G)L]+1∩Z L) ; (7.1)

S1,η(G) := [H1,η(G)S, H1,η(G)S]−1. (7.2)

Now one can apply Theorem 3.8 of [11] (which generalizes the results of I.N.Herstein (see [3],
[4]) to formulate the following statement

Theorem 7.2. If H1,η(G) is a simple associative algebra, then
1) L1,η(G) is a simple Lie algebra,
2) S1,η(G) is a simple Lie superalgebra.

If there exists a trace tr1 on H1,η(G) such that tr1(1) 6= 0, then

[H1,η(G)L, H1,η(G)L]+1∩Z L = 0.

If tr(1) = 0 for any trace tr, then

tr(( f +α)(g+β )) = tr( f g) for any f ,g ∈ [H1,η(G)L, H1,η(G)L]+1 and any α,β ∈ C.

So, it is possible to define a bilinear symmetric invariant form Btr on L1,η(G).

Definition 7.2. Let tr be a trace on H1,η(G). Let

ρ : [H1,η(G)L, H1,η(G)L]+1 7→ [H1,η(G)L, H1,η(G)L]+1 / [H1,η(G)L, H1,η(G)L]+1∩Z L

be the natural projection. Then

Btr(ρ( f ), ρ(g)) := tr( f g) for any f ,g ∈ [H1,η(G)L, H1,η(G)L]+1 (7.3)

is a well defined bilinear form on L1,η(G).

Define also a bilinear symmetric invariant form Bstr on S1,η(G).

Definition 7.3. Let str be a supertrace on H1,η(G). Set

Bstr( f , g) := str( f g) for any f ,g ∈ S1,η(G). (7.4)

To finish this section, let us show that if H1,η(G) is a simple associative algebra, then maps
Eqs. (7.3) and (7.4) sending the (super)traces into the spaces of bilinear invariant (super)symmetric
forms are injections.

Indeed, suppose that Bstr ≡ 0 for some supertrace str, i.e., str([a,b]−1[c,d]−1) = 0 for any
a,b,c,d ∈ H1,η(G). Hence, str([[a,b]−1,c]−1d) = 0 for any a,b,c,d ∈ H1,η(G). Since H1,η(G)

is simple, we have [[a,b]−1,c]−1 = 0 for any a,b,c ∈ S1,η(G), which contradicts to the simplicity of
S1,η(G).

The proof for the traces is analogous.
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Appendix A. Proof of consistency conditions.

A.1. Proof of consistency condition (5.17) for λ 6= κ.

Let parameters µ1 := µK1 and µ2 := µK2 be such that λ1 6= κ and λ2 6= κ, where λ1 := λK1 and
λ2 := λK2 . Let b1 := bK1 and b2 := bK2 . Let us prove by induction that conditions (5.17) hold. To
implement induction, we select the part of degree k in µ from eq. (5.15) and observe that this part
contains a degree k+ 1 polynomial in bM in the left-hand side of eq. (5.15) while the part on the
right hand side of the differential version (5.15) of eq. (5.8), which is of the same degree in µ , has
a degree k−1 as polynomial in bM.

This happens because of the presence of the commutator [bL,S] which is a zero degree poly-
nomial due to the basic relations (3.2). As a result, the inductive hypothesis allows us to use the
properties of the κ-trace provided that the commutator [bL,S] is always handled as the right hand
side of eq. (3.2), i.e., we are not allowed to represent it again as a difference of the second-degree
polynomials.

Direct differentiation of Eq. (5.15) with the help of eq. (5.13) gives

(1−κλ2)
∂

∂ µ2

∫
(−κλ1t1− t2)sp

(
et1S[b1,S]et2Sg

)
D1t−

(
1↔ 2

)
=

=

(∫
(1−κλ2)(−κλ1t1− t2)sp

(
et1S[b1,b2]et2Sg

)
D1t −

(
1↔ 2

))
+

+

(∫
(1−κλ2)(−κλ1(t1 + t2)− t3)sp

(
et1Sb2et2S[b1,S]et3S

)
D2t −

(
1↔ 2

))
+

+

(∫
(1−κλ2)(−κλ1t1− t2− t3)sp

(
et1S[b1,S]et2Sb2et3Sg

)
D2t −

(
1↔ 2

))
. (A.1)

We have to show that the right hand side of eq. (A.1) vanishes. Let us first transform the second
and the third terms on the right-hand side of eq. (A.1). The idea is to move the operators b2 through
the exponentials towards the commutator [b1,S] in order to use then the Jacobi identity for the
double commutators. This can be done in two different ways inside the κ-trace so that one has to
fix appropriate weight factors for each of these processes. Let the notation

−→
A and

←−
A mean that the

operator A has to be moved from its position to the right and to the left, respectively.
The correct weights turn out to be

D2t(−κλ1(t1 + t2)− t3)b2 ≡ D2t(−κλ1− t3(1−κλ1))b2 =

= D2t

((
λ1λ2

1−κλ2
− t3(1−κλ1)

