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The classical quantization of a Liénard-type nonlinear oscillator is achieved by a quantization scheme (M. C.
Nucci. Theor. Math. Phys., 168:994–1001, 2011) that preserves the Noether point symmetries of the under-
lying Lagrangian in order to construct the Schrödinger equation. This method straightforwardly yields the
Schrödinger equation in the momentum space as given in (V. Chithiika Ruby, M. Senthilvelan, and M. Lak-
shmanan. J. Phys. A: Math. Gen., 45:382002, 2012), and sheds light on the apparently remarkable connection
with the linear harmonic oscillator.

Keywords: Classical quantization; Lie symmetries; Noether symmetries; Liénard-type nonlinear oscillator

PACS: 02.30.Hq, 02.20.Sv, 45.20.Jj, 03.65.Ge

1. Introduction

The classical method in the passage from classical to quantum mechanics is based on the substitu-
tion of the classical coordinates and momenta (qi, pi)i=1,...,N with the quantum operators:

qi → qi, pi →−i
∂

∂qi
. (1.1)

However if the quantization of nonstandard Hamiltonians is pursued then ambiguity may occur due
to ordering non-commuting factors. In such cases, the normal ordering method – as described in
classical textbooks such as [4, 22] – and the Weyl quantization scheme [41] were devised.

Also since quantum mechanics is essentially a linear theory then problems arise when nonlinear
canonical transformations are involved and there is no guarantee of consistency [1, 5, 25, 38]. For
a more recent perspective on the canonical transformations in quantum mechanics see [3] and the
references within.

In [34] it was inferred that Lie symmetries should be preserved if a consistent quantization is
desired. In [10] [ex. 18, p. 433] an alternative Hamiltonian for the simple harmonic oscillator was
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presented. It is obtained by applying a nonlinear canonical transformation to the classical Hamilto-
nian of the harmonic oscillator. That alternative Hamiltonian was used in [33] to demonstrate what
nonsense the usual quantization schemesa produce. In [28] a quantization scheme that preserves the
Noether symmetries was proposed and applied to Goldstein’s example in order to derive the cor-
rect Schrödinger equation. In [29] the same quantization scheme was applied in order to quantize
the second-order Riccati equation while in [30] the quantization of Calogero’s goldfish system was
achieved.

Let us reformulate the quantization scheme that preserves the Noether symmetries to the case
of a linearizable system of N second-order ordinary differential equations, i.e.

ẍ(t) = f(t,x, ẋ), x ∈ RN , (1.2)

which possesses the maximal number of admissible Lie point symmetries, namely N2 + 4N + 3.
In [11, 12] it was proven that the maximal-dimension Lie symmetry algebra of a system of N equa-
tions of second order is isomorphic to sl(N+2,R), and that the corresponding Noether symmetries
generate a (N2 + 3N + 6)/2-dimensional Lie algebra gV whose structure (Levi-Malćev decompo-
sition and realization by means of a matrix algebra) was determined. It was also proven that the
corresponding linear system is

y′′(s)+2A1(s) ·y′(s)+A0(s) ·y(s)+b(s) = 0, (1.3)

with the condition

A0(s) = A′
1(s)+A1(s)2 +a(s)1, (1.4)

where A0,A1 are N ×N matrices, and a is a scalar function.

The algorithm that yields the Schrödinger equation can be summarized as follows:

Step 1. Find the linearizing transformation which does not change the time, as prescribed in non-
relativistic quantum mechanics.

Step 2. Derive the Lagrangian by applying the linearizing transformation to the standard
Lagrangian of the corresponding linear system (1.3), namely that that admits the maximum
number of Noether symmetriesb.

Step 3. Apply the linearizing transformation to the Schrödinger equation of the corresponding clas-
sical linear problem. This yields the Schrödinger equation corresponding to system (1.2).

This quantization is consistent with the classical properties of the system, namely the Lie symme-
tries of the obtained Schrödinger equation, i.e.

