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Abstract: We have classified symmetric solutions around the origin to the four dimensional degenerate Painlevé
type equation NY44 with generic values of parameters. We obtained sixteen meromorphic solutions, which are
transformed each other by the Bécklund transformation. We calculated the linear monodromy for one of them,
explicitly.
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1. Introduction

The Painlevé equations Py(J = I,11,--- ,VI) have the phase space of dimension two, while many
higher dimensional Painlevé type equations are obtained recently as the extension of the sixth
Painlevé equation.

For the four dimensional case, T. Oshima showed that any irreducible Fuchsian equation with
four accessory parameters can be reduced to thirteen types of equations [20], among which H. Sakai
found that only four types of equation have the isomonodromic deformation equation and these are
the the source equations of all of the four dimensional Painlevé type equations. They are the well-
known Garnier system with two variables [8], the Fuji-Suzuki system [7], the Sasano system [22]
and the matrix Painlevé system. The last system is the new one which is found by H. Sakai by the
monodromy preserving deformation of the Fuchsian differential equation [21].

The four dimensional Painlevé type equations have the degeneration diagram similar to the
Painlevé equations [14], which is from the extension of the sixth Painlevé equation, step by step, to
the extension of the second Painlevé equation. The extension of the first Painlevé equation is not yet
found. The four dimensional degenerate Painlevé type equation NY44 was proposed by V.E. Adler
[1] and Noumi and Yamada [18] independently. In [14], NY44 is obtained by degenerating the
Fuji-Suzuki system as the extension of the fourth Painlevé equation Py, which corresponds to the
well-known Noumi-Yamada system [18]. The equation N Y44 is also derived by the isomonodromic
deformation of the third kind, non Fuchsian ordinary differential equation, which has one regular
singularity and one irregular singularity of Poincaré rank 2 on the Riemann sphere (See eq.(2.3)).

It has been important to have the relation between each Painlevé function and the monodromy
data of the associated linear equation (we call the linear monodromy). By calculating the linear
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monodromy, we can obtain the characteristics of each Painlevé function. R. Fuchs calculated first
the linear monodromy for the Picard’s solution [6], which is a special solution to the sixth Painlevé
equation with special values of parameters ¢ =8 =y = % — 6 = 0. For generic value of parameter,
A. V. Kitaev calculated first the linear monodromy explicitly for the symmetric solutions by taking
examples of the first and second Painlevé equations [16]. We call them the symmetric solutions,
which are invariant under the symmetric transformations (see Remark 2.1). Based on A.V. Kitaev’s
idea, we have studied special solutions with generic values of parameters for the fourth, fifth, sixth
and third Painlevé equations, for which the linear monodromy can be calculated explicitly [10-13].
For NY44, it is not easy to determine the linear monodromy for generic solutions, but we can deter-
mine the linear monodromy for the symmetric solutions under the transformation in Remark 2.1.
We remark that P. Appell [2] also studied the symmetric solutions to the first and second Painlevé
equations, but he did not study the linear monodromy problems.

There are few research for the special solutions to the four dimensional Painlevé type equations
compared with the Painlevé equations. We will study the four dimensional degenerate Painlevé type
equations by applying the same method to NY** first, which we have used for the Painlevé equations
above. Some new discovery is expected by viewing Painlevé equations from the four dimensional
Painlevé type equations.

The aim of this paper is to give the symmetric solutions with generic values of parameters to
NY*4, for which the linear monodromy {My =S 1528384¢*™ 10 C ,M.} can be calculated explicitly.
We obtained the sixteen symmetric solutions with generic values of parameters around the origin,
which are transformed each other by the Bicklund transformations (see subsection 4.2 and Fig.1).
Similar calculations were made by N. Tahara [23] and K. Matsuda [17] by using the Noumi-Yamada
system [18]. N. Tahara gave the formal solutions with a pole of order one at any ¢ and K. Matsuda
completely classified the rational solutions to NY44. Both papers treat neither the symmetric solu-
tions nor the linear monodromy. For NY44, the linear monodromy can be calculated only for the
symmetric solutions (see Section 5). We calculated the linear monodromy for one of the obtained
symmetric solutions, explicitly. For the other solutions, we can obtain the linear monodromy by
using the Bécklund transformations.

