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We give a simple derivation of the spectrum of the Dirac magnetic monopole on a unit sphere S2 based on geo-
metric quantization and the Frobenius reciprocity formula. The starting point is the calculation by Novikov and
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1. Introduction

The Dirac magnetic monopole is one of the most remarkable and one of the first integrable systems
of quantum mechanics. In his pioneering paper [4] Dirac showed that an isolated magnetic charge
q should be quantized: q ∈ Z. The corresponding Schrödinger equation was solved by Tamm [18]
while he was visiting Dirac in Cambridge in 1931.

On the other hand it took quite a while to understand the global nature of the corresponding
eigenfunctions. For the Dirac magnetic monopole on a sphere it was done only in 1976 by Wu and
Yang [20], who explained that the corresponding wavefunctions (known as monopole harmonics)
are sections of a complex line bundle L over S2 and found the spectrum to be

λ =

[
l(l +1)+ |q|

(
l +

1
2

)]
, l = 0,1,2, . . . with degeneracy 2l + |q|+1. (1.1)

This gives also a geometric interpretation of Dirac’s quantization condition: magnetic charge is the
first Chern class c1(L) = q of the bundle L, which must be an integer.

A different derivation of this result was given by Ferapontov and one of the authors [6], who
extended the classical factorisation method going back to Darboux and Schrödinger [17] to curved
surfaces. This provided an explicit description of the monopole harmonics by recursive application
of the lowering operators to the ground states, which, under the isomorphism S2 ∼= CP1, are given
for positive q by polynomials of degree ≤ q.
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We present here a simple derivation of the spectrum of the Dirac monopole on a unit sphere
using geometric quantization. We should say that geometric quantization of the Dirac magnetic
monopole and related problems were already discussed in [14,19], but we believe that our approach
is simpler and clearer.

The initial point for us was the calculation by Novikov and Schmelzer [15] of the canonical
symplectic structure on the coadjoint orbits of the Euclidean group E(3) of motions of E3, which
showed the relation with the classical Dirac monopole (see the next section). A similar calculation
for Poincare and Galilean groups was done by Reiman [16], who also seems to have the idea of
geometric quantization in mind, but did not pursue it.

We first show that Novikov-Schmelzer variables have a natural quantum version as covariant
derivatives acting on the space of sections Γ(L) of the corresponding line bundle L. Fierz’s mod-
ification [7] of the angular momentum in the presence of the Dirac magnetic monopole appears
naturally in this relation.

The space Γ(L) is the representation of SU(2) induced from the representation of U(1)⊂ SU(2)
given by z→ zq,z ∈U(1). This space can be decomposed as an SU(2)-module using the classical
Frobenius reciprocity formula [8]. We show that the formula for the Dirac monopole spectrum (1.1)
is a simple corollary of this.

In the last section we discuss the generalisations of this to any coadjoint orbit of a compact Lie
group.

2. The coadjoint orbits of the Euclidean group E(3)

Let e(3) be the Lie algebra of the Euclidean group E(3) of motions of E3. It has the basis
l1, l2, l3, p1, p2, p3, where p and l are generators of translations and rotations (momentum and angu-
lar momentum) respectively.

The dual space e(3)∗ with the coordinates {l1, l2, l3, p1, p2, p3} has the canonical Poisson bracket{
li, l j
}
= εi jklk,

{
li, p j

}
= εi jk pk,

{
pi, p j

}
= 0.

Its symplectic leaves are the coadjoint orbits of E(3), which are the level sets of the Casimir func-
tions

C1 := (p, p) = R2, C2 := (l, p) = αR

Following Novikov and Schmelzer [15] introduce

σi = li−
α

R
pi (2.1)

to identify the coadjoint orbits with T ∗S2 :

(p, p) = R2, (σ , p) = 0

where T S2 and T ∗S2 have been identified using the standard Riemannian metric on the radius R
sphere.
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The new coordinates {σ1,σ2,σ3, p1, p2, p3} have Poisson brackets{
σi,σ j

}
= εi jk

(
σk−

α

R
pk

)
,
{

σi, p j
}
= εi jk pk,

{
pi, p j

}
= 0 (2.2)

Novikov and Schmelzer computed the canonical symplectic form on the coadjoint orbits and
showed that it is given by

ω = dP∧ dQ+
α

R2 dS (2.3)

where dP∧ dQ is the standard symplectic form on T ∗S2 and dS is the area form on S2 (see also
[16]). As it was pointed out in [15] the second term corresponds to the magnetic field of the (non-
quantized) Dirac monopole:

H =
α

R2 dS.