Ω = T̂ (t,x)∂t +
n

∑
i=1

X̂i(t,x)∂xi + Ψ̂(t,x,ψ)∂ψ , (1.5)

are such that T̂ (t,x)∂t + ∑n
i=1 X̂i(t,x)∂xi correspond to the Noether symmetries admitted by the

Lagrangian of system (1.2).

aSuch as normal-ordering [4, 22] and Weyl quantization [41].
bIn [12] it was shown that any diffeomorphism between two systems of second-order differential equations takes Noether
symmetries into Noether symmetries, and therefore the Lagrangian is unique up to a diffeomorphism.
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Remark: Since the Schrödinger equation is homogeneous and linear, it admits also the homogene-
ity symmetry ψ∂ψ , and the linearity symmetry F(t,x,ψ)∂ψ , where F is any particular solution of
the Schrödinger equation itself.

In this paper we apply this quantization algorithm to a linearizable Liénard equation, i.e.

ẍ+ kxẋ+
k2

9
x3 +ω2x = 0, (1.6)

that has been recently quantized in momentum space [9].
In Section 2 we recall the properties of the linearizable Liénard equation (1.6). In Section 3 we

consider the classical analogue of the momentum representation of equation (1.6) as given in [9] and
after showing that is linearizable we quantize it by preserving the Noether symmetries. In Section
4 a comparison between the Noether quantization method and that applied in [9] is given, and, in
particular, it is shown that the two Schrödinger equations are equal. The last Section contains some
final remarks.

2. Classical properties of the Liénard equation (1.6)

The one-dimensional nonlinear oscillator (1.6) is a special case of the general Liénard equation, i.e.

ẍ+ f (x)ẋ+g(x) = 0, (2.1)

introduced more than 75 years ago [21, 37] for modeling electrical circuits. Since then Liénard
equations have been applied to many different areas even in biology [26].

The particular Liénard equation (1.6) has been extensively studied by many authors, the most
recent papers being [6–8,13]. In [23] Lie group analysis was applied to (1.6) with ω = 0 and it was
shown that it is linearizable, while in [36] the same was proven when ω ̸= 0. In fact it was found that
(1.6) admits an eight-dimensional Lie point symmetry algebra generated by the following operators:

Γ1 = x∂t −
(

1
3

x3k+
3ω2

k
x
)

∂x, (2.2a)

Γ2 = sin(ωt)x∂t −
(

k
3

sin(ωt)x3 −ω cos(ωt)x2
)

∂x, (2.2b)

Γ3 = cos(ωt)x∂t −
(

k
3

cos(ωt)x3 +ω sin(ωt)x2
)

∂x, (2.2c)

Γ4 =

(
3ω
k

cos(2ωt)− sin(2ωt)x
)

∂t

+

[(
k
3

x3 − 3ω2

k
x
)

sin(2ωt)−2ωx2 cos(2ωt)
]

∂x,

(2.2d)

Γ5 =−
(

3ω
k

sin(2ωt)+ cos(2ωt)x
)

∂t

−
[(

k
3

x3 − 3ω2

k
x
)

cos(2ωt)+2ωx2 cos(2ωt)
]

∂x,

(2.2e)

Γ6 = cos(ωt)∂t +

(
ω sin(ωt)x− 3ω2

k
cos(ωt)

)
∂x, (2.2f)
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Γ7 =−sin(ωt)∂t +

(
ω cos(ωt)x+

3ω2

k
sin(ωt)

)
∂x, (2.2g)

Γ8 = ∂t . (2.2h)

Following Lie [20], the linearizing transformation is given by finding a two-dimensional abelian
intransitive subalgebra and putting it into the canonical form ∂x̃, t̃∂x̃. Since a two-dimensional
abelian intransitive subalgebra is that generated by

kΓ2 −3ωΓ6, kΓ3 −3ωΓ7, (2.3)

then the point transformation that takes (1.6) into the one-dimensional free-particle

d2x̃
dt̃2 = 0 (2.4)

is

t̃ =
kxcos(ωt)+3ω sin(ωt)
kxsin(ωt)−3ω cos(ωt)

, x̃ =− 1
9ω2

x
kxsin(ωt)−3ω cos(ωt)

. (2.5)