In Appendix, we show the Noumi-Yamada system and the transformation formulae to the
Hamiltonian system %j\,A;‘

2. The four dimensional degenerate Painlevé type equation NY*+

In this section, we write down the deformation equation and monodromy preserving deformation
and Hamiltonian system %j\,A;‘ [14].

2.1. The system of the deformation equation

The system of the deformation equation for %jVAY“ is given as follows:

v (A ALY A0
—_—= — Y 2.1
ox ( x3 + x2 + X ’ 2D
oy ALY

— = —Y 2.2
5 panf (2.2)
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Symmetric solutions to the NYA4
where

AV =u-1p-1AVPU, j e {—2,-1,0}, U = diag(1,u,v),

iﬂz—pl 202+ @ +t, L9 =g —2p —2py+t,
0 0 .
e;” o Lo AP=(o|a1n,
e°° o7 b+9°° em) o7—o7 | 0
PLtp2—1t @ q -7 0 O
X(()_l): —p2 —DP2—D2 |, Z(()O): —a =6y 0 |,
—P1 —P1 —P1 -b —c 067

a=pr(pr—qr—1)+pip2+ 60+ 65, b=pi(p1—q1—1)+pip>+65,
c=pi(qg—q1)+65.

The Riemann scheme of (2.1) is

x=0

xezoooo
p (())(()) go 9} . 0 +6)+ 67+ 65+ 65 =0. (2.3)

] oo

1 - 60

The formal solution of (2.1) around x = 0 has the form
YO (x) = exp dlag(O 0,1)+ d1ag(0 0,1) ] (13 + Z Y )

where T = diag(0, 610 , Gg ). The series YO =+ Yoo Y, k(o)xk is divergent since x = 0 is an irregular
singularity of Poincaré rank two.
The local solution of (2.1) around x = o has the form

y(*) (x) = x = (13 + Z Yk(oo)xk> ,
k=1

where T.. = diag(6;°,05°,65°). This series is convergent, since x = o is a regular singular point.
Since ¥ (=) (x) is multi-valued functions, we take a branch of Y..(x) on {x||argx| < 7, |x| > R}.
The Stokes regions .#; around x = 0 are given by

(G-D=
2

i
%z{x’—&‘#— <argx<]2+£,|x|<r},

where € and r are sufficiently small. There exist a holomorphic function ¥;(x) of (2.1) on .#; such
that

7i(x0)~YO x50

and

Y(x) =exp dlag(O 0,1)+— dlag(O 0,¢)| x%;(x)
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is a solution of (2.1) on .;. The Stokes matrix §; is defined by

Yj1(x) =Y;(x)S;.

We notice that Y5 (x) = Y (xe 2™ )e =210,
The connection matrix C between x = 0 and x = oo is given by ¥ (=) (x) = Y (©)C.
The linear equation (2.1) has s data of the linear monodromy

{MW,C,S] 7527S37S4762niT0}7

where M., = ¢*™= is the local monodromy around x = oo and e?*% is the formal monodromy
around x=0.
The linear monodromy are represented as follows:

T 0 0 1 0 0
M., = 0 276 o |, =02 0 |, (2.4)
0 0 2765 0 0 27t
100 10s)
Son—1= (8 (21) 0f,Sn.=|0 1s§i) , C=(cij)ij=123
o1 o1 | 001
CM..C™'815,5384€*™ 10 = [, (2.5)

2.2. Monodromy preserving deformation and Hamiltonian system

When the linear monodromy of (2.1) is independent of the parameter ¢, Y = Y (x,¢) satisfies both
of (2.1) and (2.2). The monodromy preserving deformation equation is given by the compatibility
condition of (2.1) and (2.2). This equation is expressed by the Hamiltonian system using the two
Hamiltonians Hjy of the fourth Painlevé equation with different parameters and the coupled term:

1 ~ o~
Hf&(a,ﬁ, ;t;zlz’]lzz) =Hy (B,0;t;:91,p1) +Hyy <B7 a;t;qz,pz) +2q1p1p2,

where

Hyy (B, a:t;q,p) =qp(p—q—1t)+ap+Bq,
a=06"-07—1, B=6, a=6"-6-067—1, B=060+65.