)
−→
b2 +

−κλ1

1−κλ2

←−
b2

)
(A.2)

and

D2t(−κλ1t1− t2− t3)b2 ≡ D2t((−κλ1 +1)t1−1)b2 =

= D2t

((
t1(1−κλ1)−

1
1−κλ2

)
←−
b2− −κλ2

1−κλ2

−→
b2

)
(A.3)
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for the second and third terms in the right hand side of eq. (A.1), respectively. Using eq. (5.14) along
with the simple formula ∫

φ(t3, . . . tn+1)Dnt =
∫

t1φ(t2, . . . tn)Dn−1t (A.4)

we find that all terms which involve both [b1,S] and [b2,S] pairwise cancel after antisymmetrization
1↔ 2.

As a result, one is left with some terms involving double commutators which, thanks to the
Jacobi identities and antisymmetrization, are all reduced to∫ (

λ1λ2t1 + t2− t1t2(1−κλ1)(1−κλ2)
)

sp
(

exp(t1S)[S, [b1,b2]]exp(t2S)g
)

D1t . (A.5)

Finally, we observe that this expression can be equivalently rewritten in the form∫ (
λ1λ2t1+ t2− t1t2(1−κλ1)(1−κλ2)

)(
∂

∂ t1
− ∂

∂ t2

)
sp
(

exp(t1S)[b1,b2]exp(t2S)g
)

D1t (A.6)

and after integration by parts cancel the first term on the right-hand side of eq. (A.1). Thus, we
showed that eqs. (5.15) are compatible for the case λ1,2 6= κ.

Analogously, we can show that eqs. (5.15) are compatible with eq. (5.16). Indeed, let λ1 = κ,
λ2 6= κ. Let us prove that

∂

∂ µ2
sp
(
[b1,exp(S)]g

)
= 0 (A.7)

provided the κ-trace is well-defined for the lower degree polynomials. The explicit differentiation
gives

∂

∂ µ2
sp
(
[b1,exp(S)]g

)
=
∫

sp
(
[b1,exp(t1S)b2 exp(t2S)]g

)
D1t =

= (1−κλ2)
−1sp

(
[b1,(b2 exp(S)−κλ2 exp(S)b2)]g

)
+ . . . (A.8)

where dots denote some terms of the form sp
(
[b1,B]g

)
involving more commutators inside B,

which therefore amount to some lower degree polynomials and vanish by the inductive hypothesis.
As a result, we find that

∂

∂ µ2
sp
(
[b1,exp(S)]g

)
= (1−κλ2)

−1sp
(
(b2[b1,exp(S)]−κλ2[b1,exp(S)]b2)g

)
+

+ (1−κλ2)
−1sp

(
([b1,b2]exp(S)−κλ2 exp(S)[b1,b2])g

)
. (A.9)

This expression vanishes by the inductive hypothesis, too.

A.2. The proof of consistency conditions (5.34) (the case of special polynomials)

In order to prove eq. (5.34) we use the inductive hypothesis (i). In this Appendix we use the conven-
tion that any expression with the coinciding upper or lower indices are automatically symmetrized,
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e.g., U II := 1
2(U

I1I2 +U I2I1). In this Appendix, all the eigenvectors bI of g belong to E (g). The
identity

0 = ∑
M

sp
([

exp(S′){bI, fIM}µM,bJbJ

]
g
)
− (I↔ J) (A.10)

holds due to Lemma 3.1 for all terms of degree k− 1 in µ with E(g) 6 l + 1 and for all lower
degree polynomials in µ , because one can always move fIJ to g in eq. (A.10) combining fIJg into a
combination of elements of G analyzed in Lemma 3.1.

Straightforward calculation of the commutator in the right-hand-side of eq. (A.10) gives 0 =

X1 +X2 +X3, where

X1 = −∑
M,L

∫
sp
(
exp(t1S′){bJ,FJL}µL exp(t2S′){bI, fIM}µMg

)
D1t− (I↔ J) ,

X2 = ∑
M

sp
(

exp(S′)
{
{bJ,FIJ}, fIM

}
µ

Mg
)
− (I↔ J) ,

X3 = ∑
M

sp
(

exp(S′)
{

bI,{bJ, [ fIM,bJ]}
}

µ
Mg
)
− (I↔ J) . (A.11)

The terms of X1 bilinear in f cancel due to the antisymmetrization (I↔ J) and the inductive hypoth-
esis (i). As a result, one can transform X1 to the form

X1 =

(
−1

2
[LJJ, RII]+2sp

(
eS′{bI, fIJ}µJg

))
− (I↔ J). (A.12)

Substituting FIJ = CIJ + fIJ and fIM = [bI,bM]−CIM one transforms X2 to the form

X2 = 2CIJRIJ−2
(

sp
(

eS′{bJ, fIJ}µIg
)
− (I↔ J)

)
+Y, (A.13)

where

Y = sp
(

eS′
{
{bJ, fIJ}, [bI, S′]

}
g
)
− (I↔ J) . (A.14)

Using that

sp
(
exp(S′)

[
P fIJQ, S′

]
g
)
= 0 (A.15)

provided the inductive hypothesis can be used, one transforms Y to the form

Y=sp
(

eS′ (−[ fIJ,(bIS′bJ +bJS′bI)]−bI[ fIJ,S′]bJ−bJ[ fIJ,S′]bI +[ fIJ,{bI,bJ}]S′
)

g
)
.