Indeed the general solution of (1.6) is known to be

x =
9ω3Asin(ωt +δ )

k−3ω2kAcos(ωt +δ )
, (2.6)

with A and δ arbitrary constants.
Thus equation (1.6) represents a non-linear oscillator – at least if |A|< 1/(3ω2) – and should be

related to the linear harmonic oscillator. Indeed in [7] it was shown that the nonlocal transformation

U = xe
k
3
∫

x(τ)dτ (2.7)

takes equation (1.6) into the linear harmonic oscillator:

Ü +ω2U = 0. (2.8)

Also in [7] the following Lagrangian for equation (1.6) was determined:

L =
27ω6

2k2
1

kẋ+
k2

3
x2 +3ω2

+
3ω2

2k
ẋ− 9ω4

2k2 . (2.9)

Since the momentum is

p ≡ ∂L
∂ ẋ

=−27ω6

2k
1(

kẋ+
k2

3
x2 +3ω2

)2 +
3ω2

2k
, (2.10)

and consequently the velocity ẋ is

ẋ =−k
3

x2 +3ω2
1−
√

1− 2k
3ω2 p

k

√
1− 2k

3ω2 p

, (2.11)
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then the corresponding Hamiltonian was derived to be

H =
9ω4

2k2

[
2− 2k

3ω2 p−2
(

1− 2k
3ω2 p

) 1
2

+
k2x2

9ω2

(
1− 2k

3ω2 p
)]

, (2.12)

with the restriction −∞ < p ≤ 3ω2/2k. The substitution of the general solution (2.6) into (2.7)
yielded the following canonical transformation between (1.6) and (2.8):

x =
U

1− k
3ω2 P

, p = P
(

1− k
6ω2 P

)
. (2.13)

Remark: We observe that the last two terms of the Lagrangian (2.9) represent the total derivative
of the function:

G =
3ω2

2k
x− 9ω4

2k2 t. (2.14)

Although the addition of the total derivative of the particular function G as given in (2.14) may seem

useless, it actually allows one to replace the otherwise ambiguous term
√
−p with

√
1− 2k

3ω2 p.

Apart an unessential multiplicative constant and the addition of the total derivative of G as
given in (2.14), the Lagrangian (2.9) was determined in [35] by means of the Jacobi Last Multiplier
[14–17] as a particular case of the Lagrangian for the general Liénard equation (2.1), i.e.

L =

(
ẋ+

g(x)
α f (x)

)2− 1
α

+
d
dt

G(t,x), (2.15)

when the following relationship holds between f (x) and g(x):

d
dx

(
g(x)
f (x)

)
= α(1−α) f (x), (2.16)

where α is a constant ̸= 1.
In the case of equation (1.6) it was shown in [35] that the relationship (2.16) holds, and conse-

quently the following function was determined:

q =
x

ẋ+
k
3

x2 +
3ω2

k

(2.17)

such that q = xe
k
3
∫

x(τ)dτ and satisfies the linear harmonic oscillator equation:

q̈+ω2q = 0, (2.18)

which is indeed (2.8) with the identification q =U .
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3. Quantization of (1.6) in momentum space

In [9] the quantization problem of (1.6) was tackled in the momentum representation since the
Hamiltonian (2.12) is quadratic in x. The von Roos’ quantization scheme [39,40] was then applied.
Instead we begin with the classical Lagrangian equation that comes from the Hamiltonian (2.12)
where x is replaced with the momentum p and then apply the Noether symmetry quantization.

The canonical transformation

(x, p)→ (X ,P) = (p,−x) (3.1)

transforms the Hamiltonian (2.12) into the “inverted” Hamiltonian

H̃ =
9ω4

2k2

[
2− 2k

3ω2 X −2
(

1− 2k
3ω2 X

) 1
2

+
k2P2

9ω2

(
1− 2k

3ω2 X
)]

. (3.2)

The corresponding Lagrangian is:

L̃ =
Ẋ2

2ω2

(
1− 2k

3ω2 X
) − 9ω4

2k2

(
1−
√

1− 2k
3ω2 X

)2

, (3.3)

and its Lagrangian equation is:

Ẍ =
3ω4

k

(
1− 2k

3ω2 X −
√

1− 2k
3ω2 X

)
− kẊ2

3ω2
(

1− 2k
3ω2 X

) . (3.4)