The value

q =
1

2π

∫
S2

H

is called the charge of the Dirac monopole. Dirac’s quantization condition [4] is

q =
1

2π

∫
S2

H =
1

2π

∫
S2

α

R2 dS = 2α ∈ Z.

Comparing this with (2.3) we see that this is identical to the geometric quantization condition [11]:

1
2π

∫
[S2]

ω =
1

2π

∫
S2

α

R2 dS ∈ Z.

3. Line bundles over S2 and quantization of Novikov-Schmelzer variables

It is convenient to use the scaled variables

xi = pi/R, x2 = x2
1 + x2

2 + x2
3 = 1 (3.1)

to work with the unit sphere S2.

The quantum version of the Poisson brackets (2.2) are the following commutation relations (we
are using the units in which Planck’s constant h̄ = 1)

[σ̂k, σ̂l] = iεklm(σ̂m−α x̂m), [σ̂k, x̂l] = iεklmx̂m, [x̂k, x̂l] = 0. (3.2)

We are going to show now that this algebra has a natural representation on the space of sections
of a certain line bundle over S2.

Recall that a connection on a vector bundle ξ over manifold Mn associates to every vector field X
on Mn the operator of covariant derivative ∇X acting on sections of ξ . The corresponding curvature
tensor R is defined for each pair of vector fields X ,Y as

R(X ,Y ) = ∇X ∇Y −∇Y ∇X −∇[X ,Y ],

where [X ,Y ] is the standard Lie bracket of vector fields (see e.g. [13]).
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Consider a complex line bundle over S2 with a U(1)-connection having the curvature form

R = iH = iα dS,

which is motivated by geometric quantization. Since the first Chern class of the bundle must be an
integer we have

q =
1

2πi

∫
S2

R =
1

2π

∫
S2

αdS = 2α ∈ Z,

which is precisely Dirac’s quantization condition.
Let

X1 = x3∂2− x2∂3, X2 = x1∂3− x3∂1, X3 = x2∂1− x1∂2

be the vector fields generating rotations of S2 and ∇X j be the corresponding covariant derivatives.
We claim that

∇̂ j := i∇X j

and the operators x̂ j of multiplication by x j satisfy the commutation relations (3.2).
Indeed, by definition of the curvature form, we have

R(X1,X2) = ∇X1∇X2−∇X2∇X1−∇[X1,X2] = iαx3

since

α dS(X1,X2) = α

∣∣∣∣∣∣
x1 x2 x3

0 x3 −x2

−x3 0 x1

∣∣∣∣∣∣ = αx3(x2
1 + x2

2 + x2
3) = αx3.

This implies

[∇X1 ,∇X2 ] = ∇X3 + iα x̂3

since [X1,X2] = X3. Similarly we have

[∇̂k, ∇̂l] = iεklm(∇̂m−α x̂m)

for all k, l,m = 1,2,3. The rest of the relations (3.2) are obvious.
Alternatively, we can look for the quantization of Novikov-Schmelzer variables as covariant

derivatives:

σ̂ j = i∇X j .

Then the same calculation shows that the curvature form of the corresponding connection must be
iα dS.
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Finally returning to the original variables we have the operators

l̂ j = ∇̂ j +αx j, (3.3)

which coincides with the famous modification of the angular momentum in the presence of the
Dirac magnetic monopole [7]. This provides us with one more explanation of this well known, but
a bit mysterious a physical notion.

4. Induced representations and Frobenius reciprocity

Let Lq be the complex line bundle over S2 with first Chern class q. We are interested in the space
Γ(Lq) of sections of Lq. Viewing S2 as SU(2)/U(1) (with U(1) as the diagonal subgroup) we have
a natural interpretation of Γ(Lq) as a representation of SU(2).

In representation theory this construction is known as an induced representation (see e.g. [8]).
One can use the classical Frobenius reciprocity formula from this theory to decompose Γ(Lq) into
irreducible SU(2) modules.