The Hamiltonian system %{,“; is expressed as follows:

d OHA
- 5y, —N@n—ai—0)+at2qp,
dpl aHA4
~ar = ag —Pipi—1=20)+B+2pipa,
d OH &
_dp_ Oy p

= = —tr—=2 .
o 90> P2(p2 q2)+ B
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Symmetric solutions to the NYA4

Remark 2.1. The Hamiltonian system %’ﬁ;‘ is invariant under the following
symmetric transformations:

q1 — —q1, p1 — —P1, 492 — —q2, p2 — —p2, t — —1.

q1,P1,92, p2 are all odd functions.

By using this property, we can calculate the symmetric solutions to the Hamiltonian system
Aoy

The system e%’j(,‘xy“ is the monodromy preserving deformation for (2.1). Therefore, there exists
almost one-to-one correspondence between the monodromy data and the solutions of %’j\fg‘ In this
sense, we call the corresponding monodromy data the linear monodromy of the solution of e%’jVA;‘
It is not easy to determine the linear monodromy for generic solutions, but we can determine the
linear monodromy for the symmetric solutions under the transformation in Remark 2.1.

3. Symmetric solutions around the origin

In this section, we give the obtained symmetric solutions around ¢ = 0, which are satisfied with the
Hamiltonian system %”,\fy“

When ¢; and p; (i = 1,2) are meromorphic, we can show that they have at most a simple pole
around ¢ = 0.

Since L%”Agi‘ is the fourth order differential equations, the solution space of %7(,4; is for dimen-
sional. But we can show that the number of solutions which are invariant under the action in Remark
2.1 is finite.

Theorem 3.1. For generic values of parameters, the Hamiltonian system %ﬂl\?;‘ has the following
sixteen symmetric solutions (1),(2),---,(16) around the origin:

k=1 k=1

b1 & %1 5—1 — 2%k—1

g =—+Y by, P2—7+szk—1tk ;
k=1 k=1

e One holomorphic solution (1):

_a ~
(1): a1=0a =«a, a3:T(a+2B+]+2[})7...’

@0 =0.a =P = Lot pr1+26), -

-1 - ~
b_1=0,b=qa, bgz—[a(a+2ﬁ+1)—|—2aﬁ],---,

e Fifteen meromorphic solutions (2),(3),---,(16) with a pole of order one:
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T el w [ & o ] o]
Q3] 1]-=2]-3

G 1 [=3[1]3

@ o [ 3 [=1]-1]|-a/3

Gy [ =10 [=1]-1 —B
6 || -1 -1]-1]o0 —B/3
Nl -1]=1]21]o0o] - B/3
® 1o [0 [-1|-1] a3 | B
@ o [=1]0 |1 o | —(a—2a)

o)y ol 11110 —a | - B
an [ 31001 B/3 | —a—28 | -
1o 1]o0 B B
M) oo 0| 1| —a |-B/3 —a
ool 1]o0o]| «a —B B
@)y ol1]lo]lol| —a | - a-2a | B
1) 1 o] o] o B a+2p —B

Remark 3.1. (1) Higher order expansion of these solutions are uniquely determined recursively
by the Hamiltonian system %ﬁ; and do not contain any other parameter than the parameters

{o,B,a,B}.
(2) These solutions are convergent by Briot-Bouquet’s theorem [3].
(3) The values of parameters are generic.

4. Biacklund transformation

In this section we show the Bicklund transformation for the NY4* given by M. Noumi and Y. Yamada
[18] and the operated results to the sixteen symmetric solutions.

4.1. the Biicklund transformation for the NY*

The Bicklund transformations are given as follows:

X s0(x) 51(x) 52(x) 53(x) s4(x) m(x)

Q|| 9~ q1 a1+ q1 q1 —pi

P pi p—g | p g2 P 91—

@ | 2= g 92 92 92 Q@+ —P1— D2

P2 || P2— % D2 P2 P2t qlofqz P2 42 —p1—p2+tt

t t t t t t t

(24 — 0 O+ O 0o (24 Op + 0y a;

o o+ 0 —0 o+ 0y o o 105)

o (05) o + o —0 o+ 03 (05) 03

(07} (07} (07} o+ 0 —03 0+ 0y oy

oy o4+ 0 (071 Oy 04+ 03 —0y (o)
=1, =1, a=-a, B=-0, «=-—0—0s, B=—ou.
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Symmetric solutions to the NYA4

4.2. The operated results to the sixteen symmetric solutions

The operated results to the sixteen symmetric solutions are shown in Fig 1.