Using the REDUCE programs [27] we determine that the Lie symmetry algebra admitted by equa-
tion (3.4) is generated by the following operators:

Ξ1 = ∂t , (3.5a)

Ξ2 = cos(2ωt)∂t + sin(2ωt)
3ω3

k

[
1− 2k

3ω2 X −
√

1− 2k
3ω2 X

]
∂X , (3.5b)

Ξ3 = sin(2ωt)∂t − cos(2ωt)
3ω3

k

[
1− 2k

3ω2 X −
√

1− 2k
3ω2 X

]
∂X , (3.5c)

Ξ4 =

√
1− 2k

3ω2 X cos(ωt)∂X , (3.5d)

Ξ5 =

√
1− 2k

3ω2 X sin(ωt)∂X , (3.5e)

Ξ6 = cos(ωt)

(√
1− 2k

3ω2 X −1

)
∂t

+
3ω3

k
sin(ωt)

(√
1− 2k

3ω2 X −2

)(
1− 2k

3ω2 X
)

∂X ,

(3.5f)
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Ξ7 = sin(ωt)

(√
1− 2k

3ω2 X −1

)
∂t

− 3ω3

k
cos(ωt)

(√
1− 2k

3ω2 X −2

)(
1− 2k

3ω2 X
)

∂X ,

(3.5g)

Ξ8 =

√
1− 2k

3ω2 X

(
1−
√

1− 2k
3ω2 X

)
∂X . (3.5h)

Obviously equation (3.4) is linearizable and the operators Ξi give a representation of the Lie
algebra sl(3,R) [20]. Therefore the Noether symmetry quantization can be applied step by step.

Step 1. Let us find the linearizing transformation. A two-dimensional abelian intransitive subalge-
bra is provided by Ξ4 and Ξ5 and thus the linearizing transformation that takes (3.4) into the free
particle equation, i.e.

d2ξ (τ)
dτ2 = 0, (3.6)

is given by

τ = tan(ωt), ξ =
3ω
k

1−
√

1− 2k
3ω2 X

cos(ωt)
. (3.7)

Unfortunately this transformation involves changing the time t.
However we recall that the point transformation between the free particle (3.6) and the linear har-
monic oscillator, i.e.

d2Z(t)
dt2 +ω2Z(t) = 0, (3.8)

is given by:

τ = tan(ωt), ξ =
Z

cos(ωt)
. (3.9)

Then it is easy to show that the transformation:

η =
3ω
k

(
1−
√

1− 2k
3ω2 X

)
(3.10)

takes equation (3.4) into the linear harmonic oscillator:

η̈ +ω2η = 0. (3.11)

Thus the linearization transformation (3.10) yields the general solution of equation (3.4), i.e.

X(t) =
A
6

cos(ωt +δ ) [6ω −Ak cos(ωt +δ )] , (3.12)

where A and δ are two arbitrary constants.
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Remark: Equation (3.4) and Liénard equation (1.6) are examples of nonlinear oscillators whose
amplitudes do not depend on the frequency, unlike other famous nonlinear oscillators, e.g. the
Mathews-Lakshmanan oscillator [18, 24].

Step 2. The Lagrangian (3.3) admits five Noether point symmetries, namely Ξi with i = 1, . . . ,5 in
(3.5).

Step 3. Let us consider the Schrödinger equation for the linear harmonic oscillator:

2iΦ̃t + Φ̃ηη −ω2η2Φ̃ = 0, (3.13)

with Φ̃ = Φ̃(t,η). Then applying the transformation (3.10) we obtain the following Schrödinger
equation :

2iΦ̃t +ω2
(

1− 2k
3ω2 X

)
Φ̃XX − k

3
Φ̃X − 9ω4

k2

(
1−
√

1− 2k
3ω2 X

)2

Φ̃ = 0, (3.14)

with Φ̃ = Φ̃(t,X). In order to eliminate the first derivative of Φ with respect to X in (3.14) we apply
the following standard transformationc:

Φ̃(t,X) =
Φ(t,X)[

3ω2
(

1− 2k
3ω2 X

)] 1
4

(3.15)

and hence the final form of the Schrödinger equation is:

2iΦt +ω2
(

1− 2k
3ω2 X

)
ΦXX

+

 k2

12ω2
(
1− 2k

3ω2 X
) − 9ω4

k2

(√
1− 2k

3ω2 X −1

)2
Φ = 0.