First recall that all finite-dimensional irreducible representations of SU(2) are labelled by a
highest weight k ∈ Z≥0. The corresponding spaces Vk have dimension k+1 and weights

−k,−k+2, . . . ,k−2,k. (4.1)

All finite-dimensional irreducible representations Wq of U(1) have dimension 1 and are given by

eiθ 7→ eiqθ , q ∈ Z.

One can use Wq to induce a representation indSU(2)
U(1) (Wq) of SU(2), which can be described

geometrically as the space of sections of the line bundle Lq over S2 with the first Chern class q (see
e.g. [2]):

Γ(Lq) = indSU(2)
U(1) (Wq) .

This induced representation is not irreducible. To decompose it we will use the Frobenius reci-
procity formula 〈

V, indG
H (W )

〉
G =

〈
W, resH

G(V )
〉

H . (4.2)

Here G is a group, H is its subgroup, V and W are the irreducible representations of G and H
respectively, indG

H(W ) is the representation of G induced from W , resH
G(V ) is the restriction of the

representation V to the subgroup H and the brackets denote the multiplicity of the first representation
entering into the second one (see e.g. [8]).

aSidney Coleman, in his famous lectures on Dirac monopoles [3], wrote about this modification of angular momen-
tum:“The second term looks very strange indeed; in Rabi’s immortal words about something else altogether,“Who ordered
that ?””
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In our concrete case we have〈
Vk, indSU(2)

U(1) (Wq)
〉

SU(2)
=
〈

Wq, resU(1)
SU(2)(Vk)

〉
U(1)

. (4.3)

Since the restriction is the sum of the weight spaces

resU(1)
SU(2)(Vk) =

⊕
j∈Sk

Wj,

where Sk = {−k,−k+2, . . . ,k−2,k} we see that each Vk, which (after restriction) contains Wq will
appear once in the decomposition of Γ(Lq) and this can happen only if k ≥ |q| and k−|q| is even.
Therefore Γ(Lq) decomposes into SU(2)-modules as

indSU(2)
U(1) (Wq) = Γ(Lq) =

⊕
l∈Z≥0

V2l+|q|. (4.4)

5. Calculation of the spectrum of the Dirac monopole

The Hamiltonian of the Dirac monopole can be written in terms of Novikov-Schmelzer operators as

H = σ̂
2

or, equivalently, in terms of magnetic angular momentum l̂ as

H = l̂2−α
2 = l̂2− 1

4
q2.

Since the components of l̂m satisfy the standard commutation relations

[l̂k, l̂m] = iεkmn l̂n,

the operator l̂2 is a Casimir operator for SU(2) and acts on Vk as a scalar: if s = k/2 then

l̂2 = s(s+1) =
1
4

k(k+2), (5.1)

see e.g. [8]. The space V2l+|q| has dimension 2l+ |q|+1, and for ψ ∈V2l+|q|, the operator H acts as

Hψ = (l̂2− 1
4

q2)ψ =

[
1
4
(2l + |q|)(2l + |q|+2)− 1

4
q2
]

ψ =

[
l(l +1)+ |q|

(
l +

1
2

)]
ψ

Thus for a Dirac monopole of charge q the spectrum is[
l(l +1)+ |q|

(
l +

1
2

)]
, l ∈ Z≥0 with degeneracy 2l + |q|+1

agreeing exactly with (1.1).
The corresponding eigenfunctions were computed using Darboux-Schrödinger factorisation

method in [6], where the ground eigenstates were identified for non-negative q with the space
of polynomials of degree ≤ q. In our picture the ground eigenspace corresponds to the subspace
of holomorphic sections of Lq, which by the Borel-Weil theorem [2, 8] can be identified with the
corresponding irreducible SU(2)-module Vq.
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6. Generalisation: Dirac magnetic monopole on coadjoint orbits

We discuss briefly here the generalisation of this to any coadjoint orbit of a compact Lie group b

referring for the details to [10]. The classical case was studied by Efimov [5] and Bolsinov and
Jovanovic [1].

Let G be a Lie group, g be its Lie algebra, g∗ be its dual space, Ad and Ad∗ be the corresponding
adjoint and coadjoint actions of G on g and g∗:

Adg(Y ) =
d
ds

∣∣∣∣
s=0

gexp(sY )g−1 = gY g−1.