The sixteen symmetric solutions are arranged on the vertices of the concentric three pentagons
and the center; the fifteen meromorphic solutions with a pole of order one are on the vertices and
the holomorphic solution is on the center.

The fifteen solutions arranged on the vertices are transformed each other by the reflection s;(i =
0,1,2,3,4) in the radial direction and by the rotation 7 in the counter clockwise direction along the
edges of the pentagons. Besides these, there are five transformations by the reflection s; from every
vertex of the inner first pentagon to one of the vertices of the second pentagon.

These fifteen solutions are closed by the Backlund transformation {s;(i = 0,1,2,3,4),7} but
the holomorphic solution (1) arranged on the center jumps out from these three pentagons by the
rotation 7 and the transformed holomorphic solution is not satisfied the Hamiltonian system g%”]\f‘y“

We can see that the holomorphic solution (1) arranged on the center is the key solution. We
show the calculated results of the linear monodromy for the solution (1) in the next section.

Fig. 1. NYA4 16 solutions and Bicklund transformations

Remark 4.1. The fourth Painlevé equation Py has one holomorphic solution (1) and three mero-
morphic solutions with a pole of order one (2),(3) and (4), which are transformed each other by
the Bicklund transformation {s;(i = 0,1,2),7|7> = 1} as shown in Fig 2.
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51

(3) (4)

\

Fig. 2. Pjy: 4 solutions and Bécklund transformations

Conjecture 4.1. For the 2n dimensional case, we will have 4n* meromorphic solutions around the
origin, which will be arranged on the vertices of 2n+ 1 concentric 2n — 1 polygons and the center.

5. The linear monodromy for the symmetric solution (1)

In this section, we show the calculation results on the connection problem of the confluent hyper-
geometric equations »F; and the linear monodromy for the symmetric solution (1).

We can put ¢ = 0 after substituting the symmetric solution (1) into the linear equation (2.1),
since the monodromy preserving deformation theory tells the linear monodromy is invariant under
any value change of the deformation parameter . Only when putting r = O after substituting the
symmetric solution (1) into the linear equation (2.1), the equation (2.1) can be reduced to the con-
fluent hypergeometric equations 7> and we can calculate the linear monodromy. For > F;, A. Duval
and C. Mitchi calculated the connection matrix and the Stokes matrices in [4, 5].

In subsection 5.1, we review the results by Duval and Mitchi. In subsection 5.2, we determine
the linear monodromy for the symmetric solution (1).

5.1. The confluent hypergeometric equation F,

The confluent hypergeometric equation ,F; is

430 20

712dn3+(1+[31+Bz—n)ndn2+([31[32—(1+a1+a2)n)jj;_alaz(p —0.

The local solutions (w(l), wg, wg) around 1) = 0 are given by the confluent hypergeometric series »F3:

0o o, 5n\  w (o)k(en)n*

W1 =2k (Bh B> ) & (Bk(B)kk!

W — (LB o —pi+1,—-B+1:n
>= (1) 2F2< 2=B1, =B +1 )’
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_ o—pF+1,a—p+1;
N G Sl

2—B, Bi—pB+1

Here (a)y = a(a+1)(a+2)---(oc+k—1). Since N = oo is an irregular singular point of the
Poincaré rank one, we have formal solutions (W, w5, w5) around 1 = oo:

- 1 \* ay, o — 1, o4 — 1;=L
w‘f:<> 3F1<1 =B+l a—p+ n>,

-n o —op+1
oo 1 % (Xz,az—ﬁ1+1,a2—[32+];;l
wy = — | 3k o,
-1 on—op+1

Bi+Ba—a1—
i =e () (B B o — )1 — ) i~ v} O

The third solution around 1 = o : W5 cannot be represented by the confluent hypergeometric series.