(3.16)

We now check the classical consistency of the Schrödinger equation (3.16). Using the REDUCE
programs [27] we find that its Lie point symmetries are generated by the following operators:

Ω1 = Ξ1, (3.17a)

Ω2 = Ξ2 +

ω
2

sin(2ωt)√
1− 2k

3ω2 X

− i9ω4 cos(2ωt)

(
1+

√
1− 2k

3ω2 X

)2

Φ∂Φ, (3.17b)

Ω3 = Ξ3 −

ω
2

cos(2ωt)√
1− 2k

3ω2 X

− i9ω4 sin(2ωt)

(
1+

√
1− 2k

3ω2 X

)2

Φ∂Φ, (3.17c)

cObviously it does not affect the (t,X) part of the admitted finite Lie symmetry algebra of equation (3.14).
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Ω4 = Ξ4 −

 k cos(ωt)

6ω2

√
1− 2k

3ω2 X

+3iω

(
1−
√

1− 2k
3ω2 X

)
sin(ωt)

Φ∂Φ (3.17d)

Ω5 = Ξ5 −

 k sin(ωt)

6ω2

√
1− 2k

3ω2 X

−3iω

(
1−
√

1− 2k
3ω2 X

)
cos(ωt)

Φ∂Φ (3.17e)

Ω6 = Φ∂Φ, (3.17f)

Ωχ = χ(t,X)∂Φ, (3.17g)

where χ(t,X) is any solution of (3.16).

It was shown in [9] that the spectrum of the Liénard equation in momentum space consists of
two parts, one positive and one negative.

The positive part is:

En = ω
(

n+
1
2

)
, n ∈ N,

which is the spectrum of the quantum harmonic oscillator. The eigenfunctions of this part of the
spectrum satisfy the boundary conditions:

lim
X→−∞

Φ(t,X) = 0, for every t ∈ R+,

Φ
(

t,
3ω2

2k

)
= 0, for every t ∈ R+.

(3.18)

The negative part is:

En− =−ω
(

n+
1
2

)
, n ∈ N,

which is not the spectrum of the quantum harmonic oscillator, because of the negative sign. The
eigenfunctions of this part of the spectrum satisfy the boundary conditions:

lim
X→+∞

Φ(t,X) = 0, for every t ∈ R+,

Φ
(

t,
3ω2

2k

)
= 0, for every t ∈ R+.

(3.19)

In [2, 19, 31, 32] and more recently in [33] it was shown how to find the eigenfunctions and the
eigenvalues of the Schrödinger equation by means of its admitted Lie symmetries.

We apply this method to the Schrödinger equation (3.16) and find the same results as in [9].
Let us rewrite the Lie point symmetries (3.17) of equation (3.16) in complex form, i.e.:

Σ1 = i∂t , (3.20a)
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Σ2± = e±2iωt∂t ∓ ie±2iωt 3ω3

k

(
1−
√

1− 2k
3ω2 X

)√
1− 2k

3ω2 X∂X

− ie±2iωt

 ω

2

√
1− 2k

3ω2 X

±9ω4

(
1+

√
1− 2k

3ω2 X

)Φ∂Φ,

(3.20b)

Σ3± = e±iωt

√
1− 2k

3ω2 X∂X

−

 k

6ω2

√
1− 2k

3ω2 X

±3ω

(
1−
√

1− 2k
3ω2 X

)Φ∂ϕ ,

(3.20c)

Σ4 = Φ∂Φ, (3.20d)

Σχ = χ(t,X)∂Φ. (3.20e)

The operators Σ3± act as creation and annihilation operators, namely in the case of the boundary
conditions (3.18) Σ3+ is the annihilation operator and Σ3− is the creation operator, and viceversa in
the case of the boundary conditions (3.19).