(A.16)

Let us rewrite X3 in the form X3 = X s
3 +Xa

3 , where

X s
3 =

1
2 ∑

M
sp
(

eS′
({

bI,{bJ, [ fIM,bJ]}
}
+
{

bJ,{bI, [ fIM,bJ]}
})

µ
Mg
)
− (I↔ J) ,

Xa
3 =

1
2 ∑

M
sp
(

eS′
({

bI,{bJ, [ fIM,bJ]}
}
−
{

bJ,{bI, [ fIM,bJ]}
})

µ
Mg
)
− (I↔ J) .
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With the help of the Jacobi identity [ fIM,bJ]− [ fJM,bI] = [ fIJ,bM] one expresses X s
3 in the form

X s
3 =

1
2

sp
(

eS′ ({bI,bJ}[ fIJ,S′]+ [ fIJ,S′]{bI,bJ}+2bI[ fIJ,S′]bJ +2bJ[ fIJ,S′]bI
)

g
)
.

Let us transform this expression for Xa
3 to the form

Xa
3 =

1
2 ∑

M
sp
(

eS′ [FIJ, [ fIM,bJ]]µ
Mg
)
− (I↔ J). (A.17)

Substitute FIJ = CIJ + fIJ and fIM = [bI,bM]−CIM in eq. (A.17). After simple transformations
we find that Y +X3 = 0. From eqs. (A.12) and (A.13) it follows that the right hand side of eq. (A.10)
is equal to

1
2
([LII, RJJ]− [LJJ, RII])+2CIJRIJ.

This completes the proof of the consistency conditions (5.34).

References
[1] K.A. Brown, I. Gordon, “Poisson orders, symplectic reflection algebras and representation theory”, J.

Reine Angew. Math. 559 (2003), 193 – 216; arXiv:math/0201042v2 [math.RT].
[2] P. Etingof and V. Ginzburg, “Symplectic reflection algebras, Calogero–Moser space, and deformed

Harish–Chandra homomorphism”, Inv. Math. 147 (2002), 243 – 348.
[3] I.N. Herstein, “On the Lie and Jordan rings of a simple associative ring”, Amer. J. Math 77 (1955),

279-285.
[4] I.N. Herstein, “Topics in Ring Theory”, Chicago Lecture Notes in Math, University of Chicago Press,

1969.
[5] S.E. Konstein, “3-particle Calogero Model: Supertraces and Ideals on the Algebra of Observables”,

Theor.Math.Phys. 116 (1998) 836 – 845; arXiv:hep-th/9803213.
[6] S.E. Konstein, “An example of simple Lie superalgebra with several invariant bilinear forms”, Resenhas

IME-USP 2004; Vol. 6, No. 2/3, 249-255; arXiv:math-ph/0112063.
[7] S.E. Konstein and I.V. Tyutin, “Traces on the Superalgebra of Observables of Rational Calogero Model

based on the Root System”, Journal of Nonlinear Mathematical Physics, 20:2 (2013), 271 – 294;
arXiv:1211.6600; arXiv:math-ph/9904032.

[8] S.E. Konstein and R. Stekolshchik, “Klein operator and the Number of Traces and Supertraces on
the Superalgebra of Observables of Rational Calogero Model based on the Root System”, Journal of
Nonlinear Mathematical Physics, Vol. 20:2 (2013), 295 – 308; arXiv:0811.2487; arXiv:1212.0508.

[9] S.E. Konstein and M.A. Vasiliev, “Supertraces on the Algebras of Observables of the Rational Calogero
Model with Harmonic Potential”, J. Math. Phys. 37 (1996) 2872.

[10] I. Losev, “Completions of symplectic reflection algebras”, arXiv:1001.0239v4.
[11] S. Montgomery, “Constructing simple Lie superalgebras from associative graded algebras”, J. of Alge-

bra, 195 (1997) 558.
[12] D.S. Passman, Infinite Crossed Products, Pure and Applied Math vol. 135, Academic Press, San Diego,

1989.
[13] M.A. Vasil’ev, “Quantization on sphere and high-spin superalgebras”, JETP Letters, 50 (1989) 344 –

347; M.A. Vasiliev, “Higher spin algebras and quantization on the sphere and hyperboloid”, Int. J. Mod.
Phys. A6 (1991) 1115.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

335