We take a branch of the solutions (w?,w9,w9) on {x||argx| < 7} since the »F>(x) converges on

the entire plane. The Stokes regions .#; around x = o are given by
I ={x|—e+(j— )7 <argx < ju+¢, |x| >R},

where € is sufficiently small and R is sufficiently large.
There exist holomorphic solutions (w‘f’ T Wo WS, j) on .%;, which is asymptotic to divergent
series (W}*, w5, w5 ). The Stokes matrices X; are given by

(Wl.,j+1»W2,j+17W3,j+1) = (Wl.,jawz,jawa,j)zj-
And the connection matrix D is given by
(WT w31, w5 ) = (wi,wa,w3)D.

The Stokes matrices have the following form:

1 00 100"
Y= 0 1 0 , Lo = 0162(2)
oV 61?1 00 1

We set Ty = diag (0,1 —B1,1—B2) , Too = diag (o, 00,00) and a9 = B + B2 — @ — &z Then
My = exp(27iTy) is a monodromy matrix around 11 = 0 and we have a relation

DMyD '8, 5,e* 1= — 5. (5.1)

The following Proposition has been obtained in A. Duval and C. Mitchi [4, 5], but our form is
slightly different from them:

Proposition 5.1. The monodromy data (D = (d;j),X1,%2) of 2F; is as follows:

P F(l + o — O!z)r(l - Bl)r(l - ﬁZ) oo
T —a)D(1+a —B)T(1+oy—Bo)
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(1 —B)r(1—py)

TT(1-o)(1-om)

:F(1+a1 ) (Bl_l) (Bl .BZ) o (I+a;— Bl)

= oM + a1 — BT (1 — )
dyy = C(14+ 01 —0)0(B— DI(B2— 1) (1o — Bz)
L(o)I(1+ a0y — B)I(B — )
g~ L+om—o)I(1-p)IA-p) 7
T —a)(1+o—B)(1+on—f)
dyy = L1 +0p—a))0(Bi — DE(B1 = B2) ri(1+0,- B
(ol (1+0n —B)L(Bi — o)
d32:F(1+0¢2—061) (B2 = DI (B2 = B1) mi(1+0r- B
L(op)0(1 400 — B)T(Br — o)
4 T -B)TB -1 T(B—p)l(B—1)
PUTB—a)l(Bi—)’ 7 T(B—on)I(B— )’
O —2mil (o — o) Jilen—a)
> T(1—o)D(Bi—ou)L(Br—au) ’
5@ — —2mil(a — o) Jilea—ao)
> T(1-)(Bi —w)l(B— o) ’
G(l) B —2mil(l— o+ o)
L Te)T(1 =B+ o) T(1— B+ )’
2) —2mil(l —a; + o)
Gl =

C T(a)T(1—Bi+0)0(1- B+ )

Remark 5.1. (1) Every d;; (i,j = 1,2,3) coincides with A. Duval and C. Mitschi’s calculation
results except for dyj <— d;.

(2) Every Gi(j ) (i, j = 1,2) is the negative sign of A. Duval and C. Mitschi’s calculation results, since
they use £~! in our sense as the Stokes matrix.

5.2. Linear monodromy of the symmetric solution (1)

Putting r = 0 after substituting the solution (1) into the linear equation (2.1), we have

d Y1

a Y2
y3

"(v1,y2,3)

123

i@‘? f@” 5V Y1
gl s —% pyke » |, (5.2)
pnsl pake 1731%3—%06 )3
" ‘7:(erfﬁé?"())(J(;:jl )9) Ezeme—fem’
1 2 3 2 3
—(67+67) . 67(6)+67)

P - o P31 = o P o o\
o7 - 6; (67— 65°)(65 — 65)
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The system of equations (5.2) can be reduced to the following confluent hypergeometric equations

»F, with different parameters:

¢l dz(pi
T] dT]3 <1+Bl +B2 n)ndnz
)l i i d¢ 0 (i
+(ﬁ1()[32()—(1+a1()+a§))n)d—r;—al()az()q)izo, (5.3)
yi=x % g (i=1,2,3), x=(-2n)"2, (5.4)
1 0 1 0+ 0? 05 1 07 — 67
0‘1():717 Oé)zlzl’ Bl _ 22’ ﬁ2()21237
7 6+ 6Y ) 0T —67 62— 6
0‘1():727 Oé):221’ Bl():2237 B2()2221’
P 3 07 +6° 3y 0L —0 5 0°—6r
O61():737 0‘2():3217 31()2321, [52()2322,

n=0 =z

0o (i)

P i ° “
1— ,31 0 (i)

(i *

A fundamental solution matrix is
Fll (_n)l—ﬁf”Flz (_n)l—ﬁz“’Fw
e e S L I A I B
ka(—n) P ks () RTES gEY

, GG .