Let us now consider the case of the boundary conditions (3.18). The invariant surface of the
operator Σ3+ is given by

F(t,X ,Φ) = f

t,Φ
e
− 3ω

k2

(
3ω2

√
1− 2k

3ω2 X+kX
)

(
1− 2k

3ω2 X
) 1

4

= 0, (3.21)

and consequently by means of the Implicit Function Theorem one gets

Φ(t,X) = T (t)
(

1− 2k
3ω2 X

) 1
4

e
3ω
k2

(
3ω2

√
1− 2k

3ω2 X+kX
)
, (3.22)

with T (t) arbitrary function of t. Substituting this solution into the Schrödinger equation (3.16)
yields T (t) = e−

1
2 it and thus the ground state solution is:

Φ0(t,X) =

(
1− 2k

3ω2 X
) 1

4

e−
1
2 iωt+ 3ω

k2

(
3ω2

√
1− 2k

3ω2 X+kX
)
. (3.23)

This solution Φ0(t,X) satisfies the boundary conditions (3.18) and is indeed the ground stated since

[Σ3+,ΣΦ0 ] = 0. (3.24)

Thus there are no states under Φ0(t,X).
The operator Σ1 acts like an eigenvalue operator since:

Σ1Φ0 =
ω
2

Φ0, (3.25)

which yields the ground energy E0 = ω/2, just like the usual quantum harmonic oscillator.

dApart from an unessential normalization constant.
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We use the creation operator Σ3− and ΣΦ0 in order to construct the higher states. Since the
commutator:

[Σ3−,ΣΦ0 ] =
23

7
4 ω 9

4

k

(√
1− 2k

3ω2 X −1

)(
1− 2k

3ω2 X
) 1

4

e
− 3

2 it+ 3ω
k2

(
3ω2

√
1− 2k

3ω2 X+kX
)

(3.26)

then:

Φ1(t,X) =
23

7
4 ω 9

4

k

(√
1− 2k

3ω2 X −1

)(
1− 2k

3ω2 X
) 1

4

e
− 3

2 it+ 3ω
k2

(
3ω2

√
1− 2k

3ω2 X+kX
)

(3.27)

is another solution of (3.16) that satisfies the boundary conditions (3.18) and has a greater energy
eigenvalue E1 =

3ω
2 given by:

Σ1Φ1 =
3ω
2

Φ1. (3.28)

If we evaluate the commutator between Σ3+ and ΣΦ1 then we obtain a multiple of Φ0, i.e.:

[Σ3+,ΣΦ1 ] =−4kωΦ0∂Φ, (3.29)

and thus we have constructed the first excited state.
Iterating the process yields all the eigenfunctions, i.e.[

Σ3−,ΣΦn−1

]
= Φn∂Φ = ΣΦn . (3.30)

Since we have proven that Σ3+ acts as the annihilation operator for the first excited state, then we
can easily show by means of Jacobi identitye that this holds true for every n ∈ N, i.e.

[Σ3+,ΣΦn ] =
[
Σ3+,

[
Σ3−,ΣΦn−1

]]
=
[[

ΣΦn−1 ,Σ3+
]
,Σ3−

]
+
[
[Σ3+,Σ3−] ,ΣΦn−1

]
=−κ

[
ΣΦn−2 ,Σ3−

]
= κΣΦn−1 ,

(3.31)

where κ is a constant.
The generic eigenvalue and eigenfunction can be derived in the following manner. We evaluate

the commutator between Σ3− and Σχ , where χ is a generic solution of (3.16), i.e.

[Σ3−,Σχ ] = −1
2

e−iωt

√
3ωk

√
1− 2kX

3ω2

[(
−18ω3 +18ω3

√
1− 2kX

3ω2 − k2 +12kωX

)
χ

eAnd by means of
[Σ3,+,Σ3,−] = 6ωΣ4.
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+
(
4k2X −6kω2)χX

]
∂Φ. (3.32)

We define the operator Ô:

Ô =
e−iωt

2
√

3ωk
√

1− 2kX
3ω2

[(
18ω3 −18ω3

√
1− 2kX

3ω2 + k2 −12kωX

)
−
(
4k2X −6kω2)∂X

]
(3.33)

and then beginning with the ground state Φ0 generate the nth eigenfunction by using the iteration
procedure (3.30), i.e.:

Φ1 = e−iωtÔΦ0,

Φ2 = e−iωtÔΦ1 = e−2iωtÔ2Φ0,

...