〈
Ad∗g( f ),X

〉
:=
〈

f ,Adg−1X
〉
.

where 〈 f ,X〉 is the canonical pairing between f ∈ g∗ and X ∈ g. Similarly the adjoint and coadjoint
actions ad∗ of g on g∗ are defined by

adX(Y ) =
d
dt

∣∣∣∣
t=0

exp(tX)Y exp(−tX) = [X ,Y ],

〈ad∗Y ( f ),X〉 :=−〈 f ,adY X〉= 〈 f , [X ,Y ]〉 .

Given a in g∗, the coadjoint orbit O(a) is defined by

O(a) :=
{

x ∈ g∗ : x = Ad∗g(a),g ∈ G
}
= Ad∗G(a).

Defining Ga to be the stabilizer of the point a, Ga :=
{

g ∈ G : Ad∗g(a) = a
}

, it is clear that if x =

Ad∗g(a) then Gx = g(Ga)g−1. In this way, one may identify O(a) with the homogeneous space
O(a)∼= G/Ga.

Assume now that G is compact, connected, simply-connected semi-simple Lie group. Such a
group has a positive Ad-invariant Cartan-Killing form ( , ) defined on its Lie algebra g (see e.g. [8]),
which can be used to identify g∗ with g.

There are two natural metrics on O(a): the metric induced from g∗ with Cartan-Killing form
and the following normal metric defined by

(ξx,ηx)nor := (π(ξ ),π(η)).

where π is the projection map π : g→ g/gx ∼= g⊥x . We will be using the latter one.
Consider the following class of closed G-invariant 2-forms on O(a) (cf. [1]). Let Gx ⊂G be the

stationary subgroup of x ∈ O(a) and Z(gx) be the centre of its Lie algebra. Choose fa ∈ (Z(ga))
∗

and define fx = Ad∗g( fa) ∈ (Z(gx))
∗ at any other point x = Ad∗g(x) ∈ O(a).

bWe are very grateful to Alexey Bolsinov for illuminating discussions of this generalisation.
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Let ξx = ad∗
ξ
(x) and ηx = ad∗η(x) be two tangent vectors at x. Define a 2-form on TxO(a) by

σ f (ξx,ηx) = 〈 fx, [ξ ,η ]〉 .

Then σ f defines an invariant, closed 2-form on O(a). When fa = a we have a canonical, G-invariant
Kostant-Kirillov symplectic form

ωKK(ξx,ηx) = 〈x, [ξ ,η ]〉 .

The forms σ f determine the class of G invariant magnetic fields on O(a), which can be consid-
ered as classical analogues of Dirac magnetic monopoles. The original Dirac magnetic monopole
discussed above corresponds to the simplest case G = SO(3) and O(a) = S2. The Lie group E(3)
above in general case should be replaced by the semi-direct product EG = GnAd g with the product

(g1,X1) · (g2,X2) = (g1g2,Adg−1
2

X1 +X2).

The Lie algebra structure on eg= gnAd g is given by

[(u1,v1),(u2,v2)] = ([u1,u2] , [u1,v2]− [u2,v1]) .

One can show [10] that the coadjoint orbit O( f ,a) of a point ( f ,a) ∈ eg∗ with canonical Kostant–
Kirillov symplectic form is symplectomorphic to the magnetic cotangent bundle (T ∗O(a),d p∧
dq+π∗(ω f )), which is a generalisation of Novikov-Schmelzer result.

By the generalised Dirac magnetic monopole on coadjoint orbit we mean the system on T ∗O(a)
with the symplectic form ω = d p∧dq+π∗(ω f )) and the Hamiltonian given by the normal metric
on O(a). Efimov [5] and Bolsinov and Jovanovic [1] proved the classical integrability in the case
when the magnetic field is a multiple of Kirillov-Kostant form: f = αx.

The quantisation gives the integrality condition for the corresponding form ω f :

1
2π

∫
σ

ω f ∈ Z

for all σ ∈H2(O(a),Z). Such forms are in one-to-one correspondence with the characters of H =Ga

and with homogeneouss line bundles over O(a) = G/H.

The quantum Hamiltonian of the generalised Dirac magnetic monopole is nothing else but the
Bochner Laplacian acting in the sections of the corresponding line bundle, which form the space of
the induced representation indG

H(χ f ). Its spectrum can be computed using the Frobenius reciprocity
and Kostant’s multiplicity formula (see the details in [10]).
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