F”=ﬂ5<%wa%m>, Fﬂ=ﬂ5< ﬂ +1% By +1n>,
ﬁ] s M2 2— ﬁ] ) BZ B] +1

: +1, ol +1 .

F3:2FZ< Bz(l) 2 ﬁz n>7 (1215273)7
2-B, BB +1

(1) (1)

7 ol (B -’y 2B BB
ol

2

L C T RN TR R
o2 1) 2 ala) ) —a)p -
3 4= 2 (gD M _ gy

BB B+ 1) BB B+ 1 - pY)
o= 2@ B =B )

VBB BB -8 v

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
367



Kazuo Kaneko

We obtain the linear monodromy of (5.2) from Proposition 5.1:

e2mor 0 et 0 0
M., = 0 €2m'9§° 0 —_ 0 e47ri(a1—[31) 0
0 0 eZﬂ?i9§° 0 0 e47ri(061—[32)
1 0 0 1 0 0
eZEiT() — 0 627[1'9? 0 — 0 8471'1'(0627061) O
0 0 o276 0 0 eAmi(a—a)

CM..C'818,8384¢™™ 0 = [5.
L~ \2 X ~\2
C (6277.'1061 M()> C* 1515253s4 <672ma1 eZﬂ'le) — 13‘

Comparing (5.1) and (5.6), we have

1 _ (1)62m‘(a0—a,)

S3° =5 » 8§37 =8

1 _ (1)627ti(a1—a0) (2) _ (2)627Ti(062—%).

sy =8, )y S4 =8

Summarizing the above calculation, we have the linear monodromy.

() _ (2)82711'(0:0—052)

( l ) ’
- (6 1 e ! m) 3

Theorem 5.1. The linear equation (2.1) has the linear monodromy {Mw,C,S},S2,

S3,84,e*™10} for the symmetric solution (1) as follows:

ST 00 1 0 0
M. = 0 27 . e = | 270 ’
0 0 e2mitsy 0 0 276y
100 10sy)
S (? (1) 0], Sa=| 0 1) |, C=(cipij123:
1
S2n—1 S2n—1 1 00 1
. oY ] 6"
sgl) _ —2mil'(1-3) sgz) _ —2mil(1+)
oo oo o0 9 0 oo 0 oo )
D(%)T(1+5)0(1+5) (OO0 p(1 4 2400 ) (1 4 246
i(— 0) 90 b _90 60
Sél): —2mie™ =TT () séz): —2mie™( F( =)
0 05 65° 0 o )
ro-Sresre T - - )
Sgl): —27ie™ AT (1 - ) s(z)_ —2mie™i(6-0 F(H- )
0 oo )
CEPra+5)ra+5) (OO0 (14 200 ) (1 4 246
3 90 ) 0 90
Sé(tl): —Zﬂieﬂl( T)F(G;) sé(‘z): —27[ie37fl( 22) _6710)
7 2\ 0, g 0 geo 0 goo
rI-Pr$Hrs " ra- 40 40 )

0 o poo oo oo 6

L s i
oo oo 0 oo
r(1+%)ra+4)ra- 439

11 =
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Symmetric solutions to the NYA4
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6. Appendix

In this section, we write down the Noumi-Yamada system and the transformation formulae to the
Hamiltonian system z%”l\?;‘

6.1. The Noumi-Yamada system

The Noumi-Yamada system is expressed as follows:

Yo folfi— fat fo— 1)+ o,
Y fitp— ot fa o)+ en,
Vo (s fat fo i)+ ot
%fzﬁmfm+ﬂ<m+%,
% = fu(fo—fit+fo—f3)+ou,

fot+tfi+Hh+fi+fa=t, t+toa+m+oz+o=1.

6.2. The transformation formulae to the Hamiltonian system %4;
We have the Hamiltonian system %”A?}? by putting as follows:

aq=—h, P1=f, @=-fi—f, p2=/f4,
a=-a, B=-m, a=-a—-0, B=-o0
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