Φn = e−iωtÔΦn−1 = e−inωtÔnΦ0.

(3.34)

Since the operator Ô acts on X only, then

Φn = e−i(n+ 1
2)ωtÔn

((
1− 2k

3ω2 X
) 1

4

e
3ω
k2

(
3ω2

√
1− 2k

3ω2 X+kX
))

. (3.35)

Consequently, applying the eigenvalue operator Σ1 yields the positive part of the spectrum, i.e.

Σ1Φn = ω
(

n+
1
2

)
Φn. (3.36)

The negative part of the spectrum can be determined in the same way. We determine the invariant
surface of Σ3−, i.e.

G(t,X ,Φ) = g

t,Φ
e

3ω
k2

(
3ω2i

√
2k

3ω2 X−1+kX
)

( 2k
3ω2 X −1

) 1
4

 , (3.37)

and consequently by means of the Implicit Function Theorem one gets:

Φ(t,X) = T̃ (t)
(

2k
3ω2 X −1

) 1
4

e−
3ω
k2

(
3ω2i

√
2k

3ω2 X−1+kX
)
. (3.38)

Substituting Φ(t,X) into (3.16) yields T̃ (t) = e
ω
2 it , i.e. the solution:

Φ0−(t,X) =

(
2k

3ω2 X −1
) 1

4

e
1
2 iωt− 3ω

k2

(
3ω2i

√
2k

3ω2 X−1+kX
)
. (3.39)

The function Φ0−(t,X) (3.39) satisfies the boundary conditions (3.19) and is equivalent to the
ground state since [

Σ3−,ΣΦ0−

]
= 0. (3.40)
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Consequently there are no states above Φ0− .
The operator Σ1 acts like an eigenvalue operator since:

Σ1Φ0− =−ω
2

Φ0− , (3.41)

which yields the ground energy E0− =−ω/2, and consequently Φ0−(t,X) has a negative eigenvalue.
Since

[
Σ3+,ΣΦ0−

]
= ΣΦ1−

, we explicitly determine the first negative excited state Φ1−(t,X), i.e.:

Φ1−(t,X) =
23

7
4 ω 9

4

k

(
i

√
2k

3ω2 X −1−1

)(
2k

3ω2 X −1
) 1

4

e
3
2 it− 3ω

k2

(
3ω2i

√
2k

3ω2 X−1+kX
)
. (3.42)

Applying Σ1 to Φ1−(t,X) we get the corresponding eigenvalue:

Σ1Φ1− =−3ω
2

Φ1− , (3.43)

and by applying the commutator with Σ3− we indeed obtain:

[Σ3−,ΣΦ1−
] =−6ωΣΦ0−

. (3.44)

Finally, in analogy with the positive part of the spectrum, we have the following recursive formula
yielding all the eigenvalues and eigenfunctions:[

Σ3+,ΣΦn−1−

]
= Φn−∂Φ = ΣΦn−

, (3.45)[
Σ3−,ΣΦn−

]
= Φn−1−∂Φ = ΣΦn−1−

, (3.46)

Σ1Φn− =−ω
(

n+
1
2

)
Φn− . (3.47)

4. Comparison between the two quantization methods for (3.4)

We compare the Noether symmetry quantization method applied to equation (3.4), as shown in
the previous Section, with that used in [9]. Since the Hamiltonian (2.12) is a nonstandard one,
the classical quantization rule (1.1) cannot be used. Therefore in [9] a simple modification of the
quantization scheme proposed by von Roos [39, 40] for position-dependent masses was applied.
In [9] the following momentum-dependent mass:

m(p) =
1

ω2
(
1− 2k

3ω2 p
) , (4.1)

and the following momentum-dependent potential:

U(p) =
9ω4

2k2

(√
1− 2k

3ω2 p−1

)2

(4.2)

were introduced in order to transform the Hamiltonian (2.12) into the form

H =
x2

2m(p)
+U(p). (4.3)
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Then the following Schrödinger equation was obtainedf:

2iΨt+ω2
(

1− 2k
3ω2 p

)
Ψpp −

2k
3

Ψp

+

 4k2α(α +β +1)

9ω2

(
1− 2k

3ω2 p
) − 9ω4

k2

(√
1− 2k

3ω2 p−1

)2

Ψ = 0,
(4.4)

where the constants α and β are related with the other constant γ by means of the condition

α +β + γ =−1 (4.5)

as prescribed by the von Roos’ method. Moreover the following further restriction was imposed:

4α(α +β +1) =−1
4

(4.6)

in order to find the solution of equation (4.4) by means of Hermite differential equation.
Since the eigenfunctions are singular on p = 3ω2/2k, consequently in [9] another Schrödinger
equation was proposed by considering the following modified Hamiltonian:

H̄ = mdHm−d , (4.7)

and applying to it the von Roos’ procedure. Then it was found that d must be equal to −1/2, and
the following Schrödinger equation was obtained:

2iΘt+ω2
(

1− 2k
3ω2 p

)
Θpp

+

 k2

12ω2

(
1− 2k

3ω2 p
) − 9ω4

k2

(√
1− 2k

3ω2 p−1

)2

Θ = 0,
(4.8)

which is the same Schrödinger equation (3.16) that we have got in the previous section with the
identification p = X .
We observe that equation (4.4) and equation (4.8) are related by the trivial point transformation:

Ψ(t, p) =
Θ(t, p)√

3ω2

(
1− 2k

3ω2 p
) , (4.9)

that eliminates the first-derivative in (4.4) and does not change the (t, p) part of the admitted finite
Lie point symmetry algebra, namely the Noether symmetries of the classical Lagrangian (3.3). We
also remark that the condition (4.6) on the constants α and β is equivalent to require that the finite
Lie point symmetry algebra of equation (4.4) – and consequently equation (4.8) – be six dimen-
sionalg.

fIn [9] time-independent Schrödinger equations were derived.
gIf α and β do not satisfy condition (4.6) then equation (4.4) admits only Γ1, Γ6 and Γψ as Lie symmetries.
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Indeed we have shown that the Schrödinger equation (4.4) can be obtained by means of the
quantization method that preserves the Noether symmetries of the classical problem.

5. Final remarks

A new algorithm for quantization that requires the preservation of Noether symmetries in the pas-
sage from classical to quantum mechanicsh has been recently introduced and applied to both one-
dimensional and two-dimensional Lagrangian equations [28–30].

In this paper we have applied this new method to the linearizable Liénard equation (1.6) and
compared our results with that determined in [9]. We have found that the Schrödinger equation
obtained in [9] can be determined by means of the quantization that preserves the Noether symme-
tries.

Even in quantum mechanics whenever differential equations are involved, Lie and Noether sym-
metries have a fundamental role: Noether symmetries yield the correct Schrödinger equation and its
Lie symmetries can be algorithmically used to find the eigenvalues and eigenfunctions.
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[11] F. González-Gascón and A. González-López. Symmetries of differential equations. J. Math. Phys.,

23:2006–2021, 1983.
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number of Lie point symmetries. J. Math. Phys., 50: 082702, 2009.

[37] B. Van Der Pol. Forced oscillations in a circuit with nonlinear resistance (receptance with reactive
triode). Edinbourgh Dublin Phil. Mag., 3, 1927.

[38] L. van Hove. Sur certaines représentations unitaires d’un groupe infini de transformations. Memoires
de la Académie Royale Belgique, Classe de Sciences, 26:1–102, 1951.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

263



Noether symmetries and the quantization of a Liénard-type nonlinear oscillator

[39] O. von Roos. Position-dependent effective masses in semiconductor theory. Phys. Rev. B, 27:7547–
7552, Jun 1983.

[40] O. von Roos and H. Mavromatis. Position-dependent effective masses in semiconductor theory. II. Phys.
Rev. B, 31:2294–2298, Feb 1985.

[41] H. Weyl. Quantenmechanik und gruppentheorie. Zeitschrift für Physik, 46:1–46, 1927.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

264


